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Abstract

In this paper, we present the SALAMANDRATA
family of models, an improved iteration of
SALAMANDRA LLMs (Gonzalez-Agirre et al.,
2025) specifically trained to achieve strong per-
formance in translation-related tasks for 38 Eu-
ropean languages. SALAMANDRATA comes
in two scales: 2B and 7B parameters. For both
versions, we applied the same training recipe
with a first step of continual pre-training on
parallel data, and a second step of supervised
fine-tuning on high-quality instructions.

The BSC submission to the WMT25 General
Machine Translation shared task is based on
the 7B variant of SALAMANDRATA. We first
adapted the model vocabulary to support the
additional non-European languages included
in the task. This was followed by a second
phase of continual pre-training and supervised
fine-tuning, carefully designed to optimize per-
formance across all translation directions for
this year’s shared task. For decoding, we em-
ployed two quality-aware strategies: Minimum
Bayes Risk Decoding and Tuned Re-ranking
using COMET and COMET-KIWI respectively.

We publicly release both the 2B and 7B ver-
sions of SALAMANDRATA, along with the
newer SALAMANDRATA-V2 model, on Hug-
ging Face1.

1 Introduction

Traditionally, Massively Multilingual Neural Ma-
chine Translation (MMNMT) relied on the encoder-
decoder architecture to translate across multiple
languages (Fan et al., 2021; NLLB Team et al.,
2022). More recently, however, Large Language
Models (LLMs) have demonstrated strong MM-
NMT capabilities (Zhu et al., 2024) and thus some
works have proposed several strategies to improve

*Core Contributor.
1SALAMANDRATA7B-V1 , SALAMANDRATA2B-V1

and SALAMANDRATA7B-V2 .

the translation capabilities of a pre-trained LLM
model and better align it with human translations
(Zhang et al., 2023; Alves et al., 2024; Xu et al.,
2024).

One such approach is continual pre-training us-
ing a combination of monolingual and parallel cor-
pora followed by supervised fine-tuning (Alves
et al., 2024). However, most previous approaches
have predominantly relied on English-centric par-
allel corpora. This has been shown to bias the mod-
els towards English-centric latent representations
(Zhang et al., 2025) which has been attributed to the
language distribution used in the training corpora
(Zhong et al., 2024). It is well known that training
with only a single bridge language can negatively
impact translation performance across zero-shot
language pairs, due to limited cross-lingual transfer
(Arivazhagan et al., 2019). Unlike previous works,
in this paper we rely on parallel corpora only for
the continual pre-training stage pivoting on three
bridge languages.

When working with pre-trained language mod-
els on languages not covered by their original tok-
enizer, a highly effective solution involves replac-
ing the existing tokenizer with a more comprehen-
sive one that supports such languages. For the
newly introduced tokens, embeddings must be ini-
tialized. In our work, these new embeddings were
initialized to the average of all existing embed-
dings and then rapidly optimized through contin-
ual pre-training (CPT). This method has not only
proven to be viable but also demonstrably improves
the model’s overall performance in the target lan-
guages, even if the original model was never ex-
posed to data from these languages during its initial
training (Da Dalt et al., 2024).

Throughout this paper, we present the SALA-
MANDRATA family of models, which serve as the
backbone models of the BSC team’s submission to
the WMT25 General Machine Translation Shared
Task. Our participation covers 15 out of the 16

https://huggingface.co/BSC-LT/salamandraTA-7b-instruct
https://huggingface.co/BSC-LT/salamandraTA-2b-instruct
https://huggingface.co/LangTech-MT/salamandraTA-7b-instruct-WMT25
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Figure 1: Distribution of sentence pairs for continual pre-training. The first three plots (■ CPT-V1) show the
number of sentence pairs pivoting in English, Spanish and Catalan, respectively. The fourth plot (■ CPT-V2)
corresponds to the second continual pre-training phase with direct language pairs.

translation directions in the general MT task under
the constrained track. Additionally, we took part
in the multilingual subtask for 7 out of the 16 di-
rections. Contributions of this work are listed as
follows:

• While most previous work have relied on
English-centric parallel corpora for building
translation-focused LLMs, we build SALA-
MANDRATA pivoting in three languages for
continual pre-training; English, Spanish and
Catalan across 172 supervised directions.

• We show that instruction tuning improves both
translation quality and robustness to character-
level noise.

• We release all model checkpoints to facilitate
reproducibility and future research on mas-
sively multilingual machine translation.

2 Data

Our base models are SALAMANDRA-2B and SALA-
MANDRA-7B (Gonzalez-Agirre et al., 2025), which
were trained from scratch on highly multilingual
data. However, SALAMANDRA models were not
exposed to parallel data during pre-training. To
address this, and following Alves et al. (2024),
we improve their multilingual machine translation
capabilities by performing continual pre-training
on parallel data covering 38 European languages
(35 of which were already present in the original
pre-training corpus). This step is followed by su-
pervised fine-tuning using high-quality instruction
data. In this section, we detail the datasets used
for both continual pre-training and supervised fine-
tuning.

2.1 Continual pre-training

To train the SALAMANDRATA models, we first
compile a parallel corpus from publicly available
data sources. A comprehensive list of these sources
and the corresponding language pairs can be found
in Table 5. We build two separate training sets:
CPT-V1 and CPT-V2. All data undergo initial
filtering using LABSE (Feng et al., 2022), and off-
target translations are excluded using the Lingua2

library. After filtering, the data is de-duplicated
and punctuation is normalized with the Bifixer
library (Ramírez-Sánchez et al., 2020). The final
corpora are formatted using the prompt template
provided in Appendix Figure 3. Additional dataset
details are available in Appendix C.

Using CPT-V1 we continue pre-training
SALAMANDRA 2B and 7B with the causal
language modeling objective resulting in
SALAMANDRATA2B-BASE and SALAMAN-
DRATA7B-BASE models. Then, we use CPT-V2
to continue pre-training SALAMANDRATA7B-
BASE.

■ CPT-V1: The first corpus, is employed during
the initial round of continual pre-training (CPT),
with the objective of enhancing the machine trans-
lation capabilities of SALAMANDRA across Euro-
pean languages. The final dataset has 38 languages
across 6.57B sentence pairs and 172 machine trans-
lation directions in total pivoting in English, Span-
ish and Catalan, totaling in 424B tokens. We show
in Figure 1 the data distribution of the CPT-V1
corpus.

2https://github.com/pemistahl/lingua-py

https://github.com/pemistahl/lingua-py
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■ CPT-V2: The second corpus, is used in the
subsequent CPT round, where the focus shifts to-
ward expanding coverage to include the additional
language pairs featured in the WMT 2025 shared
task. It includes 0.39B sentences across 14 lan-
guages and 15 directions, amounting to 27B to-
kens. To avoid the risk of catastrophic forgetting,
we subsample 20M sentences for directions al-
ready present in CPT-V1 ( EN→CS, EN→ET, EN→RU,
EN→UK). For EN→SH (English-to-Serbian, Latin
script), we combined two sources from CPT-
V1: English–Serbian (Latin script) data and En-
glish–Serbian (Cyrillic script) data, the latter con-
verted to Latin script using rule-based transliter-
ation. The per-direction data distribution is also
shown in Figure 1. Note that we include the
English-to-Hindi direction, which is not part of
this year’s shared task, in order to support better
transfer for related languages such as Bhojpuri.

2.2 Instruction tuning
For instruction tuning we build two separate
corpora: IT-V1 and IT-V2. The first, IT-V1,
is used to fine-tune SALAMANDRATA2B-BASE

and SALAMANDRATA7B-BASE models into
instruction-following models. The second corpus,
is used to instruct SALAMANDRATA7B-BASE

after continue pre-training with CPT-V2 corpus.
We format each instruction using the chatml
template (Open AI, 2023).

■ IT-V1: Following prior work on supervised
fine-tuning for machine translation (Alves et al.,
2024; Rei et al., 2024, 2025), we organize
the instruction examples into three categories:
pre-translation, translation, and post-translation
tasks. The selection of tasks is motivated by
the ablation results discussed in Section 4. The
final corpus consists of 135k instructions, with
the majority sourced from the TOWERBLOCKS

collection (Alves et al., 2024). For translation
related-tasks we focus on sentence, paragraph
and document level data, primarily sourced from
EUROPARL (Koehn, 2005). A big part of the
data is drawn from multi-parallel datasets such
as FLORES-200 (NLLB Team et al., 2022) or
NTREX (Federmann et al., 2022), where a
single source sentence has multiple translations
in different target languages. When building the
instruction tuning dataset, a naive strategy is to
pivot trough different bridge languages across all
languages including the complete dataset (e.g. for

a given Catalan sentence that aligns to parallel
sentences in, Spanish, French, and German, we
might generate CA→ES, CA→FR, CA→DE and ES→CA,
FR→CA, DE→CA). In our dataset we pivoted in
five bridge languages: English, Catalan, Spanish,
Basque and Galician across all the supported
languages. However, this increases the number of
duplicate training examples that share identical
content on the target or source side. We found that
doing this encourages target-side collapse, where
the model produces off-target translations because
many-to-one alignments blur the mapping between
specific source inputs and their intended target
languages. To mitigate this, we randomly sampled
approximately equal numbers of translation
instructions for each language pair. Further details
on IT-V1 are provided in Appendix C.

■ IT-V2: The second corpus, consisting of ap-
proximately 51k instructions, is constructed to fo-
cus on paragraph-level translation, context-aware
machine translation, and sentence-level translation
for the language directions included in the WMT
2025 shared task. To construct paragraph level data
we source from FLORES-200-dev, NTREX and
NEWSCOMMENTARY datasets. Similar to IT-V1,
we applied random sampling when using multi-
parallel datasets. In addition, we included data
from TOWERBLOCKS that we considered relevant
to our tasks. More details about IT-V2 can be
found in Appendix C.

3 SalamandraTA Models

The SALAMANDRATA family is composed of two
base models, 2B and 7B parameters, which were
continually pre-trained on the CPT-V1 corpus
and subsequently instruction-tuned on IT-V1. For
our submission to the WMT25 General Translation
Shared Task, we further adapted the 7B model,
resulting in SALAMANDRATA-V2.

3.1 Adding WMT languages: SALAMANDRATA-V2

To expand the language coverage of SALAMAN-
DRATA and accommodate the additional lan-
guages required by the WMT25 General Trans-
lation Shared Task, we implemented vocabulary
adaptation. We trained a new tokenizer on a cor-
pus comprising the original languages augmented
with monolingual text for the new languages not
included in the original SALAMANDRA tokenizer:
Chinese, Korean, Japanese, Arabic, and Bhojpuri.
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The old tokenizer was replaced with the new one,
which required re-initializing the embedding and
unembedding layers. To address this, we modified
these layers to ensure that tokens common to both
the old and new tokenizers retained their original
embeddings. The embeddings for the remaining,
newly introduced tokens were initialized as the av-
erage of all existing embeddings. We expected this
strategy to be particularly successful given that the
two tokenizers share over 58% of their vocabulary.
Figure 7 shows the fertility per language pair, com-
paring our new SALAMANDRA tokenizer against
previous tokenizer, MADLAD400 and NLLB. On av-
erage, SALAMANDRA achieves a fertility of 1.88,
outperforming both NLLB (2.00) and MADLAD400

(2.33) on WMT25 language pairs.
The subsequent section details the continual pre-

training stage of our model. This stage aims not
only to enhance the model’s translation capabilities
but also to recover the embeddings of these newly
initialized tokens. More details can be found in
Appendix D.

3.2 Model training

3.2.1 Continual pre-training

For this phase, we chose SALAMANDRA-2B and
SALAMANDRA-7B as base models, using check-
points preceding the annealing phase described in
Gonzalez-Agirre et al. (2025). This choice was
intentional: the annealing phase narrows the data
sources to shape the model into a general-purpose
downstream performer, which we considered mis-
aligned with (or even counterproductive to) our
goal of improving translation capabilities. The
training strategy followed a schedule similar to
that of the annealing phase. The learning rate was
linearly warmed up over the first 2,000 steps, reach-
ing a peak of 3e-5, and then decayed using a cosine
schedule down to 3e-6. To mitigate the risk of
exploding gradients, we applied gradient clipping
with a maximum norm of 1.0 after the warm-up
stage. We used NVIDIA NeMo as the training
framework, and all other training hyperparameters
were kept consistent with those used in the origi-
nal SALAMANDRA pre-training (see Appendix E
for more details). We trained the 7B model for
105k steps and the 2B model for 50k steps on the
CPT-V1 corpus tokenized with the original SALA-
MANDRA tokenizer (see Appendix Figure 10).

After vocabulary adaptation, we continually pre-
train the resulting SALAMANDRATA-7B model

using CPT-V2. The training strategy followed
the same training configuration as previously de-
scribed.

3.2.2 Supervised Fine-tuning

We fine-tune SALAMANDRATA base models using
FastChat framework (Zheng et al., 2023). Hyper-
parameter details are provided in Appendix Table
10.

3.3 Evaluation

Metrics We assess translation quality using sev-
eral metrics. For reference-based evaluation, we
report scores from the learned metrics COMET
(Rei et al., 2022a), BLEURT (Sellam et al., 2020),
and METRICX (Juraska et al., 2023). For reference-
free quality estimation (QE), we use COMET-KIWI

(Rei et al., 2022b), and METRICX-QE. We also
report two lexical-based metrics: CHRF (Popović,
2015) and BLEU (Papineni et al., 2002).

Datasets We used the FLORES-200-devtest
dataset for ablation studies on the SALAMAN-
DRATA models. For evaluating translation quality
on the WMT 2025 directions, we primarily relied
on the WMT24++ dataset (Deutsch et al., 2025).
An exception is the English to Bhojpuri direction,
which is not included in WMT24++; for this case,
we used FLORES-200-devtest for evaluation.

Baselines We compare the different SALAMAN-
DRATA variants against the translation LLM
TOWER-V2 7B (Rei et al., 2024), as well as ded-
icated MMNMT models such as MADLAD400 7B

(Kudugunta et al., 2023) and NLLB 3.3B (NLLB
Team et al., 2022).

Decoding strategies For inference with the base-
line, base, and instruction-tuned models, we em-
ploy beam search with a beam size of 5. Addi-
tionally, we experiment with two alternative de-
coding approaches: we use diverse beam search
(Vijayakumar et al., 2018), which promotes output
diversity by penalizing similar beams, and two post-
decoding strategies applied to the generated can-
didates: Tuned Re-ranking Decoding (TRR) and
Minimum Bayes Risk Decoding (MBR) (Eikema
and Aziz, 2020) using the mbrs library (Deguchi
et al., 2024). For diverse beam search we set a beam
size of 20 and 5 beam groups. For post-decoding
methods, we use COMET-22 as the quality metric
for MBR and COMET-KIWI for TRR.
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en→xx cs→xx ja→xx
CS ET RU SH UK IS AR ZH JA KO DE UK ZH

Baselines
TOWER-V2 7B 71.7 - 79.7 - - - - 81.9 - 84.1 76.8 - -
MADLAD400 7B 82.7 83.2 76.8 - 82.1 71.1 72.4 73.7 81.7 78.3 81.8 82.8 76.4
NLLB 3.3B 79.5 80.4 76.6 - 78.3 70.1 72.7 70.3 77.9 80.3 76.9 78.9 68.4

SALAMANDRATA2B
BASE + CPT-V1 80.3 80.1 76.0 - 69.6 - - - - - 80.1 57.0 -

+ INSTRUCT-V1 80.7 80.3 76.5 - 78.0 - - - - - 76.0 78.0 -
+ TRR 84.3 86.0 80.5 - 83.3 - - - - - 80.4 81.8 -
+ MBR 85.6 87.0 81.4 - 84.0 - - - - - 81.5 83.5 -

SALAMANDRATA7B
BASE + CPT-V1 81.9 79.8 76.6 - 78.0 - - - - - 81.5 82.2 -

+ INSTRUCT-V1 85.3 86.6 80.3 - 83.8 - - - - - 81.6 83.4 -
+ TRR 85.9 87.6 82.0 - 85.0 - - - - - 81.3 84.0 -
+ MBR 87.2 88.7 82.9 - 85.9 - - - - - 82.6 85.1 -

SALAMANDRATA-V2

BASE + CPT-V1 + CPT-V2 81.1 79.3 76.2 79.4 77.0 69.3 70.6 74.7 75.5 75.9 81.5 82.5 77.3
+ INSTRUCT-V2 83.1 85.3 79.3 83.9 84.1 77.4 71.3 81.1 80.9 80.2 80.4 82.3 77.8

+ TRR 85.3 87.3 81.8 84.9 85.1 79.7 74.2 82.7 83.3 82.5 81.3 84.2 79.6
+ MBR 86.6 88.5 82.4 86.3 86.1 80.7 75.5 83.4 84.1 83.6 82.5 85.1 80.4

Table 1: COMET scores on the WMT24++ test set, comparing our SALAMANDRATA models against several
strong baselines. We show the performance at each stage of our method: from the continually pre-trained base
models (scores in gray), to the instruction-tuned models, and finally with the application of quality-aware decoding
strategies (TRR and MBR). Using Minimum Bayes Risk (MBR) decoding consistently yields the best results.

4 Results

Table 1 presents the main translation quality results
on the WMT24++ test set, measured in COMET
scores for the language directions in the general MT
task. We report extra metrics in Appendix F. We
additionally evaluate SALAMANDRATA-2B and
SALAMANDRATA-7B using COMET and MET-
RICX for the language directions present in the
multilingual subtask and report them in Appendix
Table 17.

As shown in Table 1, instruction tuning yields
significant gains over the CPT baselines, improving
the SALAMANDRATA-7B, SALAMANDRATA-2B,
and SALAMANDRATA-V2 models by an average of
3.51, 4.40, and 3.60 COMET points, respectively.

Although further adapting the SALAMAN-
DRATA-7B model to WMT-2025 language pairs
initially causes an average performance drop of
1.09 COMET points on the language directions
shared between SALAMANDRATA-7B and SALA-
MANDRATA-V2, this gap is largely mitigated when
employing quality-aware decoding strategies. Ap-
plying Minimum Bayes Risk (MBR) and Tuned

Re-ranking (TRR) decoding strategies reduces this
drop to 0.16 and 0.20 COMET points, respectively.

On the impact of adding non-MT-Tasks To
better understand the impact of different instruc-
tion types on translation quality, we conduct an
ablation study of instruction fine-tuning across
four main task categories: machine translation
(MT), pre-translation tasks (Pre-MT) (e.g., Named
Entity Recognition), post-translation tasks (Post-
MT) (e.g., Gender Bias Mitigation), and chat/code-
related tasks3. Table 2 presents the model’s perfor-
mance after fine-tuning on each of these categories.

Instruction fine-tuning using MT tasks consis-
tently yields the best overall performance across
most evaluation metrics, with the exception of
METRICX. For METRICX, a combination of
MT, Pre-MT, and Post-MT instructions results in
slightly improved performance. In contrast, adding
only Pre-MT or Post-MT instructions shows no sig-
nificant difference compared to the MT-only base-
line. Incorporating Chat and Code instructions,

3This last group includes TOWERBLOCKS synthetic chat
data and code instruction data.
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en→xx xx→en
COMET METRICX BLEU COMET METRICX BLEU

SALAMANDRATA7B BASE + CPT-V1 0.85 1.73 34.60 0.88 1.15 44.22

Supervised Finetuning
MT 0.87 1.33 36.71 0.88 1.17 45.02

+ Pre-MT + Post-MT 0.87 1.14 36.42 0.88 1.09 45.00
+ Chat + Code 0.87 1.36 35.58 0.88 1.16 44.81

MT + Post-MT 0.87 1.33 36.57 0.88 1.15 44.88
MT + Pre-MT 0.87 1.33 36.34 0.88 1.16 44.67

Table 2: Ablation study on the impact of different supervised fine-tuning tasks for the SALAMANDRATA7B-BASE
model. We report COMET, METRICX, and BLEU scores for English-to-Other (en→xx) and Other-to-English
(xx→en) directions.

however, leads to a consistent drop in BLEU scores
without measurable gains in other metrics.

Based on these findings, we concluded that for
SALAMANDRATA-2B and 7B, incorporating both
Pre-MT and Post-MT tasks alongside MT tasks
provided a slight benefit or at least no degradation
in performance, leading to their inclusion in the
IT-V1 dataset. However, for SALAMANDRATA-

V2 which was specifically tailored for the WMT25
General Translation Shared Task, we made a de-
liberate choice to focus exclusively on MT instruc-
tions. While Pre-MT and Post-MT tasks might
offer benefits, gathering high-quality, task-specific
instruction data for the unique language pairs and
domains present in WMT25 would have required
significant additional effort beyond the scope of
this work.

On the robustness to character noise Following
Peters and Martins (2025), we investigate model ro-
bustness by injecting character-level noise into the
source sentences of FLORES-200-devtest for the
English to Spanish direction using adjacent swaps,
duplications, and deletions at different noise levels.
Figure 2 shows the relative degradation in BLEU
score compared to zero-noise baseline. The SALA-
MANDRATA 7B instruction-tuned model consis-
tently shows greater resilience than the base model
across all perturbation types. At the maximum
noise level (1.0), the performance degradation of
the instruction-tuned model is smaller by 17.63 p.p.
for swaps, 20.61 p.p. for duplications, and 18.33
p.p. for deletions. These results demonstrate that
instruction tuning effectively improves a model’s
robustness to character-level input corruptions.

Adding a low-resource language: The case of
Bhojpuri Table 3 presents our ablation experi-
ments for English to Bhojpuri translation direction.
We find that during CPT, removing the EN→HI par-
allel data causes performance to drop from 9.32 to
0.35 BLEU and from 35.43 to 9.83 CHRF. This
result provides clear evidence that the model relies
on cross-lingual transfer from Hindi for translating
to Bhojpuri. Finally, supervised fine-tuning (IT-
V2) improves performance, improving the scores
to 11.67 BLEU and 37.75 CHRF. This result shows
the effectiveness of fine-tuning on high-quality data
in the final stage, even for low-resource language
pairs.

BLEU CHRF

Continual pre-training

CPT-V2 9.32 35.43
CPT-V2 (no EN→HI) 0.35 9.83

Supervised Finetuning

CPT-V2 + IT-V2 11.67 37.75

Table 3: Ablation results for English→Bhojpuri trans-
lation in terms of BLEU and CHRF on FLORES-200-
devtest. The table compares the impact of removing the
EN→HI direction from the CPT data and the effect of
supervised fine-tuning ( IT-V2 ).

5 Submission

For our WMT25 general and multilingual MT tasks
submissions, we apply a chunking strategy, split-
ting each input instance at \n\n delimiter prior
to translation. We made two submissions using
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Figure 2: Relative change in BLEU scores (%) under increasing levels of input noise for three types of character-
level perturbations: Adjacent Swap, Character Duplication, and Character Deletion.

two quality-aware decoding strategies: Minimum
Bayes Risk Decoding employing COMET and
Tuned Re-ranking relying on COMET-KIWI.

6 Conclusion

In this paper, we introduced the SALAMANDRATA
family of models, a series of powerful, translation
LLMs in 2B and 7B scales. Our approach combines
a multi-stage training recipe, beginning with contin-
ual pre-training on parallel data that pivots through
three languages: English, Spanish, and Catalan.
This is followed by an instruction tuning stage to
align the models with human translation outputs.
For our WMT25 submission, we adapted our 7B
model to new, non-European languages through
vocabulary adaptation and a further round of con-
tinual pre-training and supervised fine-tuning.

Our experimental results show that instruction
tuning is a critical step which not only improves
translation quality but also the model’s robustness
against character-level noise. Furthermore, our
analysis of the English-to-Bhojpuri direction vali-
dates the importance of including related languages
during pre-training to enable cross-lingual transfer
to low-resource pairs.

While our work successfully specializes mod-
els for translation and translation-related tasks, we
observed that incorporating Chat and Code instruc-
tions during the supervised fine-tuning stage leads
to a significant drop in translation quality as mea-
sured by BLEU. Future work could explore meth-
ods to mitigate this trade-off to train machine trans-
lation models that can follow general instructions
without compromising their specialized translation

capabilities.
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A CPT Template

This section presents the template used to prepare
parallel data for continued pre-training. We used
only one single template. Placeholders:

• { source }: source sentence

• { target }: target sentence

• { source_lang }: source language name

• { target_lang }: target language name

Template used for CPT

{ source_lang }: { source }
{ target_lang }: { target }

Figure 3: Template used to format parallel data for CPT.

B Prompt templates used to construct
translation instructions

All templates used to construct instructions were
adapted from TOWERBLOCKS (Alves et al., 2024).
Figure 4 shows an example of a template used for
translation instructions in our IT-V1 and IT-V2
datasets.

C Dataset

C.1 Continual pre-training v1
The pre-training corpus for CPT-V1 consists
of 424 billion tokens of Catalan-centric, Spanish-
centric, and English-centric parallel data, including
all of the official European languages plus Cata-
lan, Basque, Galician, Asturian, Aragonese and
Aranese. It amounts to 6,574,251,526 parallel sen-
tence pairs.

This highly multilingual corpus is predominantly
composed of data sourced from OPUS (Tiede-
mann, 2012), with additional data taken from the
NTEU Project (García-Martínez et al., 2021), Aina
Project,4 and other sources (see Table 5, and Ta-
ble 4 shows the mapping between the BCP-47 lan-
guage code and the language name). Where little
parallel Catalan ↔ xx data could be found, syn-
thetic Catalan data was generated from the Spanish

4https://projecteaina.cat/
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Template used for IT

Translate the following text from { source_lang } to { target_lang }:
{ source_lang }: { source }
{ target_lang }: { target }

Figure 4: Example of a prompt template used to construct translation instructions for IT-V1 and IT-V2.

side of the collected Spanish ↔ xx corpora using
Projecte Aina’s Spanish-Catalan model.5 The final
distribution of languages is shown in Figure 1.

Datasets with "-BSC" in their names (e.g.,
BOUA-SYNTH-BSC, DOGV-SYNTH-BSC) are
synthetic datasets obtained by machine translat-
ing pre-existing monolingual corpora with our own
seq-to-seq models. These datasets were generated
internally for model training and are not published.

C.2 Continual pre-training v2
In CPT-V2 we focused on the language pairs
featured in the WMT 2025 shared task. For pairs
involving European languages, we reused part of
the data from CPT-V1. Specifically, we sam-
pled 20M sentence pairs each for English–Czech,
English–Estonian, and English–Russian from the
CPT-V1 data. For English–Serbian (Latin), we in-
cluded the authentic English–Serbian (Latin) paral-
lel dataset from CPT-V1. Additionally, we translit-
erated the Serbian side of the English–Serbian
(Cyrillic) dataset into Latin script, taking advantage
of the one-to-one correspondence between the two
scripts. For English–Icelandic, Czech–Ukrainian,
and Czech–German, we used the WMT 2025 Trans-
lation Task Training Data.6

For language pairs involving non-European lan-
guages, we used sentence-level data from the WMT
2025 Translation Task Training Data. The Chi-
nese side of all datasets were first processed us-
ing the Hanzi Identifier to detect Traditional Chi-
nese,7 which was subsequently converted to Sim-
plified Chinese using OpenCC.8 We also included
paragraph-level English–Arabic data by concate-
nating sentences from NEWSCOMMENTARY.

We created two versions of CPT-V2. The first
included only the language pairs featured in the
WMT25 shared task. In the second, we addition-
ally included English–Hindi data from the OPUS

5https://huggingface.co/projecte-aina/
aina-translator-es-ca

6https://www2.statmt.org/wmt25/mtdata/
7https://github.com/tsroten/hanzidentifier
8https://github.com/BYVoid/OpenCC

Figure 5: Distribution of tasks in IT-V1 .

corpora CCMatrix (Schwenk et al., 2021b), Mul-
tiHPLT (de Gibert et al., 2024), NLLB (NLLB
Team et al., 2022), and Samanantar (Ramesh et al.,
2022), to support the model’s performance on Bho-
jpuri (which uses the Devanagari script).

The pre-training corpus for CPT-V2 wi-
hout English-Hindi consists of 24 billion tokens,
amounting to 366,179,935 parallel sentence pairs.
For CPT-V2 with English-Hindi, the corpus con-
tains 26 billion tokens and 393,507,678 parallel
sentence pairs. The data distribution is shown in
Figure 1, and the corresponding sources are listed
in Table 6.

As shown in Section 4, continual pre-training
with Hindi data led to better performance, particu-
larly for Bhojpuri.

C.3 Instruction tuning v1

During IT-V1 the model was fine-tuned on ~135k
instructions, primarily targeting machine transla-
tion performance for Catalan, English, and Spanish.
Additional instruction data for other European and
closely related Iberian languages was also included.

A portion of our fine-tuning data comes directly
from, or is sampled from TOWERBLOCKS. While
tasks related to machine translation are included,
it is important to note that no chat data was used
in the fine-tuning process. The final distribution of
tasks is shown in Figure 5. The full list of tasks
included in IT-V1 is shown in Table 7.

https://huggingface.co/projecte-aina/aina-translator-es-ca
https://huggingface.co/projecte-aina/aina-translator-es-ca
https://www2.statmt.org/wmt25/mtdata/
https://github.com/tsroten/hanzidentifier
https://github.com/BYVoid/OpenCC
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Figure 6: Distribution of tasks in IT-V2 .

C.4 Instruction tuning v2
In IT-V2 we focused on the languages pairs
featured in the WMT 2025 shared task. We in-
cluded paragraph-level data during instruction tun-
ing to support paragraph-level translation. We
constructed this data by concatenating adjacent
sentences (randomly grouping 2, 3, or 4) from
the same article or document in FLORES-200-dev,
NTREX, and NEWSCOMMENTARY. To prevent
over-representation of these sources, we sampled
approximately equal amounts of paragraph-level
data for each language pair. Serbian Cyrillic data
from FLORES-200-dev was transliterated into Ser-
bian Latin. In addition, we included data from
TOWERBLOCKS that we considered relevant to our
tasks. The instruction tuning dataset is summarized
in Table 8 and the distribution of tasks is shown in
Figure 6.

D Tokenizer

We evaluated the trained tokenizer using fertility
metric on the FLORES-200 dataset (see Figure 7).
For a given tokenizer T and a set of sentences S,
fertility is defined as the ratio of the total number of
tokens produced by T to the total number of words
in S. Formally:

Fertility(T, S) =
#tokens in T (S)

#words in S
(1)

The results in Figure 7 indicate that SALAMAN-
DRATA7B-V2 consistently achieves the lowest fer-
tility scores on average among WMT25 languages.

E Training

F Results

Language Code Language

ar Arabic
arn Aranese
ast Asturian
arg Aragonese
bho Bhojpuri
bg Bulgarian
ca Catalan
cs Czech
cy Welsh
da Danish
de German
el Greek
es Spanish
en English
et Estonian
eu Basque
fi Finnish
fr French
ga Irish
gl Galician
hi Hindi
hr Croatian
hu Hungarian
is Icelandic
it Italian
ja Japanese
ko Korean
lt Lithuanian
lv Latvian
mt Maltese
nl Dutch
nn Norwegian Nynorsk
no Norwegian
oc Occitan
pl Polish
pt Portuguese
ro Romanian
ru Russian
sh Serbian (Latin)
sk Slovak
sl Slovenian
sr Serbian (Cyrillic)
sv Swedish
uk Ukrainian
val Catalan-Valencian
zh Chinese

Table 4: Mapping from BCP-47 language codes to full
language names.
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Dataset Ca-xx Languages Es-xx Languages En-xx Languages

AINA (Projecte Aina-Language Technologies Unit, BSC, 2024) en

ARANESE-SYNTH-CORPUS-BSC arn

BOUA-SYNTH-BSC val

BOUMH (Galiano-Jiménez et al., 2024) val

BOUA-PILAR (Galiano-Jiménez et al., 2024) val

CCMatrix (Schwenk et al., 2021b) eu ga

DGT (Steinberger et al., 2012) bg, cs, da, de, el, et, fi, fr,
ga, hr, hu, lt, lv, mt, nl, pl,
pt, ro, sk, sl, sv

da, et, ga, hr, hu, lt, lv, mt,
sh, sl

DOGV-SYNTH-BSC val

DOGV-PILAR (Galiano-Jiménez et al., 2024) val

ELRC-EMEA (ELRC-Share, 2020) bg, cs, da, hu, lt, lv, mt, pl,
ro, sk, sl

et, hr, lv, ro, sk, sl

EMEA (Tiedemann, 2012) bg, cs, da, el, fi, hu, lt, mt,
nl, pl, ro, sk, sl, sv

et, mt

EUBookshop (Skadin, š et al., 2014) lt, pl, pt cs, da, de, el, fi, fr, ga, it,
lv, mt, nl, pl, pt, ro, sk, sl,
sv

cy, ga

Europarl (Koehn, 2005) bg, cs, da, el, en, fi, fr, hu,
lt, lv, nl, pl, pt, ro, sk, sl,
sv

Europat (Heafield et al., 2022) en, hr no

GAITU Corpus (Project Ilenia, 2024) eu

KDE4 (Tiedemann, 2012) bg, cs, da, de, el, et, eu, fi,
fr, ga, gl, hr, it, lt, lv, nl, pl,
pt, ro, sk, sl, sv

bg, ga, hr cy, ga, nn, oc

GlobalVoices (CASMACAT, 2018; Tiedemann, 2012) bg, de, fr, it, nl, pl, pt bg, de, fr, pt

GNOME (The GNOME Project, n.d.; Tiedemann, 2012) eu, fr, ga, gl, pt ga cy, ga, nn

JRC-Arquis (Steinberger et al., 2006) cs, da, et, fr, lt, lv, mt, nl,
pl, ro, sv

et

LES-CORTS-VALENCIANES-SYNTH-BSC val

MaCoCu (Bañón et al., 2022) en hr, mt, uk

MultiCCAligned (El-Kishky et al., 2020) bg, cs, de, el, et, fi, fr, hr,
hu, it, lt, lv, nl, pl, ro, sk,
sv

bg, fi, fr, hr, it, lv, nl, pt bg, cy, da, et, fi, hr, hu, lt,
lv, no, sl, sr, uk

MultiHPLT (de Gibert et al., 2024) en, et, fi, ga, hr, mt fi, ga, gl, hr, mt, nn, sr

MultiParaCrawl (Bañón et al., 2020) bg, da de, en, fr, ga, hr, hu, it, mt,
pt

bg, cs, da, de, el, et, fi, fr,
ga, hr, hu, lt, lv, mt, nn, pl,
ro, sk, sl, uk

MultiUN (Eisele and Chen, 2010) fr

News-Commentary (Tiedemann, 2012) fr

NLLB (NLLB Team et al., 2022) bg, da, el, en, et, fi, fr, gl,
hu, it, lt, lv, pt, ro, sk, sl

bg, cs, da, de, el, et, fi, fr,
hu, it, lt, lv, nl, pl, pt, ro,
sk, sl, sv

bg, cs, cy, da, de, el, et, fi,
fr, ga, hr, hu, it, lt, lv, mt,
nl, no, oc, pl, pt, ro, ru, sk,
sl, sr, sv, uk

NÓS Authentic Corpus (Gamallo et al., 2023a) gl

NÓS Synthetic Corpus (Gamallo et al., 2023b) gl

NTEU (García-Martínez et al., 2021) bg, cs, da, de, el, en, et, fi,
fr, ga, hr, hu, it, lt, lv, mt,
nl, pl, pt, ro, sk, sl, sv

da, et, ga, hr, lt, lv, mt, ro,
sk, sl, sv

OpenSubtitles (Lison and Tiedemann, 2016) bg, cs, da, de, el, et, eu, fi,
gl, hr, hu, lt, lv, nl, pl, pt,
ro, sk, sl, sv

da, de, fi, fr, hr, hu, it, lv,
nl

bg, cs, de, el, et, hr, fi, fr,
hr, hu, no, sl, sr

OPUS-100 (Zhang et al., 2020; Tiedemann, 2012) en gl

StanfordNLP-NMT (Luong and Manning, 2016; Luong et al., 2015; Luong and
Manning, 2015)

cs

Tatoeba (Tiedemann, 2012) de, pt pt

TildeModel (Rozis and Skadin, š, 2017) bg et, hr, lt, lv, mt

UNPC (Ziemski et al., 2016) en, fr ru

PILAR-VALENCIAN-AUTH (Galiano-Jiménez et al., 2024) val

PILAR-VALENCIAN-SYNTH (Galiano-Jiménez et al., 2024) val

WikiMatrix (Schwenk et al., 2021a) bg, cs, da, de, el, et, eu, fi,
fr, gl, hr, hu, it, lt, nl, pl, pt,
ro, sk, sl, sv

bg, en, fr, hr, it, pt oc, sh

Wikimedia cy, nn

XLENT (El-Kishky et al., 2021) eu, ga, gl ga cy, et, ga, gl, hr, oc, sh

Table 5: Data sources of CPT-V1.
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Source Language Pair

WMT 2025 Translation Task Training Data en-ar
en-zh
cs-de
en-ko
en-ja
ja-zh
en-is
cs-uk
en-bho

NEWSCOMMENTARY (paragraph-level) en-ar

CCMATRIX (Schwenk et al., 2021b) en-hi

MULTIHPLT (de Gibert et al., 2024) en-hi

NLLB (NLLB Team et al., 2022) en-hi

SAMANANTAR (Ramesh et al., 2022) en-hi

CPT-V1 en-cs
en-et
en-ru
en-uk
en-sh

Table 6: Data sources of CPT-V2.

cs et ru sh uk de is ar zh ja ko bh
o hi
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Figure 7: Tokenization fertility comparison across 13 languages from the FLORES-200 dataset. Fertility is shown
on the vertical axis for each language on the horizontal axis. Results are presented for four multilingual models:
SALAMANDRATA-7B, NLLB, MADLAD-400, and SALAMANDRATA-V2.
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Category Task Source Languages Count

Pre-Translation Named-entity ANCORA-CA-NER ca 12,059
Recognition BASQUEGLUE, EUSIE eu 4,304

SLI NERC Galician Gold Corpus gl 6,483
TOWERBLOCKS: MULTICONER 2022-2023 Dev pt 854
TOWERBLOCKS: MULTICONER 2022-2023 Dev nl 800
TOWERBLOCKS: MULTICONER 2022-2023 Dev es 1,654
TOWERBLOCKS: MULTICONER 2022-2023 Dev en 1,671
TOWERBLOCKS: MULTICONER 2022-2023 Dev ru 800
TOWERBLOCKS: MULTICONER 2022-2023 Dev it 858
TOWERBLOCKS: MULTICONER 2022-2023 Dev fr 857
TOWERBLOCKS: MULTICONER 2022-2023 Dev de 1,312

Translation Multi-reference
Translation

TOWERBLOCKS: TATOEBA Dev mixed 10,000

Terminology-
aware

TOWERBLOCKS: WMT21 TERMINOLOGY DEV en-ru 50

Translation TOWERBLOCKS: WMT21 TERMINOLOGY DEV en-fr 29

Fill-in-the-
Blank

Non-public Five pivot languages (ca, es,
eu, gl, en) paired with Euro-
pean languages (cs, da, de,
el, et, fi, fr, ga, hr, hu, it, lt,
lv, mt, nl, pl, pt, ro, sk, sl,
sv)

11,500

General Ma-
chine Transla-
tion

TOWERBLOCKS: WMT14 to WMT21, NTREX,

FLORES DEV, FRMT, QT21, APEQUEST, OPUS (Quality

Filtered), MT-GENEVAL

nl-en, en-ru, it-en, fr-en, es-
en, en-fr, ru-en, fr-de, en-nl,
de-fr

500

FLORES DEV, NTREX Four pivot languages (es, ca,
eu, gl) paired with the rest
of languages. We sample 50
instances for each pair.

9350

Document-
level Transla-
tion

Non-public Two pivot languages (es, en)
paired with European lan-
guages (bg, cs, da, de, el, et, fi,
fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk,
sv)

7,600

Paragraph-level
Translation

Non-public Two pivot languages (es, en)
paired with European lan-
guages (bg, cs, da, de, el, et, fi,
fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk,
sv)

7,600

Context-Aware TOWERBLOCKS: MT-GENEVAL en-it 348
Translation en-ru 454

en-fr 369
en-nl 417
en-es 431
en-de 558

Post-Translation Paraphrase TOWERBLOCKS: PAWS-X DEV mixed 3,521

Machine
Translation
Evaluation

TOWERBLOCKS (sample): WMT20 to WMT22

METRICS MQM, WMT17 to WMT22 METRICS DIRECT

ASSESSMENTS

en-ru, en-pl, ru-en, en-de,
en-ru, de-fr, de-en, en-de

353

Non-public Four pivot languages (eu, es,
ca, gl) paired with European
languages (bg, cs, da, de, el, en,
et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl,
pl, pt, ro, sk, sl, sv)

9,700

Automatic Post TOWERBLOCKS: QT21, APEQUEST en-fr 6,133
Editing TOWERBLOCKS: QT21, APEQUEST en-nl 9,077

TOWERBLOCKS: QT21, APEQUEST en-pt 5,762
TOWERBLOCKS: QT21, APEQUEST de-en 10,000
TOWERBLOCKS: QT21, APEQUEST en-de 10,000

Total 135,404

Table 7: Overview of tasks, data sources, language coverage, and counts in IT-V1.
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Category Task Source Languages Count

Translation Paragraph-level Translation FLORES DEV en-ar 30
en-bho 30
en-ja 30
en-uk 30
en-ru 21
cs-uk 30
ja-zh 30
en-zh 30
en-ko 30
en-et 30
en-is 30
en-sh 30
en-cs 30
cs-de 30

NTREX en-ja 58
en-uk 58
en-ru 50
cs-uk 58
ja-zh 58
en-zh 58
en-ko 58
en-et 58
en-is 58
en-sh 58
en-cs 58
cs-de 58

NEWS COMMENTARY en-zh 250
cs-de 250
en-cs 250
en-de 250
en-ja 250
ja-zh 250
en-ru 250

Context-Aware Translation TOWERBLOCKS: MT-GENEVAL en-it 348
en-fr 369
en-nl 417
en-es 431
en-de 558
en-ru 454

Multi-reference Translation TOWERBLOCKS: TATOEBA Dev mixed 10,000

General Machine Translation TOWERBLOCKS: WMT14 to WMT21,

NTREX, FLORES DEV, FRMT, QT21, APE-

QUEST, OPUS (Quality Filtered), MT-GENEVAL

en-ru 22,112

en-zh 10,521
en-ko 2,782

Total 50,841

Table 8: Overview of tasks, data sources, language coverage, and counts in IT-V2.
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Figure 8: Learning Rate for the SALAMANDRATA-7B and SALAMANDRATA-2B on CPT-V1.

Figure 9: Validation loss for the SALAMANDRATA-7B and SALAMANDRATA-2B on CPT-V1.
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Figure 10: Training loss for the SALAMANDRATA-7B and SALAMANDRATA-2B on CPT-V1.
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Table 9: Hyperparameters for SALAMANDRATA con-
tinual pre-training.

Hyperparameter Value

Micro Batch Size 2
Global Batch Size 512
Optimizer Distributed Fused Adam
Learning Rate 3e-5
Minimum LR 3e-6
Weight Decay 0.1
Betas (0.9, 0.95)
LR Scheduler CosineAnnealing
Warmup Steps 2048
Mixed Precision AMP O2
Sequence Length 8,192
Gradient Sync DType bfloat16

Table 10: Hyperparameters for SALAMANDRATA
supervised-fine tuning.

Hyperparameter Value

Train epochs 1
Train batch size per device 1
Gradient accumulation steps 16
Learning rate 1e-5
Weight decay 0
Warmup ratio 0.03
LR scheduler Cosine
Model max length 8,192
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en→xx cs→xx ja→xx
CS ET RU SH UK IS AR ZH JA KO DE UK ZH

Baselines
TOWER-V2 7B 11.1 - 21.2 - - - - 35.6 - 24.7 18.4 - -
MADLAD400 7B 28.4 27.2 22.5 - 26.8 17.5 6.9 30.2 19.8 25.3 25.2 20.9 20.8
NLLB 3.3B 23.0 21.8 20.7 - 23.4 16.2 6.9 23.9 13.6 22.5 19.4 16.4 15.5

SALAMANDRATA2B
BASE + CPT-V1 17.9 19.4 18.1 - 9.5 - - - - - 19.8 3.5 -

+ INSTRUCT-V1 17.1 12.1 13.7 - 14.6 - - - - - 10.2 10.7 -
+ TRR 24.7 23.5 19.4 - 24.9 - - - - - 20.5 17.5 -
+ MBR 25.1 22.1 19.4 - 24.6 - - - - - 21.1 17.4 -

SALAMANDRATA7B
BASE + CPT-V1 25.9 25.1 20.2 - 25.6 - - - - - 24.9 20.1 -

+ INSTRUCT-V1 29.0 27.7 22.2 - 28.7 - - - - - 24.4 20.9 -
+ TRR 26.4 25.4 21.2 - 27.1 - - - - - 22.4 19.6 -
+ MBR 26.8 25.9 20.9 - 27.1 - - - - - 23.5 20.1 -

SALAMANDRATA-V2

BASE + CPT-V1 + CPT-V2 25.6 24.7 19.6 26.1 24.1 16.9 5.3 33.0 11.9 17.4 24.8 20.6 20.1
+ INSTRUCT-V2 27.3 25.7 19.5 27.8 29.2 17.6 6.0 36.6 14.4 18.8 20.0 19.1 22.3

+ TRR 26.5 25.1 21.0 26.6 26.7 17.4 6.1 35.8 17.7 20.9 22.6 20.3 22.3
+ MBR 26.1 25.4 20.4 27.0 27.5 17.5 6.3 36.2 16.7 20.9 22.7 20.6 22.1

Table 11: BLEU scores on the WMT24++ test set, comparing our SALAMANDRATA models against several strong
baselines. We show the performance at each stage of our method: from the continually pre-trained base models
(scores in gray), to the instruction-tuned models.

en→xx cs→xx ja→xx
CS ET RU SH UK IS AR ZH JA KO DE UK ZH

Baselines
TOWER-V2 7B 39.6 - 49.7 - - - - 32.5 - 32.1 49.2 - -
MADLAD400 7B 55.0 57.8 49.7 - 53.2 43.4 36.2 27.7 28.0 31.5 54.7 47.8 20.6
NLLB 3.3B 49.7 51.7 46.6 - 48.6 40.9 35.9 22.4 23.6 29.6 47.7 42.8 15.9

SALAMANDRATA2B
BASE + CPT-V1 48.4 51.7 44.5 - 33.6 - - - - - 49.7 15.5 -

+ INSTRUCT-V1 49.3 47.6 44.9 - 45.9 - - - - - 44.7 40.4 -
+ TRR 52.7 55.7 48.6 - 52.3 - - - - - 51.4 45.5 -
+ MBR 52.5 55.0 48.4 - 51.9 - - - - - 51.8 46.0 -

SALAMANDRATA7B
BASE + CPT-V1 52.8 55.6 48.7 - 52.3 - - - - - 54.0 47.9 -

+ INSTRUCT-V1 55.9 58.4 50.7 - 55.1 - - - - - 54.4 48.6 -
+ TRR 54.0 57.3 50.1 - 54.2 - - - - - 52.9 47.8 -
+ MBR 54.4 57.2 50.1 - 54.2 - - - - - 53.9 48.2 -

SALAMANDRATA-V2

BASE + CPT-V1 + CPT-V2 52.6 54.7 48.2 54.5 51.7 42.2 34.6 28.7 22.8 26.3 54.4 47.9 22.0
+ INSTRUCT-V2 53.9 56.8 48.7 56.8 54.9 43.8 35.5 32.7 26.9 28.5 52.2 47.2 21.1

+ TRR 54.3 57.2 50.0 56.0 54.2 44.6 36.2 32.5 28.2 28.8 53.2 48.4 21.7
+ MBR 54.0 57.3 49.6 56.5 54.4 44.4 36.3 32.8 27.9 28.9 53.7 48.4 21.6

Table 12: CHRF scores on the WMT24++ test set, comparing our SALAMANDRATA models against several
strong baselines. We show the performance at each stage of our method: from the continually pre-trained base
models (scores in gray), to the instruction-tuned models.
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en→xx cs→xx ja→xx
CS ET RU SH UK IS AR ZH JA KO DE UK ZH

Baselines
TOWER-V2 7B 6.69 - 4.16 - - - - 3.83 - 3.70 2.25 - -
MADLAD400 7B 4.28 4.14 5.50 - 4.18 7.18 7.75 6.60 4.49 5.98 1.73 4.04 6.05
NLLB 3.3B 5.95 6.03 6.38 - 6.64 8.46 7.71 7.91 6.09 5.74 2.74 6.45 8.12

SALAMANDRATA2B
BASE + CPT-V1 5.03 5.08 5.58 - 6.53 - - - - - 2.02 6.24 -

+ INSTRUCT-V1 3.99 4.19 4.90 - 5.28 - - - - - 2.40 5.10 -
+ TRR 3.02 2.67 3.86 - 3.82 - - - - - 1.63 3.91 -
+ MBR 3.02 2.82 3.83 - 3.92 - - - - - 1.63 3.85 -

SALAMANDRATA7B
BASE + CPT-V1 4.43 5.24 5.30 - 5.58 - - - - - 1.73 4.12 -

+ INSTRUCT-V1 2.87 2.30 3.76 - 3.60 - - - - - 1.52 3.46 -
+ TRR 2.51 2.00 3.21 - 3.11 - - - - - 1.48 3.23 -
+ MBR 2.48 1.96 3.19 - 3.12 - - - - - 1.43 3.22 -

SALAMANDRATA-V2

BASE + CPT-V1 + CPT-V2 4.91 5.26 5.52 6.54 5.97 8.24 6.87 5.79 5.89 6.40 1.73 4.03 5.08
+ INSTRUCT-V2 3.60 2.79 4.13 4.44 3.44 5.26 8.48 4.03 4.59 5.15 1.77 3.83 4.66

+ TRR 2.81 2.08 3.30 3.96 2.98 4.43 7.47 3.60 3.98 4.50 1.50 3.25 4.13
+ MBR 2.79 2.12 3.35 4.00 2.99 4.57 7.73 3.62 4.00 4.51 1.49 3.28 4.21

Table 13: METRICX scores on the WMT24++ test set, comparing our SALAMANDRATA models against several
strong baselines. We show the performance at each stage of our method: from the continually pre-trained base
models (scores in gray), to the instruction-tuned models.

en→xx cs→xx ja→xx
CS ET RU SH UK IS AR ZH JA KO DE UK ZH

Baselines
TOWER-V2 7B 55.9 - 61.7 - - - - 61.8 - 59.8 62.4 - -
MADLAD400 7B 69.3 71.2 58.7 - 62.4 52.4 39.2 53.2 53.8 52.8 68.9 61.5 54.5
NLLB 3.3B 65.2 67.7 58.3 - 60.4 51.0 40.3 48.5 45.9 53.2 62.9 58.6 43.8

SALAMANDRATA2B
BASE + CPT-V1 66.2 67.3 57.9 - 49.8 - - - - - 67.1 29.1 -

+ INSTRUCT-V1 68.5 69.5 59.7 - 61.7 - - - - - 66.1 59.4 -
+ TRR 70.7 73.3 62.4 - 64.5 - - - - - 68.0 61.2 -
+ MBR 70.7 73.1 61.9 - 64.4 - - - - - 68.3 62.6 -

SALAMANDRATA7B
BASE + CPT-V1 68.3 67.1 58.2 - 60.5 - - - - - 68.5 63.2 -

+ INSTRUCT-V1 72.5 75.4 62.6 - 66.7 - - - - - 69.5 64.4 -
+ TRR 72.6 75.7 64.2 - 67.4 - - - - - 69.2 65.0 -
+ MBR 73.1 75.9 63.9 - 67.6 - - - - - 70.0 64.9 -

SALAMANDRATA-V2

BASE + CPT-V1 + CPT-V2 67.0 66.8 58.0 68.5 59.3 52.0 41.5 54.2 48.9 50.3 68.5 63.3 55.5
+ INSTRUCT-V2 69.8 74.1 62.2 73.3 67.6 58.4 38.5 61.4 54.1 55.5 69.0 64.6 55.7

+ TRR 71.8 75.2 63.8 73.7 67.7 59.2 39.5 62.6 55.6 56.8 69.6 65.3 57.1
+ MBR 71.8 75.4 63.8 74.1 67.8 59.2 39.2 62.4 55.6 56.8 69.5 65.4 56.8

Table 14: BLEURT scores on the WMT24++ test set, comparing our SALAMANDRATA models against several
strong baselines. We show the performance at each stage of our method: from the continually pre-trained base
models (scores in gray), to the instruction-tuned models.



636

en→xx cs→xx ja→xx
CS ET RU SH UK IS AR ZH JA KO DE UK ZH

Baselines
TOWER-V2 7B 4.87 - 2.28 - - - - 2.46 - 1.74 3.50 - -
MADLAD400 7B 3.38 3.38 3.89 - 2.94 4.95 5.31 6.00 3.50 3.66 3.28 3.31 8.32
NLLB 3.3B 4.83 4.92 4.80 - 4.91 6.11 4.61 7.83 4.48 3.21 6.35 5.16 9.65

SALAMANDRATA2B
BASE + CPT-V1 3.73 4.02 3.46 - 5.48 - - - - - 3.97 4.46 -

+ INSTRUCT-V1 2.89 3.46 3.21 - 3.67 - - - - - 4.12 3.38 -
+ TRR 1.78 1.74 1.96 - 2.02 - - - - - 2.59 1.94 -
+ MBR 1.86 1.92 2.01 - 2.21 - - - - - 2.68 2.03 -

SALAMANDRATA7B
BASE + CPT-V1 3.40 4.15 3.27 - 3.71 - - - - - 3.17 2.73 -

+ INSTRUCT-V1 1.82 1.75 2.07 - 2.14 - - - - - 2.69 1.87 -
+ TRR 1.49 1.42 1.63 - 1.69 - - - - - 2.46 1.58 -
+ MBR 1.52 1.44 1.74 - 1.80 - - - - - 2.46 1.60 -

SALAMANDRATA-V2

BASE + CPT-V1 + CPT-V2 3.66 4.22 3.43 4.12 4.17 5.91 3.88 3.90 3.89 3.70 3.00 2.68 4.86
+ INSTRUCT-V2 2.44 2.04 2.39 2.70 2.07 3.04 5.11 2.52 2.65 2.54 3.06 2.27 4.30

+ TRR 1.67 1.40 1.67 2.26 1.66 2.35 3.95 2.14 2.07 1.93 2.50 1.57 3.75
+ MBR 1.83 1.50 1.78 2.24 1.73 2.55 4.20 2.22 2.22 2.04 2.51 1.75 3.86

Table 15: METRICX-QE scores on the WMT24++ test set, comparing our SALAMANDRATA models against
several strong baselines. We show the performance at each stage of our method: from the continually pre-trained
base models (scores in gray), to the instruction-tuned models.

en→xx cs→xx ja→xx
CS ET RU SH UK IS AR ZH JA KO DE UK ZH

Baselines
TOWER-V2 7B 69.4 - 79.5 - - - - 78.5 - 82.1 75.6 - -
MADLAD400 7B 78.8 79.3 76.7 - 78.3 70.4 70.4 70.4 79.5 77.1 79.4 79.3 69.5
NLLB 3.3B 75.5 76.0 75.3 - 74.5 69.0 70.9 66.9 76.6 79.0 73.5 75.1 60.5

SALAMANDRATA2B
BASE + CPT-V1 77.2 77.3 76.6 - 67.0 - - - - - 77.4 76.0 -

+ INSTRUCT-V1 78.5 77.7 77.8 - 75.9 - - - - - 75.0 77.1 -
+ TRR 83.4 85.1 82.4 - 81.6 - - - - - 81.4 82.6 -
+ MBR 81.2 82.6 80.3 - 79.4 - - - - - 78.5 80.2 -

SALAMANDRATA7B
BASE + CPT-V1 77.8 77.1 77.2 - 75.6 - - - - - 78.0 79.2 -

+ INSTRUCT-V1 81.3 82.6 80.4 - 79.9 - - - - - 78.5 80.0 -
+ TRR 84.2 86.0 83.1 - 82.6 - - - - - 81.7 83.2 -
+ MBR 82.5 83.8 81.3 - 80.8 - - - - - 79.3 81.0 -

SALAMANDRATA-V2

BASE + CPT-V1 + CPT-V2 77.4 76.9 76.9 78.2 74.6 69.2 72.8 73.7 76.8 75.9 78.5 78.7 71.8
+ INSTRUCT-V2 80.2 81.6 79.7 82.7 79.9 75.2 68.8 78.7 80.6 79.3 77.7 78.4 70.1

+ TRR 84.0 86.0 83.0 85.5 82.7 79.8 74.1 81.5 84.0 83.1 81.6 82.8 75.7
+ MBR 82.0 83.9 81.1 83.9 80.6 76.9 71.1 80.0 82.3 81.1 78.9 80.3 71.7

Table 16: COMET-KIWI scores on the WMT24++ test set, comparing our SALAMANDRATA models against
several strong baselines. We show the performance at each stage of our method: from the continually pre-trained
base models (scores in gray), to the instruction-tuned models.
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COMET METRICX
DE EL IT LT RO SR SV DE EL IT LT RO SR SV

SALAMANDRATA2B
BASE + CPT-V1

+ INSTRUCT-V1 76.6 83.5 78.6 79.7 80.3 75.3 80.9 2.31 4.10 4.03 5.20 4.22 6.18 3.28
+ TRR 80.6 85.7 82.2 83.7 84.1 80.8 84.5 1.63 3.37 2.62 3.85 3.02 4.53 2.25
+ MBR 81.9 86.6 83.4 85.1 85.0 81.5 85.3 1.60 3.39 2.69 3.84 3.08 4.71 2.33

SALAMANDRATA7B
BASE + CPT-V1

+ INSTRUCT-V1 80.6 86.0 82.2 83.1 82.8 79.8 84.4 1.75 3.35 2.78 3.81 3.47 4.32 2.47
+ TRR 82.0 86.5 83.2 85.5 85.4 82.4 85.7 1.40 2.91 2.26 3.02 2.46 3.53 1.81
+ MBR 83.3 87.6 84.5 86.6 86.6 83.6 86.6 1.37 2.85 2.30 2.84 2.50 3.60 1.91

Table 17: COMET and METRICX scores for the WMT-Multilingual Sub-Task (English to seven target languages) on
the WMT24++ test set. Results are shown for the instruction-tuned SALAMANDRATA 2B and 7B models, with
and without post-decoding strategies (MBR and TRR).
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