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Abstract

This paper presents the Marco-MT-Algharb
system, our submission to the WMT2025 Gen-
eral Machine Translation Shared Task from
Alibaba International Digital Commerce
(AIDC). Built on a large language model
(LLM) foundation, the system’s strong perfor-
mance stems from novel quality-aware train-
ing and decoding techniques: (1) a two-step
supervised fine-tuning (SFT) process incorpo-
rating data distillation, (2) a two-step reinforce-
ment learning (RL) framework for preference
alignment, and (3) a hybrid decoding strategy
that integrates word alignment with Minimum
Bayes Risk (MBR) re-ranking to improve faith-
fulness. These approaches jointly ensure high
accuracy and robustness across diverse lan-
guages and domains. In the official human
evaluation, our system secured six first-place
finishes, four second, and two third-place
results in the constrained category across the
13 directions we participated in. Notably, for
the English-Chinese, our results surpassed all
open/closed-source systems.

1 Introduction

The Conference on Machine Translation (WMT)
continues to be the primary arena for benchmarking
the advancements in machine translation technol-
ogy (Kocmi et al., 2024; Freitag et al., 2023). For
years, the field was dominated by the Transformer
architecture (Vaswani et al., 2017), which set a high
standard for translation quality through its powerful
attention mechanism. However, the recent advent
of Large Language Models (LLMs) has sparked a
paradigm shift. These models, pre-trained on vast
amounts of text data, have demonstrated remark-
able capabilities in understanding context, gener-
ating fluent text, and leveraging world knowledge,
making them exceptionally promising candidates
for complex multilingual translation tasks (Achiam
et al., 2023; Ouyang et al., 2022; Ming et al., 2024;

Lang. Pair Human Evaluation

en→zh Rank 1

en→ja Rank 1

en→uk Rank 1

ja→zh Rank 1

en→bho Rank 1

en→et Rank 1

en→cs Rank 2

en→ko Rank 2

en→ru Rank 2

cs→de Rank 2

en→arz Rank 3

cs→uk Rank 3

Table 1: Human evaluation rankings of Marco-MT-
Algharb at WMT2025.

Alves et al., 2024). However, adapting these pow-
erful, general-purpose LLMs for high-fidelity, spe-
cialized translation presents a significant challenge
(Jiao et al., 2023; Hendy et al., 2023). To bridge this
gap, we propose quality-aware training and decod-
ing techniques designed to systematically enhance
both the fluency and faithfulness of LLM-based
translation. To this end, we present the Marco-MT-
Algharb system.

Marco-MT-Algharb is our submission to the
WMT 2025 General Machine Translation Shared
Task. Our participation covers 13 diverse language
pairs.1 Built upon the Qwen3-14B foundation

1The 13 language pairs are: English to Chinese (en→zh),
English to Japanese (en→ja), English to Korean (en→ko),
English to Egyptian Arabic (en→arz), English to Bhojpuri
(en→bho), English to Czech (en→cs), English to Estonian
(en→et), English to Russian (en→ru), English to Ukrainian
(en→uk), English to Serbian (Latin script) (en→sr_Latn),
Czech to German (cs→de), Czech to Ukrainian (cs→uk), and
Japanese to Chinese (ja→zh).

https://github.com/AIDC-AI/Marco-MT
https://huggingface.co/AIDC-AI/Marco-MT-Algharb
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Figure 1: Overall pipeline of the Marco-MT-Algharb system. SFT Stage: Fine-tuning on QE-filtered and teacher-
distilled data. RL Stage: Preference alignment via CPO and dynamic multi-reward optimization. Decoding Stage:
Hybrid MBR re-ranking with a WSPAlign faithfulness score.

model (Yang et al., 2025), we propose quality-
aware training and decoding techniques to enhance
translation quality through three key phases: (1)
a two-step Supervised Fine-Tuning (SFT) process
with data distillation to expand data coverage; (2)
a two-step Reinforcement Learning (RL) frame-
work to align the model with quality estimation
metrics; and (3) a hybrid decoding strategy that
combines quality scores with word alignment to
improve faithfulness.

Our work makes several key contributions to
the development of state-of-the-art, LLM-based
translation systems:

• A progressive, two-step supervised fine-tuning
(SFT) strategy. We begin by training on high-
quality, rigorously cleaned parallel data. Subse-
quently, we employ data distillation, using a pow-
erful teacher model to regenerate translations for
the data filtered out during the cleaning process.
This allows our model to learn from a broader
data distribution without being compromised by
noise.

• A two-step reinforcement learning (RL) frame-
work for preference alignment. We first utilize
Contrastive Preference Optimization (CPO) (Xu
et al., 2024) for initial alignment. We then intro-
duce a novel dynamic multi-reward preference
optimization method, which leverages a combina-
tion of quality metrics to achieve a more holistic
improvement in translation adequacy and fluency.

• A novel hybrid decoding strategy to mitigate

omission errors. We observed that models opti-
mized heavily on neural quality estimation (QE)
metrics like COMET (Rei et al., 2020) can some-
times produce fluent but incomplete translations.
To address this, we developed a hybrid decoding
algorithm that integrates a word-alignment-based
penalty into the Minimum Bayes Risk (MBR)
re-ranking framework, ensuring both semantic
fidelity and lexical completeness.
In the official human evaluation (Kocmi et al.,

2025), our system achieved top-3 rankings in 10
out of 13 participated directions within the con-
strained category, including five first-place finishes
(see Table 1). Notably, our English-Chinese system
surpassed all other submissions, including propri-
etary systems.

The remainder of this paper is structured as fol-
lows: Section 2 provides a detailed overview of
our system’s architecture and training methodol-
ogy. Section 3 presents our experimental setup and
results. Finally, Section 4 concludes the paper.

2 System Overview

Our translation system, Marco-MT-Algharb, is an
end-to-end pipeline built upon a powerful foun-
dation model. The overall workflow consists of
four key stages: (1) selection of a base model ar-
chitecture; (2) a two-step SFT process to impart
translation capabilities; (3) a two-step RL process
to align outputs with automated translation qual-
ity metrics; and (4) a hybrid decoding strategy for
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robust and accurate inference. A schematic of our
system is shown in Figure 1.

2.1 Model Architecture

We selected Qwen3-14B-base2 as the foundation
for our system. Qwen3 is a series of advanced,
multilingual large language models known for their
strong performance across a wide range of natural
language understanding and generation tasks. The
14-billion parameter variant provides a powerful
balance between model capacity and computational
feasibility for fine-tuning. Its extensive pre-training
on a diverse corpus of multilingual data makes it
an excellent starting point for developing a high-
quality, multilingual translation system, as it al-
ready possesses a rich cross-lingual representation
space. For our tasks, we utilized the base model
and tailored it specifically for translation through
the subsequent training stages.

2.2 Two-step Supervised Fine-tuning

The goal of our SFT process is to effectively adapt
the general capabilities of Qwen3-14B to the spe-
cific domain of machine translation. We designed
a two-step approach to maximize data utilization
and model performance.

Step 1: SFT on High-Quality Parallel Data.
In the first step, we focused on building a robust
translation baseline using high-quality data. We
collected all parallel data provided by the WMT
2025 organizers for the 13 language directions we
participated in. This raw data underwent an inten-
sive cleaning pipeline, which included:
• Normalization: Standardizing punctuation, spac-

ing, and casing.
• Filtering: Removing sentence pairs based on

length ratio mismatches and identifying sentence
pairs with a high proportion of non-alphabetic
characters.

• Language Identification: Ensuring that the source
and target sentences correctly match their desig-
nated language labels.

• Quality Estimation Filtering: Employing a pre-
trained QE model (CometKiwi-XXL3) to score
sentence pairs and discarding those with pre-
dicted low translation quality.

After cleaning, the resulting high-quality dataset
was used to perform a single, comprehensive mul-

2https://huggingface.co/Qwen/Qwen3-14B-Base
3https://huggingface.co/Unbabel/wmt23-cometkiwi-da-

xxl

tilingual SFT run. For 12 of our high-resource lan-
guage directions, we compiled a substantial dataset
of 10 million parallel sentences each. Due to data
scarcity for the English-to-Bhojpuri (en→bho) di-
rection, its data volume was significantly smaller.
In total, this initial SFT step utilized a massive
training corpus of approximately 120 million sen-
tence pairs, training the model on all 13 language
pairs simultaneously. This large-scale multilin-
gual training encourages the model to develop ro-
bust shared representations and effectively leverage
cross-lingual transfer learning.

Step 2: SFT with Distilled Noisy Data. A
significant amount of data is typically discarded
during aggressive cleaning. While noisy, this data
often contains valuable lexical and syntactic diver-
sity. To leverage this, we designed a second SFT
step based on data distillation. We took the paral-
lel data that was filtered out in Step 1 and used a
powerful teacher model, DeepSeek-V34 (Liu et al.,
2024), to regenerate the target-side translations.
For each of the 13 language directions, we distilled
approximately 800,000 sentence pairs. This pro-
cess effectively "cleans" the noisy target text while
preserving the original source text’s diversity. The
resulting distilled dataset was then used for a sec-
ond round of SFT. This allowed our model to learn
from a much broader set of source inputs, guided
by the high-quality outputs of the teacher model,
thereby enhancing its robustness and domain cov-
erage.

2.3 Preference Alignment via Two-step
Reinforcement Learning

Following SFT, we employed a two-step RL to fur-
ther refine the model’s output. The goal of this
stage is to directly align the model’s generations
with scores from automated translation quality esti-
mation metrics, which serve as a proxy for human
judgment. This approach moves beyond the token-
level supervision of SFT to optimize the holistic
quality of the entire translated sentence based on
established evaluation standards.

Step 1: Contrastive Preference Optimization
with Diverse Candidate Translations. We be-
gan with CPO to align our model with high-quality
translation preferences. The foundation for our RL
training is a curated dataset of source sentences, cre-
ated by randomly sampling 15,000 entries for each
source language from high-quality, open-source

4https://huggingface.co/deepseek-ai/DeepSeek-V3
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corpora, including Flores-200 (nll, 2024) and his-
torical WMT test sets (WMT08-23). We reuse this
same dataset for both of our RL steps, not only for
methodological consistency, but more importantly,
due to the limited availability of high-quality data
that closely mirrors the test domain.

To construct preference pairs for these source
sentences, we adopted a teacher-augmented strat-
egy. For each source sentence, we generated a pool
of candidate translations populated from two dis-
tinct sources: (1) multiple sampled outputs from
our own SFT-trained model, and (2) a high-quality
translation from a powerful, external teacher model,
DeepSeek-V3.

We then used a reference-free QE model
CometKiwi-XXL to score every candidate in this
combined pool. The preference pair was formed as
follows:
• The "chosen" translation was the candidate with

the highest evaluation score. In many cases, this
was the output from the DeepSeek-V3 model,
providing a strong, high-quality target.

• The "rejected" translation was a candidate from
the same pool with a significantly lower evalua-
tion score, often one of the less successful sam-
ples from our own model.

This teacher-augmented approach is highly effec-
tive as it provides a robust learning signal, allowing
our model to learn from responses that are often
superior to its own initial capabilities. This CPO
step provided a stable initial alignment towards the
quality standards set by a strong translation model.

Step 2: Dynamic Multi-Reward Optimization
with Self-Distillation. To achieve more nuanced
control and move beyond reliance on a single, static
metric, we introduce a novel training framework in
our second RL step. This framework combines a
dynamic, hybrid reward signal with a knowledge
distillation objective, encouraging the model to in-
ternalize the principles of translation quality.

First, our reward function is not static but a dy-
namic composite of two sources: an external QE
metric (CometKiwi-XXL) and the model’s own in-
ternal reward signal. The total reward Rtotal for a
generated translation y from source x at training
step t is defined as:

Rtotal(x, y, t) = (1− wself(t)) ·RQE(x, y)

+ wself(t) ·Rself(x, y)
(1)

where RQE is the score from the QE model,
and Rself(x, y) is the model’s own sequence log-

probability (logPθ(y|x)), serving as a measure
of its confidence. The weight of the self-reward,
wself(t), is annealed to increase gradually with the
training step t. This curriculum strategy allows the
model to initially anchor its learning on the reli-
able external metric and progressively trust its own
refined judgment as it improves.

Second, to accelerate the refinement of the
model’s internal judgment, we introduce a
Kullback-Leibler (KL) divergence loss term. This
term explicitly distills the relational quality knowl-
edge from the QE model into the model’s prob-
ability space. For a pair of translations (yw, yl)
where QE scores yw higher than yl, we define a
target preference distribution based on their score
difference. The KL loss then minimizes the diver-
gence between the model’s predicted preference
probability and this QE-derived target distribution:

LKL = DKL (σ(τ ·∆QE) ∥ σ(∆ logPθ)) (2)

where ∆QE is the difference in QE scores for
the pair (yw, yl), ∆ logPθ is the difference in the
model’s log-probabilities for the same pair, σ is the
sigmoid function, and τ is a temperature parameter
controlling the sharpness of the target distribution.

The final objective combines the preference opti-
mization loss with LKL. This synergistic approach
allows the model to not only generate better transla-
tions based on the hybrid reward but also to simul-
taneously internalize the very principles of transla-
tion quality evaluation. This makes the self-reward
signal more reliable over time and leads to signifi-
cant, stable performance gains.

2.4 Hybrid Decoding Strategy

A notable pitfall of optimizing Large Language
Models towards neural metrics is their tendency
to produce translations that are highly fluent yet
lexically or semantically incomplete (Freitag et al.,
2022; Moghe et al., 2022). To combat this, we
developed a hybrid decoding strategy that fuses
the MBR re-ranking algorithm with a reward for
lexical faithfulness.

Our approach is built upon Minimum Bayes Risk
(MBR) decoding (Freitag et al., 2021). In standard
MBR, we first generate a set of N candidate trans-
lations {y1, y2, . . . , yN} for a given source text x.
The optimal translation y∗ is the one that has the
highest expected utility score against all other can-



591

Model AVG en→zh en→arz en→bho en→cs en→et en→ja

Proprietary Models
GPT-4o 74.20 75.70 74.85 30.19 85.44 76.63 78.35
Claude 3.7 Sonnet 74.24 76.79 76.08 29.12 85.10 76.71 79.48

Ablation Baselines (Marco-MT-Algharb)
Two-step SFT 76.47 77.67 77.86 32.41 87.82 79.62 81.55

++Two-step RL 77.96 80.59 79.43 34.21 88.90 80.45 82.88

++Hybrid Decode 79.33 82.39 80.13 38.61 90.50 83.39 83.24

Model en→ko en→ru en→uk en→sr cs→uk cs→de ja→zh

Proprietary Models
GPT-4o 81.14 79.07 76.28 77.88 81.08 82.01 65.94
Claude 3.7 Sonnet 82.32 79.57 76.54 77.71 81.38 80.67 63.69

Ablation Baselines (Marco-MT-Algharb)
Two-step SFT 84.52 81.35 78.49 80.58 82.47 82.81 66.99

++Two-step RL 84.50 82.87 80.02 82.02 83.37 83.54 68.27

++Hybrid Decode 84.60 84.46 82.70 83.66 83.89 84.29 69.44

Table 2: Main results on the WMT25 General test set, evaluated using XCOMET-XXL scores. We report the
average (AVG) over all 13 language pairs. The best score in each column is in bold. For brevity, en→sr refers to
the English-to-Serbian (Latin) direction.

didates:

y∗ = argmax
yi

N∑
j=1

U(yi, yj) (3)

where the utility function U(yi, yj) is realized us-
ing the COMET-22 metric model5.

Our innovation is to incorporate an alignment-
based score into this framework to explicitly reward
source faithfulness. The final score for each candi-
date is a hybrid of its peer-based MBR utility and
its source-based alignment score. We define the
standard MBR score for a candidate yi as:

SMBR(yi) =
N∑
j=1

U(yi, yj) (4)

The alignment score, Salign(x, yi), is computed us-
ing our tool, WSPAlign (Wu et al., 2023), which
measures the lexical faithfulness between the
source x and the candidate yi. A higher score indi-
cates better faithfulness. The final hybrid score is
then calculated as:

Shybrid(yi) = SMBR(yi) + λ · Salign(x, yi) (5)
5We use the Unbabel/wmt22-comet-da implementation

from Hugging Face.

where λ is a hyperparameter that balances the MBR
and alignment terms. During inference, we gen-
erate N candidates, compute Shybrid for each, and
select the one with the highest score as the final
translation. This approach significantly reduces the
frequency of omission errors in our final submis-
sions.

3 Experiments

3.1 Experimental Setup

Implementation Details. For the Supervised
Fine-Tuning (SFT) stage, we perform full-
parameter fine-tuning. In contrast, for the Re-
inforcement Learning (RL) stage, we employ a
parameter-efficient LoRA strategy (Hu et al., 2022),
configuring the adapters with a rank of 64 and an
alpha of 128. For the optimization process, we use
the Adam optimizer (Kingma and Ba, 2014) with
β1 = 0.9 and β2 = 0.99. We adopt a carefully
designed learning rate schedule that decreases with
each stage of our pipeline: the learning rate was
set to 2 × 10−5 for the first SFT step, 1 × 10−5

for the second SFT step, 2× 10−6 for the first RL
step (CPO), and 1× 10−6 for the final RL step. A
global batch size of 64 was maintained throughout
all training phases. For our dynamic multi-reward
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optimization step, key hyperparameters include a
KL distillation temperature τ of 0.3, and a self-
reward weight wself that is linearly annealed from
an initial value of 0.05 to 0.8. In the subsequent
Hybrid Decoding stage, the balancing weight λ is
set to 0.5.

Evaluation Setup. We evaluate our final model
on the official test sets for the WMT25 General Ma-
chine Translation Shared Task. Our participation
covers 13 language pairs: en→{zh, arz, bho, cs, et,
ja, ko, ru, uk, sr_Latn}, cs→{uk, de}, and ja→zh.
Our decoding procedure implements the proposed
hybrid re-ranking strategy. For each source sen-
tence, we generate 100 candidate translations via
stochastic sampling using the vllm library (Kwon
et al., 2023) for efficient inference, which are then
scored and re-ranked using our hybrid scoring func-
tion (Equation 5) to select the final output. The
quality of this final translation is measured using
the state-of-the-art reference-free metric XCOMET-
XXL6 (Guerreiro et al., 2024).

3.2 Main Results
Baselines. To demonstrate the effectiveness of
our multi-stage pipeline, we compare our final sys-
tem against several key baselines. We conduct an
ablation study with two internal models: (1) Two-
step SFT, our model after only the two SFT step, to
measure the combined impact of our RL and hybrid
decoding steps; and (2) Two-step RL, the model
after full SFT and RL training, to isolate the per-
formance gain from the hybrid decoding strategy.
Furthermore, we benchmark our system against
leading proprietary models, including GPT-4o and
Claude 3.7 Sonnet.

Table 2 presents the main findings of our evalua-
tion. The results clearly demonstrate the superiority
of our final Marco-MT-Algharb system. On aver-
age, our final system achieves an XCOMET-XXL
score of 79.33, significantly outperforming all other
models in the comparison.

The effectiveness of our multi-stage pipeline is
validated by the ablation study. Our full RL frame-
work (Two-step RL) improves upon the SFT-only
baseline by a substantial margin of 1.5 points on
average. The final addition of our hybrid decod-
ing strategy (Hybrid Decode) provides a further
1.3-point gain, highlighting the crucial and cumu-
lative contribution of each component to the final
performance.

6https://huggingface.co/Unbabel/XCOMET-XXL

Most notably, Marco-MT-Algharb not only sur-
passes the strong proprietary baselines of GPT-4o
and Claude 3.7 Sonnet by a large margin (over 5.1
points on average), but it also achieves the highest
score across every individual language pair. This
consistently strong performance highlights the ef-
fectiveness of our specialized training and decoding
approach. These results suggest that a carefully re-
fined, open-source model can produce translations
of exceptional quality, capable of outperforming
even leading general-purpose proprietary systems
on this benchmark.

4 Conclusion

This paper presented Marco-MT-Algharb, our sys-
tem for the WMT25 General Machine Transla-
tion Shared Task. We introduced a novel quality-
aware framework that enhances LLM-based trans-
lation through a synergistic combination of two-
step supervised fine-tuning with data distillation,
dynamic multi-reward reinforcement learning, and
a hybrid alignment-aware decoding strategy. Our
methodology was validated on the WMT25 test
set, where Marco-MT-Algharb substantially out-
performed strong baselines and leading proprietary
models. These results were corroborated by the
official human evaluation, which placed our sys-
tem in the top three across 12 of our 13 language
pairs, including six first-place victories. Notably,
in the highly competitive English-Chinese direc-
tion, our system ranked first among all open and
closed-source submissions.
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