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Abstract

The WMT25 Shared Task on Automated Trans-
lation Evaluation Systems evaluates metrics
and quality estimation systems that assess the
quality of language translation systems. This
task unifies and consolidates the separate WMT
shared tasks on Machine Translation Evalua-
tion Metrics and Quality Estimation from pre-
vious years. Our primary goal is to encour-
age the development and assessment of new
state-of-the-art translation quality evaluation
systems. The shared task this year consisted of
three subtasks: (1) segment-level quality score
prediction, (2) span-level translation error anno-
tation, and (3) quality-informed segment-level
error correction. The evaluation data for the
shared task were provided by the General MT
shared task and were complemented by “chal-
lenge sets” from both the organizers and partic-
ipants. Task 1 results indicate the strong perfor-
mance of large LLMs at the system level, while
reference-based baseline metrics outperform
LLMs at the segment level. Task 2 results indi-
cate that accurate error detection and balancing
precision and recall are persistent challenges.
Task 3 results show that minimal editing is chal-
lenging even when informed by quality indica-
tors. Robustness across the broad diversity of
languages remains a major challenge across all
three subtasks.

1 Introduction

The WMT25 Shared Task on Automated Transla-
tion Quality Evaluation Systems1 evaluates auto-
mated systems for assessing and improving transla-
tion quality, including automated quality metrics,

1www2.statmt.org/wmt25/mteval-subtask.html

Source Non parliamo italiano.
Translation I don’t speak Spanish!

Task 1: score prediction → 25%
Task 2: error span prediction → I don’t speak Spanish!
Task 3: post-editing → We don’t speak Italian.

Table 1: Illustration of the three primary subtasks:
segment-level quality score prediction, span-level er-
ror detection, and quality-informed post-editing. (The
challenge sets subtask is not shown.)

quality estimation systems, and quality-informed
translation error correction. This task builds on
previous years’ shared tasks (Freitag et al., 2024;
Zerva et al., 2024) and unifies previously separate
WMT shared tasks on Machine Translation Evalu-
ation Metrics and Quality Estimation. Automated
translation quality evaluation systems play a criti-
cal role in the research, development and deploy-
ment of machine translation systems, and more
recently, of multilingual LLMs. They are also criti-
cal components in automated translation workflows
for large-scale commercial translation use-cases.

The shared task consists of three primary sub-
tasks shown in Table 1: (1) segment-level quality
score prediction, (2) span-level translation error
detection, and (3) quality-informed segment-level
error correction. Curated evaluation data sets were
provided for all three subtasks. These include test
material obtained from the WMT25 General Ma-
chine Translation task as well as a collection of
“challenge sets” that were developed by the orga-
nizers and members of the research community.
A fourth subtask solicited the submission of these
challenge sets.

The primary focus of this year’s updated task

https://www2.statmt.org/wmt25/mteval-subtask.html
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is on robust translation quality evaluation systems
that can effectively detect translation errors gener-
ated by increasingly accurate LLM-based transla-
tors as well as handle previously unseen problems
related to using LLMs for translation, such as out-
put verbosity and incorrect output language. Newly,
the evaluation data, originating from the General
MT task, were intentionally chosen to be challeng-
ing for MT: they feature longer length, sourcing
from some originally non-textual modalities, and
translation into a wider variety of languages than
in previous years.

Task 1 this year was designed to evaluate both
MT metrics and QE systems. Reference-based au-
tomatic metrics score MT output by comparing the
translation with a reference translation generated
by human translators, who are instructed to trans-
late “from scratch” without post-editing from MT.
Reference-free quality estimation (QE) systems
score translations solely based on their adherence
to the source language. We collectively refer to all
of these systems as “auto-raters” throughout the
rest of the paper. All auto-raters were evaluated
based on their agreement with human ratings when
scoring MT systems and human translations at the
system and segment level. In Task 2, systems are
evaluated on their ability to detect and accurately
annotate the spans of translation errors by contrast-
ing them with the human error annotations. For
Task 3, systems that correct a given translation are
evaluated based on the quality of their post-edits,
rewarding effective improvements with minimal
changes.

Below are some of the key details and changes
implemented for this year’s shared task:

• Subtasks: As illustrated in Table 1, we solicited
participation in segment-level quality score pre-
diction, span-level error detection, and quality-
informed post-editing.

• Language Pairs: Based on the General
MT shared task, this year covers 16 lan-
guage pairs, many of which are novel:
English→{Czech, Estonian, Icelandic, Egyp-
tian Arabic, Bhojpuri, Maasai, Russian, Ser-
bian Cyrillic, Ukrainian, Japanese, Chinese, Ital-
ian, Korean}, Czech→{German, Ukrainian}, and
Japanese→Chinese. The domains are Literary
(short story), News, Social, Speech (video tran-
scripts), and Social.

• Human Evaluation: Human evaluation was

Task Level Meta-metric

1 system SPA
1 segment acc∗eq
2 char F1
3 segment ∆-COMET

Table 2: Each language was given equal weight in the
overall average.

done as part of the General MT task, and these
same annotations were then reused for our shared
task. For 14 of the language pairs, annotations
were conducted with the ESA protocol (Kocmi
et al., 2024); the remaining two language pairs
were annotated using the MQM protocol (Freitag
et al., 2021). ESA annotations included two sets
of human annotations per translation.

• Meta-Evaluation: Each of the three subtasks em-
ploys its own individual meta-evaluation meth-
ods, described in more detail in the respective
sections later in the paper. Task 1 follows the
same approach as last year’s Metrics task and
uses two primary measures: soft pairwise accu-
racy (SPA) at the system level (Thompson et al.,
2024), and “group-by-item” segment-level accu-
racy with tie calibration (acc∗eq) at the segment
level (Deutsch et al., 2023). Task 2 follows a sim-
ilar approach to last year’s QE task, and calcu-
lates the character-level F1 score between the pre-
dicted errors and the gold error spans, weighted
to allow for half points for correctly identified
spans with incorrect error severity. Task 3 evalu-
ates the quality of the correction of the original
MT using ∆COMET as the primary measure and
Gain-to-Edit Ratio (GER) to quantify editing ef-
ficiency.

• MTME: Similar to last year, all the data
for Tasks 1 and 2 has been uploaded to the
mt-metrics-eval codebase (MTME),2 and
all results in this paper are calculated with this
analysis tool. We encourage developers of auto-
rater systems to use MTME for greater repro-
ducibility.

Our main findings are:

• The prediction of quality scores, with or with-
out references, remains a challenge. Strong
LLM-based auto-raters now top the rankings
at the system level, where the task is to ac-
curately identify the better MT system. At

2github.com/google-research/mt-metrics-eval

https://github.com/google-research/mt-metrics-eval
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the segment level, LLM-based auto-raters
still underperform; this year, unlike in recent
years, reference-based baseline metrics (YISI-
1, CHRF, and BERTSCORE) fill out the top
three rank clusters, outranking recently strong
trained metrics. We provide some analysis of
this surprising result, but further analysis is
needed to develop a better understanding of
this outcome (Section 4).

• Auto-raters continue to struggle with precise
error detection, span annotation, and severity
classification, with significant gaps with hu-
man performance and large variations across
language pairs (Section 5). This underscores
the complexity of the task and highlights the
critical need for advances in automated error
analysis that better align with human judg-
ments.

• While automatic translation correction sys-
tems can improve translation quality, this im-
provement is often at the cost of diverging
from human-generated reference translations,
indicating a gap between automated systems
and human lexical choices, and that improve-
ment does not necessarily mean alignment
with human preferences (Section 6).

• By using carefully-crafted challenge sets, it is
shown that current automatic MT evaluation
systems still exhibit major weaknesses, includ-
ing susceptibility to fluent but semantically
irrelevant content, systematic gender bias, in-
stability on low-quality or corner-case outputs,
and poor correlation with human judgments
for low-resource languages (Section 7).

The rest of the paper is organized as follows. Sec-
tion 2 introduces our subtasks. Section 3 presents
the evaluation set and the MT systems whose out-
put was judged. Following that, the baselines, par-
ticipants, meta-evaluation procedure, and main re-
sults of each subtask are discussed in Section 4 for
segment-level quality score prediction, in Section 5
for span-level error annotation, and in Section 6 for
quality-informed post-editing. Section 7 presents
the submitted challenge sets, and Section 8 con-
cludes.

2 Tasks

The shared task this year consisted of three primary
subtasks that address translation quality assessment

from three perspectives: (1) segment-level quality
score prediction, (2) span-level translation error
detection, and (3) quality-informed segment-level
error correction. An additional fourth subtask so-
licited the submission of challenge sets that identify
where automated metrics and auto-rater systems
fail. All subtasks are introduced below:

2.1 Segment-Level Quality Score Prediction

The goal of the segment-level quality prediction
subtask is to predict a quality score for each
source–target segment pair in the evaluation set,
with a reference translation optionally being pro-
vided. Depending on the language pair, the partici-
pants were asked to predict either the Error Span
Annotation (ESA) score (Kocmi et al., 2024) or the
Multi-dimensional Quality Metrics (MQM) score
(Freitag et al., 2021). Submissions are evaluated
and ranked based on their prediction correlations
with these human-annotated scores at both the seg-
ment and system levels.

2.2 Span-Level Error Detection

In this subtask, the goal is to predict the precise
span of each translation error along with its severity.
For this subtask we use the error spans obtained
from the MQM and ESA human annotations gener-
ated for the General MT primary task as the target
“gold standard”. Participants were asked to predict
both the error spans (start and end indices) as well
as the error severities (major or minor) within each
segment. Submissions are evaluated and ranked
based on their ability to correctly identify the pres-
ence of errors, correctly mark the spans of any
identified errors, and correctly identify the severity
of each of these errors.

2.3 Quality-Informed Segment-level Error
Correction

The overarching goal of this subtask is to correct
the output of machine translation. Recent work
shows that joint optimization for QE and APE helps
improve the performance of both tasks (Deoghare
et al., 2023, 2024). Furthermore, fine-grained QE
signals can also be leveraged to apply limited cor-
rections and help mitigate over-correction, known
as a common problem in APE systems (Deoghare
et al., 2025). We invited participants to submit sys-
tems capable of automatically generating correc-
tions for machine-translated text, given the source,
the MT-generated target, and a QE-generated qual-
ity annotation of the MT. The objective is to ex-
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plore how quality information, including both er-
ror span annotations and Direct Assessment (DA)
scores, can inform automated error correction. For
instance, sentence-level quality scores may help
identify which segments require correction, while
span-level annotations can be used for fine-grained,
pinpointed corrections. Participants were provided
with the quality information. Submissions were
evaluated and ranked based on the quality of the
corrections they generate, with as few changes as
possible.

2.4 Challenge Sets

For the fourth year, our shared task included a sub-
task involving challenge sets. This subtask is in-
spired by the Build it or break it: The Language
Edition shared task (Ettinger et al., 2017), which
aimed at testing the generalizability of NLP sys-
tems beyond the distributions of their training data.
Whereas the standard evaluation of the shared task
is conducted on test sets containing generic text
from real-world content, the challenge set evalua-
tion is based on test sets designed with the aim of
revealing the abilities or the weaknesses of the met-
rics or evaluating particular translation phenomena.
In order to shed light on different perspectives on
evaluation, the subtask takes place in a decentral-
ized manner: contrary to the main metric tasks, the
test sets are not provided by the organizers but by
different research teams, who are also responsible
for analyzing and presenting the results (Section 7).

3 Evaluation Data

3.1 Data Sourcing and Translation

Similar to previous years’ editions, the source sides,
MT outputs, and reference texts for our shared task
are mainly derived from the WMT25 General MT
Shared Task (Kocmi et al., 2025a).

Newly this year, the source segments were au-
tomatically selected to be more challenging for
translation systems, using a source-only difficulty
estimator (Proietti et al., 2025). The test data do-
mains cover news, literary (short stories), speech,
and social. For the General MT shared task, some
of this test material was multimodal: the speech
data was provided as audio files with uncorrected
automatic transcripts, and the social-media content
was provided with screenshot images. However,
for our shared task, we released only a text version
of our evaluation set.

The selection of MT outputs was made based on

an evaluation with automatic metrics (Kocmi et al.,
2025b), giving slight prioritization to constrained
(small, open-weight) systems. In keeping with our
goal of exposing participants to a wide range of
translation qualities and phenomena, we included
output from around 20 different MT systems for
each language pair. An exception is Task 3, which
subsampled the original set for computational fea-
sibility.

Reference translations were provided in 14 of
our 16 language pairs, produced by professional
translators from scratch. We ran English→Italian
and English→Maasai as reference-free scenarios:
the former because the General MT shared task in-
tentionally did not produce any references, and the
latter because the references produced by General
MT were not yet available at the beginning of our
evaluation period.

For more details regarding sourcing and trans-
lation of the test set, we refer the reader to the
WMT25 General MT Shared Task (Kocmi et al.,
2025a). All data has been released publicly.3

3.2 ESA and MQM Human Evaluation

This year, translations in most language pairs
(English→{Czech, Estonian, Icelandic, Egyptian
Arabic, Bhojpuri, Maasai, Russian, Serbian Cyril-
lic, Ukrainian, Japanese, Chinese, Italian} and
Czech→{German, Ukrainian}) were evaluated
with the ESA protocol (Kocmi et al., 2024).
Japanese→Chinese and English→Korean were an-
notated with the MQM protocol (Freitag et al.,
2021). The ESA protocol differs from MQM by not
requiring the error categorization (fluency, punc-
tuation, etc.) for each span and by providing a
free-form 0% to 100% slider for assessing the final
translation quality. Annotators were given guid-
ance defining a score of 0% as “broken,” 33% as
“flawed,” 66% as “good,” and 100% as “perfect.”
In MQM, the translation score is instead derived
mathematically from the count of error spans and
their annotated severities. Generally, each minor
error contributes –1 point while each major error
counts as –5.

Our ESA annotations contain two judgments of
each translation (“human1” and “human2”). This
allows us to calculate intercoder agreement as a
measure for task difficulty in each language and
also provides a human “oracle” against which au-
tomated metrics can be compared (e.g. by treating

3github.com/wmt-conference/wmt25-general-mt

https://github.com/wmt-conference/wmt25-general-mt
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one human annotation as a “metric” and comparing
it against actual auto-rater results). Additionally,
the human annotations also contain control tasks
(a fixed set of translations that all annotators an-
notated) designed to establish annotator reliability;
this has been shown to work better than ad-hoc
attention checks (Zouhar et al., 2025a).

In order to maximize differences between sys-
tems, human evaluation was limited to the top 50%
of the most diversely translated inputs, computed
with pairwise chrF between systems. Therefore, all
source segments have either received two annota-
tions for all selected systems, or none. This has the
effect of avoiding spending human effort on anno-
tating identical or similar translations, as well as
translations that have little impact on the rankings
of auto-rater systems (Zouhar et al., 2025b).

4 Task 1: Segment-Level Quality Score
Prediction

This section presents the segment-level quality
score prediction subtask in detail. We describe
the auto-rater systems participating in the subtask
in Section 4.1, our meta-evaluation procedure in
Section 4.2, and our main results in Section 4.3.
Section 4.4 reports some further analysis of the
results beyond correlation and accuracy.

4.1 Participating Systems

We processed three distinct types of auto-rater
systems participating in the segment-level quality
score prediction subtask: baselines, official submis-
sions, and “LLM as a judge” models. Each type
is described in more detail below. A synthesized
overview of all 48 systems is also given in Table 3,
based on information provided by each participant
at the time of submission. Full authoritative details
are available in each team’s separately prepared
system description paper.

4.1.1 Baselines
We computed scores for several baseline systems
in order to compare submissions against previous
well-studied metrics.

SacreBLEU baselines We used the following
metrics from SacreBLEU (Post, 2018):

• BLEU (Papineni et al., 2002) is based on
the precision of n-grams between the MT out-
put and its reference, weighted by a brevity
penalty. We used the SacreBLEU command

line with default arguments 4 for system-level
BLEU, and we used the -sl argument to ob-
tain segment-level BLEU.

• SPBLEU (NLLB-Team et al., 2022) is the
BLEU score computed with subword tokeniza-
tion by the standardized FLORES-200 Senten-
cePiece models. We used the SacreBLEU
command line to compute system-level SP-
BLEU,5 and we used the -sl argument to
obtain segment-level SPBLEU.

• CHRF (Popović, 2015) uses character
n-grams instead of word n-grams to compare
the MT output with the reference. We used
the SacreBLEU command line with default ar-
guments6 for system-level CHRF and used the
-sl argument to obtain segment-level CHRF.

BERTSCORE (Zhang et al., 2020) leverages
contextual embeddings from pre-trained trans-
formers to create soft alignments between words
in hypothesis and reference segments using co-
sine similarity. Based on the alignment matrix,
BERTSCORE returns a precision, recall, and F1
score. We used F1 without TF-IDF weighting.

COMET-22 (Rei et al., 2022a) is a learned met-
ric fine-tuned using direct assessments from pre-
vious WMT translation shared tasks. This metric
relies on sentence embeddings from the source,
translation, and reference to produce a final score.
We used the default model wmt22-comet-da
provided in version 2.0.2 of the Unbabel/COMET
framework. This model employs XLM-RoBERTa
large as its backbone model and is trained on data
from the 2017 to 2019 WMT shared tasks, in com-
bination with the MLQE-PE corpus (Fomicheva
et al., 2022).

COMETKIWI (Rei et al., 2022b) is a reference-
free learned metric that functions similarly to
BLEURT, but instead of encoding the translation
along with its reference, it uses the source. We used
the wmt22-cometkiwi-da model, which was
a top-performing reference-free metric from the
WMT 2022 shared task. This metric is fine-tuned
on the same data as wmt22-comet-da using ver-
sion 2.0.2 of the Unbabel/COMET framework.

4nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|v:2.3.1. For
into-Chinese, into-Japanese, and into-Korean language pairs,
we used tok:zh, tok:ja-mecab, and tok:ko-mecab as the tok-
enizer, respectively.

5nrefs:1|case:mixed|eff:no|tok:flores200|smooth:exp|v:2.3.1
6chrF2|nrefs:1|case:mixed|eff:yes|nc:6|nw:0|sp.:no|v:2.3.1
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Team Auto-Rater Name Purpose Category Backbone Model Uses Ref? Supervised?

Organizers BERTSCORE Baseline embedding similarity XLM-RoBERTa Yes No
Organizers BLEU Baseline lexical overlap — Yes No
Organizers CHRF Baseline lexical overlap — Yes No
Organizers COMET22 Baseline fine-tuned encoder XLM-RoBERTa Yes Yes
Organizers COMETKIWI22 Baseline fine-tuned encoder InfoXLM No Yes
Sentinel metrics SENTINEL-CAND Baseline fine-tuned encoder XLM-RoBERTa No Yes
Sentinel metrics SENTINEL-SRC Baseline fine-tuned encoder XLM-RoBERTa No Yes
Organizers SPBLEU Baseline lexical overlap — Yes No
Organizers YISI-1 Baseline embedding similarity XLM-RoBERTa, BERT-zh Yes No

Phrase ENSEMBLESLICK Primary fine-tuned LLM GPT variants No Yes
Microsoft Translator GEMBA-V2 Primary LLM-based GPT 4.1 mini No No
hw-tsc HW-TSC Primary ? ? No No
MetricX-25 METRICX-25 Primary fine-tuned LLM Gemma 3 12B No? Yes
CUNI MR7.2.1 Primary fine-tuned LLM Gemma 3 27B IT No Yes
KIT-ETH-UMich POLYCAND-2 Primary fine-tuned encoder XLM-RoBERTa No Yes
Sujal_and_Astha RANKEDCOMET Primary fine-tuned encoder XLM-RoBERTa Yes? Yes
DCU_ADAPT ROBERTA-LS Primary fine-tuned encoder XLM-RoBERTa Yes Yes
Nvidia-Nemo SEGALE-QE Primary fine-tuned LLM Gemma 3 12B No Yes
TASER TASER-NO-REF Primary LLM-based OpenAI o3 No No
UvA-MT UVA-MT Primary LLM-based Gemma 3 12B No No?

Phrase AUTOLQA Secondary fine-tuned LLM GPT variants No? Yes
Sujal_and_Astha BASECOMET Secondary fine-tuned encoder XLM-RoBERTa Yes? Yes
CUNI COLLABPLUS Secondary ensemble — No? Yes
Phrase COLLABSLICK Secondary fine-tuned LLM GPT variants No? Yes
hw-tsc HW-TSC-BASE Secondary ? ? No? No
hw-tsc HW-TSC-MAX Secondary ? ? No? No
DCU_ADAPT LONG-CONTEXT Secondary fine-tuned ? Yes? Yes
MetricX-25 METRICX-25-QE Secondary fine-tuned LLM Gemma 3 12B No Yes
MetricX-25 METRICX-25-REF Secondary fine-tuned LLM Gemma 3 12B Yes Yes
CUNI MR6 Secondary fine-tuned LLM Gemma 3 27B IT No? Yes
KIT-ETH-UMich POLYCAND-1 Secondary fine-tuned encoder XLM-RoBERTa No Yes
KIT-ETH-UMich POLYIC-3 Secondary fine-tuned encoder XLM-RoBERTa No Yes
Nvidia-Nemo Q_MQM Secondary LLM-based Qwen 3 No? No
Nvidia-Nemo Q_RELATIVE-MQM Secondary LLM-based Qwen 3 No No
DCU_ADAPT ROBERTA-MULTI Secondary fine-tuned encoder XLM-RoBERTa Yes? Yes
TASER TASER-REF Secondary LLM-based OpenAI o3 Yes? No

Organizers AYAEXPANSE-32B LLM LLM AyaExpanse 32B No No
Organizers AYAEXPANSE-8B LLM LLM AyaExpanse 8B No No
Organizers CLAUDE-4 LLM LLM Claude 4 No No
Organizers COMMANDA LLM LLM CommandA No No
Organizers COMMANDR7B LLM LLM CommandR 7B No No
Organizers DEEPSEEK-V3 LLM LLM DeepSeek V3 No No
Organizers GPT-4.1 LLM LLM GPT 4.1 No No
Organizers LLAMA-3.1-8B LLM LLM Llama 3.1 8B No No
Organizers LLAMA-4-MAVERICK LLM LLM Llama 4 Maverick No No
Organizers MISTRAL-7B LLM LLM Mistral 7B No No
Organizers QWEN2.5-7B LLM LLM Qwen 2.5 7B No No
Organizers QWEN3-235B LLM LLM Qwen 3 235B No No

Table 3: Summary of Task 1 participants. We distinguish four different purposes of participation: as a baseline, as
an official primary submission, as an official secondary submission, or as an “LLM as a judge.” Basic self-submitted
properties of each entrant are summarized above, sorted by auto-rater name.

Sentinel baselines We also included two metrics
from the Sentinel family. Unlike the other base-
lines, Sentinel metrics are intentionally formulated
to lack important information when assigning their
scores. They are instead meant as a probing mecha-
nism to highlight evaluation scenarios that may be
“too easy” or that are prone to spurious correlations,
if the Sentinel metrics place competitively among
other evaluators that have access to more complete
information.

• SENTINEL-SRC-25 (Proietti et al., 2025)
predicts the quality of a translation solely

based on its source string, without consider-
ing the reference or even the translation it-
self. It is an updated version of the original
SENTINEL-SRC: a regression model based on
XLM-RoBERTa, trained with data from previ-
ous WMT editions up through and including
the WMT 2024 test set.

• SENTINEL-CAND (Perrella et al., 2024) as-
sesses the quality of a translation based on the
output string alone, without taking the source
or reference into account. It is also based on
XLM-RoBERTa, trained with WMT data up
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through 2022.

YISI-1 (Lo, 2019) is an MT evaluation metric
that measures the semantic similarity between a ma-
chine translation and human references by aggregat-
ing the IDF-weighted lexical semantic similarities
based on the contextual embeddings extracted from
pre-trained language models (BERT-base-chinese
for evaluating Chinese and XLM-RoBERTa for
evaluating other target languages in this shared
task).

4.1.2 Official Submissions
Each team participating in Task 1 was allowed to
submit one primary and up to two secondary sys-
tems for meta-evaluation. The primary systems are
described below. Secondary systems are included
in the general tabular overview (Table 3).

ENSEMBLESLICK (Hrabal et al., 2025) For
Task 1, this system uses a combination of Phrase
proprietary fine-tuned GTE and similar models and
fine-tuned GPT-4o-mini.

GEMBA-V2 (Junczys-Dowmunt, 2025)
GEMBA-V2 is an updated version of GEMBA
(Kocmi and Federmann, 2023).

HW-TSC (Luo et al., 2025) This system’s ap-
proach integrates sentence segmentation tools and
dynamic programming to construct sentence-level
alignments between source and translated texts,
then adapts sentence-level evaluation models to
document-level assessment via sliding-window ag-
gregation.

METRICX-25 (Juraska et al., 2025)
METRICX-25 is an encoder-only regression
model initialized from Gemma 3 12B and
fine-tuned on publicly available DA and MQM
scores from WMT 2015–23 in a two-stage fashion.
Similar to METRICX-24, the first stage uses
z-normalized DA scores, and the second stage uses
a mixture of raw DA scores (rescaled to the MQM
range of 0–25) and MQM scores. Due to the dual
nature of meta-evaluation this year (ESA/DA vs.
MQM), a score type indication is included in the
input, indicating for each training example whether
it corresponds to a DA or MQM score.

MR7.2.1 (Hrabal et al., 2025) This submission
experimented with the Gemma 3 27B IT model
prompted using the DSPy framework and using its
MIPROv2 optimizer. The system first generates
seven 0–10 integer scores for various aspects of the

translation (e.g. “accuracy and completeness” or
“fluency and coherence”). Afterwards, it generates
the overall 0–100 score.

POLYCAND-2 (Züfle et al., 2025) The super-
vised reference-less metric COMETpoly-* has sim-
ilar architecture and training to standard COMET
but incorporates additional information beyond one
single translation. COMETpoly-cand2 incorporates
two alternative translations of the same source seg-
ment (provided by other translation systems) to
better contextualize and assess the quality of the
translation being scored. The metric was trained
on a limited combination of DA, ESA, and MQM
data on a unified scale.

RANKEDCOMET (Maharjan and Shrestha,
2025) This system is based on the pre-trained
Unbabel/wmt22-comet-da model, deployed in
a zero-shot inference setting. Raw segment-
level quality scores are generated and then post-
processed with per-language-pair rank normaliza-
tion. This method transforms raw scores into a
calibrated distribution that significantly improved
correlation with the preliminary evaluation metrics.

ROBERTA-LS (Haq and Osuji, 2025)
ROBERTA-LS (Roberta Long-Span) is a reference-
based evaluation metric built using the COMET
framework. Designed to provide multi-sentence
quality scores, it is trained on augmented long-
context data that captures translation quality
beyond isolated sentences. To construct the
long-span MT evaluation dataset, adjacent short
segments are concatenated, and a multi-segment
quality score is computed as a length-weighted
average of their original scores. Unbabel/wmt22-
comet-da and XLM-RoBERTa-base are fine-tuned
on the augmented data.

SEGALE-QE (Yan et al., 2025) This system
extends METRICX to long texts by adding a
pipeline before running the metric. It first seg-
ments the data down to individual sentences with
Ersatz, then runs Vecalign to align system trans-
lations to the source. Vecalign’s deletion penalty
is adaptively adjusted to obtain good alignments
that exclude over/under-translation to the maxi-
mum extent possible. When over/under-translated
sentences are identified, they are assigned a score
of 25. Individual sentence scores are then averaged
to form the score for the long-form translation pair.
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TASER-NO-REF (Maheswaran et al., 2025)
TASER (Translation Assessment via Systematic
Evaluation and Reasoning) is a Large Reasoning
Model–based metric for translation quality assess-
ment. This metric uses OpenAI’s o3 to estimate the
quality of a translation in reference-free scenarios.
It posits that LRMs are capable of better assessing
the quality of translations than vanilla LLMs with
advanced prompting strategies.

UVA-MT (Wu and Monz, 2025) This system
calibrates quality estimation and likelihood on the
google/gemma3-12b-it model, then directly uses
the token average likelihood as a metric for quality
estimation. No human annotation data is used;
the only reliance is on a translation’s likelihood
as the metric. The same resulting model was also
submitted to the WMT 2025 General Translation
Task, meaning that it grades its own output as part
of the segment-level quality prediction task.

4.1.3 LLMs as Judges
As a third category of system, the shared task or-
ganizers obtained quality scores on our test set
from 12 different publicly available large language
models, using their standard APIs and a templated
prompt. These submissions test the ability of
general-purpose LLMs as judges of translation
quality without fine-tuning or few-shot examples.

LLMs for which we obtained quality scores are:
AyaExpanse 8B, AyaExpanse 32B, Claude 4, Com-
mand A, Command R7B, DeepSeek V3, GPT 4.1,
Llama 3.1 8B, Llama 4 Maverick, Mistral 7B,
Qwen 2.5 7B, and Qwen 3 235B. The templated
ESA-like prompt is given in Appendix A.

4.2 Meta-Evaluation
The goal of auto-rater meta-evaluation is to quan-
tify how well automatic systems agree with human
ratings of translation quality. There are a multitude
of ways to approach this problem, as evidenced
by the variety of solutions proposed by previous
years’ editions of the shared task.7 Ranking-based
approaches (traditionally Spearman’s ρ, Kendall’s
τ , or pairwise accuracy) assume the least about
the relative shapes of the score distributions: only
the directionality matters, and the magnitude of
difference is ignored. Linear correlation (tradition-
ally Pearson’s r) captures magnitude but thereby

7See Section 5 of Thompson et al. (2024) and Table 1 of
Deutsch et al. (2023) for nice summaries of the approaches
taken in prior WMT shared tasks to meta-evaluation at, respec-
tively, the system and segment level.

assumes a constant slope to the scores and can be
unduly influenced by outliers (Mathur et al., 2020).

We follow the same approach as last year to
this year’s meta-evaluation of Task 1, focusing on
improved ranking-based methods.

At the system level, we use soft pairwise accu-
racy, or SPA (Thompson et al., 2024). SPA uses
p-values as a proxy for certainty about the differ-
ence between two systems, calculated over both the
auto-rater and human scores. This rewards auto-
raters that result in the same statistical conclusion
as the human scores. However, computation of the
p-values requires repeated resampling of segments
in order to determine the statistical range of system-
level scores. For efficiency of meta-evaluation, SPA
averages the segment-level scores in each resample
as a proxy for the system-level score. Such averag-
ing is a technically incorrect aggregation method
for BLEU, CHRF, and a number of other submis-
sions that self-reported that they employ some more
complicated methodology.

At the segment level, we again follow last year’s
process and meta-evaluate metrics using “group-by-
item” segment-level accuracy with tie calibration
(Deutsch et al., 2023), denoted acc∗eq. Group-by-
item processing, recommended by Perrella et al.
(2024) avoids pairwise comparisons between trans-
lations originating from different source segments.

Because SPA and acc∗eqmeta-metrics are based
on ranking, we do not perform any normalization
on the raw scores output by the auto-raters or anno-
tated by the humans.

We assign ranks to auto-raters based on their sig-
nificance clusters in the same way that we did last
year. We compare all pairs of auto-raters and de-
termine whether the difference in their correlation
scores is significant according to the PERM-BOTH
hypothesis test of Deutsch et al. (2021). We use
1000 re-sampling runs and set p = 0.05. As advo-
cated by Wei et al. (2022), we divide the sample
into blocks of 100, compute significance after each
block (cumulative over all blocks sampled so far),
and stop early if the p-value is < 0.02 or > 0.50.
To calculate p-values for SPA, we use a paired per-
mutation test (Noreen, 1989) with 1000 resamples.

Given the significance results (p-values) for all
pairs of auto-raters, ranks are assigned starting with
the highest-scoring auto-rater. We move down the
list of auto-raters in descending order by score, as-
signing rank 1 to all auto-raters until we encounter
the first one that is significantly different from any
that have been visited so far. That auto-rater is
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assigned rank 2, and the process is repeated. This
continues until all auto-raters have been assigned
a rank. Note that this is a greedy algorithm, and
hence it can place two auto-raters that are statisti-
cally indistinguishable in different clusters.

The code for running the meta-evaluation is
available in the mt-metrics-eval library.8

While the segments in language pairs evaluated
with ESA received two independent human judg-
ments (as per Section 3.2), most of the results and
analyses presented in Section 4.3 and Section 4.4
are based on the first complete annotation that we
received, which we refer to as “human1.” The sec-
ond set of human judgements (“human2”) did not
arrive in time to permit a complete analysis with
the mt-metrics-eval package.

4.3 Main Results

Summarized results for the quality score predic-
tion subtask are shown in Table 4 and Table 5.
Table 4 reports average performance across the
14 language pairs for which references were pro-
vided, while Table 5 covers the remaining two
reference-less language pairs. (Since we do not
have complete information about which auto-raters
make use of the reference or may do so optionally,
we list in Table 5 all the entrants that submitted
scores for reference-free language pairs.) Note that
three participating systems (ROBERTA-LS, LONG-
CONTEXT, and ROBERTA-MULTI) returned output
for only three language pairs and are thus not in-
cluded in either summary table for lack of a fair
comparison. Full detailed results broken down by
individual language pair are given in Table 19 (part
1) and Table 20 (part 2) in Appendix B; all partici-
pating systems appear there.9

A striking pattern in this year’s results is the
strong performance of many baseline systems —
especially those based on lexical overlap or embed-
ding similarity. YISI-1, CHRF, and BERTSCORE

fill out the top three rank clusters when judged
at the segment level in the presence of references.
General-purpose LLMs do quite poorly in terms
of correlation with human judgments at the seg-
ment level, but their system-level performance is
better, led by GPT 4.1 and Claude 4. GPT 4.1 and
TASER-REF, a reasoning-based model, achieve
top-tier performance on system-level correlation

8github.com/google-research/mt-metrics-eval
9We also show in Appendix B the results on the ESA

language pairs using the “human2” annotation as the gold
standard.

Avg All Avg Sys Avg Seg

Rank Corr Rank Corr Rank Corr

Baselines
YiSi-1 2 0.674 4 0.791 1 0.558
chrF 2 0.672 4 0.789 2 0.554
spBLEU 3 0.668 5 0.784 4 0.551
BERTScore 4 0.662 6 0.770 3 0.553
BLEU 5 0.657 6 0.770 6 0.543
COMET22 8 0.624 9 0.709 8 0.539
sentinel-cand 17 0.533 16 0.572 17 0.494
COMETKiwi22 19 0.505 18 0.526 20 0.484
sentinel-src 25 0.351 19 0.509 37 0.193

Primary
GEMBA-v2 2 0.672 3 0.811 9 0.533
TASER-No-Ref 3 0.666 2 0.833 16 0.499
rankedCOMET 6 0.627 8 0.716 8 0.539
MetricX-25 8 0.621 9 0.711 10 0.530
mr7_2_1 9 0.614 6 0.760 24 0.467
SEGALE-QE 13 0.581 12 0.654 12 0.509
Polycand-2 14 0.566 13 0.626 13 0.506
Q_Relative-MQM 15 0.564 7 0.737 28 0.391
EnsembleSlick 17 0.539 15 0.600 23 0.478
hw-tsc 18 0.524 17 0.557 18 0.490
UvA-MT 21 0.465 20 0.466 25 0.464

Secondary
TASER-Ref 1 0.698 1 0.846 5 0.549
MetricX-25-Ref 6 0.633 8 0.727 7 0.539
baseCOMET 7 0.624 10 0.709 7 0.539
MetricX-25-QE 10 0.602 11 0.681 11 0.524
mr6 10 0.598 7 0.738 26 0.458
Q_MQM 14 0.568 7 0.736 27 0.399
Polyic-3 16 0.555 14 0.607 14 0.503
AutoLQA 16 0.553 10 0.707 27 0.398
Polycand-1 16 0.554 14 0.606 15 0.501
CollabPlus 16 0.548 13 0.612 20 0.485
CollabSlick 16 0.548 14 0.609 19 0.487
hw-tsc-max 19 0.509 18 0.536 21 0.483
hw-tsc-base 20 0.499 19 0.518 22 0.479

LLM-as-a-judge
GPT-4_1 3 0.669 1 0.849 18 0.489
CommandA 11 0.597 3 0.812 29 0.382
Claude-4 12 0.593 2 0.833 31 0.352
DeepSeek-V3 13 0.582 4 0.797 30 0.368
Qwen3-235B 13 0.579 4 0.790 30 0.368
Qwen2_5-7B 19 0.507 12 0.667 32 0.347
AyaExpanse-32B 19 0.500 7 0.732 34 0.269
Llama-3_1-8B 21 0.466 12 0.663 34 0.269
Llama-4-Maverick 22 0.453 7 0.730 38 0.176
CommandR7B 23 0.408 16 0.568 35 0.248
Mistral-7B 23 0.401 18 0.527 33 0.274
AyaExpanse-8B 24 0.387 15 0.576 36 0.199

Table 4: Task 1 results summary against the “human1”
annotation for all language pairs with references.

when a reference is present; reference-free mod-
els are led by GEMBA-V2.10 Sentinel models, as
desired, rank lowly throughout.

10TASER-REF also ranks first or second in reference-free
evaluation; even though it is labeled as a reference-using met-
ric, it was submitted with scores for the segments without
references as well.

https://github.com/google-research/mt-metrics-eval
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Avg All Avg Sys Avg Seg

Rank Corr Rank Corr Rank Corr

Baselines
sentinel-cand 8 0.542 6 0.593 7 0.492
COMETKiwi22 10 0.501 9 0.517 8 0.485
sentinel-src 12 0.417 9 0.501 23 0.333

Primary
GEMBA-v2 1 0.638 1 0.764 2 0.512
TASER-No-Ref 3 0.601 3 0.710 7 0.493
mr7_2_1 4 0.581 3 0.702 11 0.460
SEGALE-QE 4 0.570 5 0.632 3 0.508
EnsembleSlick 7 0.550 5 0.609 7 0.491
Q_Relative-MQM 7 0.549 4 0.686 18 0.413
MetricX-25 7 0.548 7 0.583 2 0.514
Polycand-2 7 0.547 6 0.599 5 0.495
rankedCOMET 8 0.542 7 0.592 7 0.493
hw-tsc 8 0.538 7 0.584 7 0.491
UvA-MT 11 0.485 10 0.494 10 0.476

Secondary
TASER-Ref 1 0.633 2 0.738 1 0.528
Q_MQM 4 0.578 2 0.740 17 0.415
mr6 5 0.569 4 0.682 12 0.456
MetricX-25-QE 6 0.554 6 0.594 2 0.514
CollabSlick 6 0.553 5 0.609 4 0.498
baseCOMET 7 0.549 6 0.605 6 0.493
Polycand-1 8 0.536 7 0.579 7 0.493
Polyic-3 9 0.532 8 0.570 5 0.495
CollabPlus 9 0.528 8 0.557 4 0.498
AutoLQA 9 0.525 6 0.597 12 0.453
hw-tsc-max 10 0.512 9 0.541 9 0.483
hw-tsc-base 10 0.512 9 0.541 9 0.483

LLM-as-a-judge
GPT-4_1 2 0.611 2 0.725 4 0.496
CommandA 4 0.577 3 0.711 13 0.443
Claude-4 4 0.574 2 0.729 16 0.419
Qwen3-235B 4 0.573 3 0.712 14 0.434
DeepSeek-V3 5 0.565 3 0.716 17 0.413
Qwen2_5-7B 5 0.562 3 0.696 15 0.428
AyaExpanse-32B 7 0.543 3 0.702 19 0.383
CommandR7B 9 0.529 4 0.685 20 0.373
Llama-3_1-8B 10 0.513 4 0.662 21 0.364
Llama-4-Maverick 11 0.485 4 0.669 24 0.301
Mistral-7B 11 0.484 6 0.594 20 0.373
AyaExpanse-8B 11 0.473 5 0.609 22 0.337

Table 5: Task 1 results summary against the “human1”
annotations for all language pairs without references
(i.e. English–Italian and English–Maasai).

Divergence in these results compared to recent
years may be due to a variety of causes. In particu-
lar, we note that the source texts were intentionally
chosen to be difficult, that they consist of longer
paragraph-like segments, and that there are there-
fore fewer segments available for scoring in each
language pair than in the past. Further, we ran the
quality score prediction task in a wider variety of
language pairs, with a correspondingly wider vari-
ety in the quality of the MT output being judged.

We will further explore a few interesting facets

of the results in the following section.

4.4 Analysis

In this section, we discuss the performance of MT
auto-rater systems from several additional perspec-
tives, in order to interpret our results, to provide
further insights on strength and weakness of var-
ious classes of auto-raters, and to shed light on
upcoming challenges in automated translation qual-
ity evaluation research.

4.4.1 SPA vs. Pairwise Accuracy
Because the results in Section 4.3 differ from those
obtained in other recent years — notably on the
relative strength of string-based metrics — we ran a
contrastive evaluation where the system-level meta-
metric was changed from SPA to “hard” pairwise
accuracy instead. System-level pairwise accuracy
(Kocmi et al., 2021) was used as a meta-evaluation
metric in the WMT metrics task from 2021 through
2023. This method, similarly to SPA, compares
MT system pair ranking decisions between humans
and auto-raters, but it ignores the magnitude of the
human and auto-rater score differences. Pairwise
accuracy also does not require any resampling or
averaging of segment-level scores to create proxies
for system-level scores.

Table 6 shows the correlation results obtained
by using each system-level meta-metric, for lan-
guage pairs that were provided with references,
against the “human1” annotations as the gold stan-
dard. The “SPA” columns of the table are equiv-
alent to the system-level data shown in Table 4,
repeated here for easy side-by-side comparison.
The “Pair Acc” columns show the analogous re-
sults using pairwise accuracy. (Note that the use of
pairwise accuracy leads to a smaller number of sta-
tistically significant auto-rater clusters, so the rank
ordinals are not comparable between the “SPA” and
“Pair Acc” columns.) The right-most “Diff” column
shows the differences in correlation between the
two settings.

SPA and pairwise accuracy produced very simi-
lar correlation scores and overall rankings of auto-
raters. Our contrastive experiments therefore did
not shed light on why string-based metrics are per-
forming better than expected. The main differ-
ence we observe is that SPA produced substantially
more statistically significant comparisons, result-
ing in twice as many (20 vs. 10) significance clus-
ters. This finding is consistent with Thompson et al.
(2024).
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SPA Pair Acc Diff

Rank Corr Rank Corr ∆Corr

Baselines
YiSi-1 4 0.791 3 0.795 0.004
chrF 4 0.789 3 0.783 −0.006
spBLEU 5 0.784 3 0.780 −0.004
BERTScore 6 0.770 3 0.772 0.002
BLEU 6 0.770 3 0.767 −0.003
COMET22 9 0.709 5 0.701 −0.008
sentinel-cand 16 0.572 8 0.573 0.001
COMETKiwi22 18 0.526 9 0.515 −0.011
sentinel-src 19 0.509 9 0.476 −0.033

Primary
TASER-No-Ref 2 0.833 2 0.828 −0.005
GEMBA-v2 3 0.811 2 0.815 0.004
mr7_2_1 6 0.760 4 0.760 0.000
MetricX-25 9 0.711 5 0.705 −0.006
rankedCOMET 8 0.716 5 0.703 −0.013
SEGALE-QE 12 0.654 6 0.654 0.000
Polycand-2 13 0.626 6 0.627 0.001
EnsembleSlick 15 0.600 8 0.597 −0.003
hw-tsc 17 0.557 8 0.555 −0.002
UvA-MT 20 0.466 10 0.468 0.002

Secondary
TASER-Ref 1 0.846 1 0.846 0.000
Q_MQM 7 0.736 4 0.742 0.006
mr6 7 0.738 4 0.741 0.003
Q_Relative-MQM 7 0.737 4 0.740 0.003
MetricX-25-Ref 8 0.727 4 0.720 −0.007
AutoLQA 10 0.707 5 0.708 0.001
baseCOMET 10 0.709 5 0.702 −0.007
MetricX-25-QE 11 0.681 6 0.673 −0.008
CollabSlick 14 0.609 7 0.614 0.005
CollabPlus 13 0.612 7 0.613 0.001
Polycand-1 14 0.606 7 0.608 0.002
Polyic-3 14 0.607 7 0.604 −0.003
hw-tsc-max 18 0.536 9 0.538 0.002
hw-tsc-base 19 0.518 9 0.524 0.006

LLM-as-a-judge
GPT-4_1 1 0.849 1 0.849 0.000
Claude-4 2 0.833 1 0.839 0.006
CommandA 3 0.812 2 0.813 0.001
DeepSeek-V3 4 0.797 3 0.802 0.005
Qwen3-235B 4 0.790 3 0.794 0.004
Llama-4-Maverick 7 0.730 4 0.741 0.011
AyaExpanse-32B 7 0.732 4 0.734 0.002
Qwen2_5-7B 12 0.667 6 0.669 0.002
Llama-3_1-8B 12 0.663 6 0.660 −0.003
CommandR7B 16 0.568 8 0.575 0.007
AyaExpanse-8B 15 0.576 8 0.550 −0.026
Mistral-7B 18 0.527 9 0.507 −0.020

Table 6: System-level correlation using either SPA
(equivalent to Table 4) or pairwise accuracy, against the
“human1” annotation for all language pairs with refer-
ences. The scores and overall rankings are quite similar
for SPA and pairwise accuracy, but SPA produces sub-
stantially more (20 vs. 10) significance clusters.

4.4.2 MT Systems That Hill-Climb Metrics

Some systems in the WMT General MT task
(Kocmi et al., 2025a), whose output we rely on

All MT Select MT Diff

Rank Corr Rank Corr ∆Corr

Baselines
spBLEU 5 0.784 3 0.789 0.006
YiSi-1 4 0.791 3 0.789 −0.002
chrF 4 0.789 3 0.786 −0.003
COMET22 9 0.709 4 0.770 0.060
BLEU 6 0.770 4 0.769 −0.001
BERTScore 6 0.770 4 0.764 −0.006
sentinel-cand 16 0.572 7 0.684 0.112
COMETKiwi22 18 0.526 10 0.551 0.025
sentinel-src 19 0.509 11 0.495 −0.014

Primary
TASER-No-Ref 2 0.833 1 0.836 0.003
GEMBA-v2 3 0.811 2 0.819 0.008
rankedCOMET 8 0.716 4 0.775 0.059
mr7_2_1 6 0.760 4 0.761 0.001
MetricX-25 9 0.711 5 0.756 0.045
Q_Relative-MQM 7 0.737 6 0.719 −0.017
SEGALE-QE 12 0.654 6 0.693 0.039
Polycand-2 13 0.626 7 0.687 0.062
EnsembleSlick 15 0.600 7 0.669 0.069
hw-tsc 17 0.557 8 0.652 0.095
UvA-MT 20 0.466 12 0.374 −0.091

Secondary
TASER-Ref 1 0.846 1 0.840 −0.006
baseCOMET 10 0.709 4 0.770 0.061
MetricX-25-Ref 8 0.727 5 0.749 0.022
MetricX-25-QE 11 0.681 5 0.747 0.066
AutoLQA 10 0.707 5 0.743 0.036
mr6 7 0.738 5 0.740 0.002
Q_MQM 7 0.736 6 0.719 −0.017
Polyic-3 14 0.607 6 0.699 0.092
Polycand-1 14 0.606 7 0.684 0.078
CollabPlus 13 0.612 7 0.676 0.064
CollabSlick 14 0.609 7 0.671 0.061
hw-tsc-max 18 0.536 9 0.602 0.067
hw-tsc-base 19 0.518 10 0.573 0.055

LLM-as-a-judge
GPT-4_1 1 0.849 1 0.840 −0.009
Claude-4 2 0.833 1 0.834 0.002
CommandA 3 0.812 2 0.820 0.008
DeepSeek-V3 4 0.797 2 0.814 0.017
Qwen3-235B 4 0.790 3 0.796 0.006
AyaExpanse-32B 7 0.732 5 0.750 0.019
Llama-4-Maverick 7 0.730 6 0.723 −0.002
Llama-3_1-8B 12 0.663 8 0.633 −0.030
Qwen2_5-7B 12 0.667 8 0.631 −0.035
AyaExpanse-8B 15 0.576 10 0.530 −0.045
Mistral-7B 18 0.527 10 0.524 −0.004
CommandR7B 16 0.568 11 0.478 −0.090

Table 7: Average system-level correlations using either
all available MT output (equal to Table 4) or only output
from selected MT systems unlikely to have hill-climbed
on metrics. Correlations are computed against “human1”
annotations.

to create this task’s test set, are tuned against auto-
matic metrics (for example, as part of the reward
model). This presents a challenge when the same
automatic metric is now asked to judge the qual-
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ity of the MT: a bias towards the translations that
have been specially optimized towards it could neg-
atively affect the metric’s correlation with indepen-
dent human judgments.

To investigate this effect, we conducted a follow-
up analysis in which we calculated auto-rater per-
formance only when judging output from a popula-
tion of MT systems that are highly unlikely to be
metric-tuned. These selected MT systems primar-
ily consist of general-purpose LLMs and publicly
available MT services. We repeated the system-
level meta-evaluation from Section 4.2, using SPA,
on this reduced portion of our test set.

Table 7 shows a comparison of the results in the
two cases. The “All MT” column represents the
rank and average system-level correlation of each
participant for the 14 language pairs in the original
test set that provide reference translations. (This
section of the table is equivalent to the system-level
columns of Table 4.) In the “Select MT” column,
we display the analogous results on the smaller
test set. (Note that the smaller test set leads to a
smaller number of statistically significant metric
clusters, so the rank ordinals are not comparable
between the two columns.) The right-most “Diff”
column shows the differences in average correla-
tion between the two settings.

As expected, metrics that are the most likely
targets of MT hill-climbing see their correlations
with human judgments improve once we remove
the affected MT systems. This is true most visibly
for the numerous variations of COMET — includ-
ing all three POLYCAND* auto-raters, all of which
rank in the top 10 “most improved.” Conversely,
the smallest changes in average correlation tend to
come from classic string- or embedding-based met-
rics, which are unlikely to serve as modern-day MT
optimization targets, as well as TASER variants
and high-performing general-purpose LLMs.

With these results in mind, we caution MT prac-
titioners against evaluating system variants accord-
ing to the same metrics that played any role in the
systems’ training process.

4.4.3 Detecting Catastrophic Translations
The distribution of translation quality varies greatly
across languages. For example, high-resource lan-
guages in our test set tend to come with the most
translations that are near perfect, while even state-
of-the-art MT systems struggle with lower-resource
languages or languages and domains not previ-
ously in WMT. We show this distribution of human-

Auto-Rater en
-a

r

en
-b

ho

en
-s

r

en
-e

t

en
-is

en
-r

u

Human 98% 78% 86% 24% 46% 13%
Claude-4 77% 61% 73% 19% 49% 16%
GPT-4 84% 39% 74% 23% 54% 15%
TASER-Ref 77% 50% 56% 21% 53% 16%
COMETKiwi22 84% 58% 55% 14% 41% 13%
Polyic-3 81% 67% 33% 15% 48% 12%
UvA-MT 76% 49% 69% 16% 36% 10%
Polycand-2 80% 48% 48% 16% 48% 12%
MetricX-25-Ref 79% 47% 51% 17% 44% 13%
DeepSeek-V3 76% 28% 69% 16% 45% 14%
MetricX-25-QE 77% 45% 51% 17% 45% 13%
BERTScore 84% 51% 50% 16% 36% 10%
Polycand-1 80% 53% 39% 14% 48% 12%
hw-tsc 78% 56% 48% 13% 37% 12%
SEGALE-QE 76% 49% 43% 17% 46% 12%
hw-tsc-base 79% 56% 46% 13% 35% 12%
YiSi-1 79% 43% 47% 18% 43% 11%
hw-tsc-max 77% 56% 46% 14% 35% 12%
CommandA 77% 24% 67% 16% 38% 14%
MetricX-25 77% 37% 49% 15% 42% 13%
sentinel-cand 80% 54% 32% 13% 41% 11%
COMET22 79% 30% 42% 18% 44% 12%
rankedCOMET 79% 30% 42% 18% 44% 12%
baseCOMET 79% 30% 42% 18% 44% 12%
mr7_2_1 78% 23% 53% 19% 37% 15%
Llama-4-Maverick 76% 25% 53% 13% 43% 13%
mr6 76% 27% 52% 16% 36% 13%
Qwen3-235B 76% 22% 50% 19% 35% 14%
Q_Relative-MQM 76% 23% 56% 12% 35% 14%
Q_MQM 76% 23% 45% 11% 35% 15%
GEMBA-v2 76% 25% 29% 13% 47% 14%
chrF 80% 36% 17% 17% 41% 9%
TASER-No-Ref 76% 36% 23% 9% 45% 12%
spBLEU 82% 34% 18% 18% 38% 10%
CollabSlick 76% 52% 8% 16% 35% 10%
CollabPlus 76% 51% 8% 14% 36% 11%
Qwen2 76% 32% 35% 14% 28% 11%
BLEU 80% 39% 18% 14% 35% 9%
EnsembleSlick 76% 50% 7% 16% 35% 10%
Mistral-7B 77% 31% 34% 9% 26% 13%
AyaExpanse-32B 76% 19% 40% 10% 29% 13%
Llama-3 76% 19% 29% 15% 31% 11%
AyaExpanse-8B 76% 21% 27% 11% 28% 13%
CommandR7B 77% 31% 24% 8% 27% 11%
AutoLQA 76% 19% 17% 11% 34% 11%
sentinel-src 76% 18% 8% 14% 26% 13%

Table 8: Ability of auto-raters to detect catastrophic
translations (best threshold for F1). Rows are ordered
by average performance; auto-raters perform worse than
human for languages with bimodal distributions (Fig-
ure 1).

annotated ESA scores in Figure 1. This is a prob-
lem for trained auto-rater systems, which under-
perform in unseen domains and tend to follow the
language distribution; they are thus likely to score
translations into a low-resource language as lower
in quality and they have greater variance (Zouhar
et al., 2024a,b).

This year’s language pairs created a new issue
for MT systems: incorrect output language. Specif-
ically, for some language pairs, some MT systems
outputted the wrong language, dialect, or script.
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Figure 1: Human score distribution across languages evaluated with the ESA protocol. The pink bar corresponds to
translation with less than 10 ESA points, and the green bar shows translations with above 90 ESA points.

Examples include English→Egyptian Arabic (of-
tentimes incorrectly translated as modern standard
Arabic), English→Bhojpuri (incorrectly translated
as a mixture of languages), or English→Serbian
(incorrectly translated into a Latin script). These
systems still made it into the human evaluation be-
cause the automatic evaluation filter used did not
flag any major issues. In this section, we discuss
the failure of auto-rater systems to detect catas-
trophic translation failure, in use-cases similar to
those used by the General MT shared task.

We investigate select languages that do have a
notable proportion of catastrophic translations, de-
fined as those receiving an ESA score lower than
10. For those, we collect the set of catastrophic
translations and select the threshold for each auto-
rater to classify a catastrophic translation that max-
imizes the F1 score (true positive = ESA score <
10). This threshold would, in theory, be possible
to be used for identifying catastrophic translations
without any human input. The results are shown
in Table 8. For languages where the mismatch in
languages, dialects, and scripts was a critical is-
sue (Arabic, Bhojpuri, Serbian), the second human
annotator was able to detect the catastrophic trans-
lations much better than automatic systems. This
leaves headroom for improvements for auto-rater
systems, which have to be able to score translations
from state-of-the-art LLMs that might not always
follow the instructions.

4.4.4 Utility of the Reference
Having investigated auto-rater systems capabilities
in the face of especially poor MT output, we now
turn to the complementary question: a study of our
submissions’ abilities to cope with poor reference

Auto-Rater ∆Corr Auto-Rater ∆Corr

YiSi-1 −0.163 CommandR7B 0.201
chrF −0.152 Llama-3_1-8B 0.199
BLEU −0.151 AyaExpanse-8B 0.189
BERTScore −0.148 Qwen2_5-7B 0.178
spBLEU −0.143 Mistral-7B 0.164
baseCOMET −0.043 mr7_2_1 0.160
COMET22 −0.043 Q_MQM 0.144
hw-tsc-max −0.036 Q_Relative-MQM 0.139
GPT-4_1 −0.030 AyaExpanse-32B 0.137
rankedCOMET −0.030 mr6 0.112

Table 9: Auto-raters recording the largest drops (left)
and gains (right) in average system-level correlation
between language pairs with high- and low-quality ref-
erences.

translations.
We would expect to see a divergence in per-

formance between auto-raters that adhere closely
to the reference and those that are reference-free.
When the provided reference is itself of poor qual-
ity, auto-raters in the first group may be misled into
misjudging the MT output. When the reference is
quite accurate, on the other hand, auto-raters in the
second group may suffer from not being able to
consult it. Below we examine each of these cases
individually.

For this analysis, we divide the language pairs
in our test set into groups based on the references’
performance in the human evaluation. In the WMT
General Translation task (Kocmi et al., 2025a),
the reference translation was judged to fall alone
into the top-ranked cluster of “systems” in five lan-
guage pairs: English→Arabic, English→Estonian,
English→Icelandic, English→Japanese, and
Japanese→English. Conversely, the reference
placed relatively lowly in English→Russian (rank
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9–11 of 19), English→Chinese (11–13 of 19), and
Czech→German (9–12 of 21).

We extract system-level correlations for each par-
ticipating auto-rater out of Table 19 and Table 20
in Appendix B in order to compute the average
correlation separately per each group of language
pairs. Since a strong auto-rater is more likely to
outperform a weak auto-rater in any language pair,
we compare instead the difference in correlation
for the same auto-rater from one group to another,
as a measure of its specific degradation in the face
of low-quality references.

Table 9 shows the results. Indeed, our five string-
and embedding-based baselines are much more
sensitive to poor reference quality than any other
auto-rater, by a significant margin. Likewise, on
the other hand, the auto-raters that improve their
performance the most on languages with poor ref-
erences comprise of six of the “LLM as a Judge”
models and four official submissions to the shared
task: (MR7.2.1 and MR6 are based on Gemma 3
models; Q_MQM and Q_RELATIVE-MQM are
based on Qwen 3.) All are reference-free systems,
as expected.

4.4.5 Metric Score Difference Interpretation
Following the WMT Metrics Shared Task in the last
two years, we continue to conduct analyses to find
the threshold of metrics’ score differences that cor-
responds to statistical significance of MT system
rankings demonstrated by human annotators and
the metrics themselves.11 These analyses provide
an interpretation of the metrics’ score differences,
support building an intuitive sense of metric score
meanings, and encourage broader adoption of new
automatic MT evaluation metrics. This year, since
we expanded the number of language pairs (LPs)
from 3 to 16, instead of analyzing metrics score
differences by individual LP we are pooling the
14 LPs with references together in the following
analyses for clear presentation and ease of under-
standing.

As a reminder, the results in this section should
not be used as arguments to forego significance
tests or appropriate human evaluation.

Correspondence to human scores significance:
We first study the relationship between statistically
significant differences in human scores and the

11This section uses the term “metric,” but the analysis is
extended to auto-raters of all types as defined earlier in this
paper.

magnitude of metric differences as in (Lo et al.,
2023a). We run a one-sided paired t-test with an
equal variance assumption for each system pair
on segment-level human scores. After that, we fit
the corresponding metric score differences and the
p-values of the t-test on the human scores to an
isotonic regression (Robertson et al., 1988), which
predicts whether the human score difference will
be significant given the metric’s score difference.
This year, we also consider the sign of the metric’s
difference. If the metric’s decision disagrees with
the human’s but the human score difference is in-
significant, we also consider that as a correct predic-
tion. Isotonic regression produces a non-decreasing
function where the classifier output can be inter-
preted as a confidence level.12 We set ph < 0.05
as the significance level of human scores. Thus,
the output of the isotonic regression function can
be viewed as Pr(ph < 0.05 |∆m) where ph is the
p-value of the t-test on the human scores for each
system pair and ∆m is the metric score difference.

Figure 2 shows the (log) p-value of one-sided
paired t-test on the human scores against the corre-
sponding BLEU, YISI-1, and TASER-REF score
difference for each system pair. Additional figures
(Figures 9-11 in Appendix C) show the same analy-
ses for all metrics. For each metric, we can choose
a particular level of confidence (i.e., a point along
the y-axis on the right) to get the metric score dif-
ference cutoffs (i.e. a point along the x-axis) that
this metric difference reflects significant human
score differences. Drawing a horizontal line from
the confidence level, say 80%, to the red line en-
ables us to find the minimum metric difference
cutoff required at the corresponding x-value down
from the red line, i.e. 3.0 for BLEU in Figure 2.
Using this lookup method, Table 10 show the cut-
offs of ∆m when Pr(ph < 0.05 |∆m) = 0.8 for
each metric. We run 10-fold cross-validation, and
Table 10 shows that the range of precision in the
cross-validation is consistently high across metrics.
This means the metric cufoffs we find using the
regression model are reliable.

Table 10 serves as a reference for understand-
ing the score differences between MT systems pro-
vided by modern metrics. For example, we see
that a BLEU difference of 3.0 corresponds to 80%
confidence that two MT systems ranked by BLEU

will match the decision made by human annota-
tors with a significant difference. Meanwhile, a

12scikit-learn.org/stable/modules/isotonic.html

https://scikit-learn.org/stable/modules/isotonic.html
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Figure 2: Log p-value of one-sided paired t-test on human scores (ph) against each metric (left: BLEU, center:
YISI-1, right: TASER-REF) score difference for each system pair. The red line is the isotonic regression fit to all
data points, representing Pr(ph < 0.05 |∆m). Note: for readability, values of ph are rounded up to 0.0001 when
they are less than 0.0001.
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Figure 3: Log p-value of significance test with bootstrap resampling (pm) on system-level metric scores against
each metric (left: BLEU, center: YISI-1, right: TASER-REF) score difference for each system pair. The red line is
the isotonic regression fit to all data points, representing Pr(pm < 0.05 |∆m). Note: for readability, values of pm
are rounded up to 0.0001 when they are less than 0.0001.

TASER-REF score difference of 4.2 would have
the same 80% chance of human-judged significant
difference.

Correspondence to metric scores significance:
We run a study similar to that above, but on the re-
lations between statistically significant differences
in metric scores and the magnitude of metric dif-
ferences as inspired by Marie (2022). Instead of
the one-sided t-test on human scores, the p-values
are now obtained by running statistical significance
tests with bootstrap resampling on the metric scores
for each system pair. We fit the corresponding met-
ric score differences and the p-values of the signifi-
cance test to an isotonic regression for predicting
whether the translation quality improvement as in-
dicated by the metric will be significant given the
metric score difference. We set pm < 0.05, and
thus the output of the isotonic regression function
is now Pr(pm < 0.05 |∆m), where pm is the p-
value of the significance test on the metric scores
for each system pair and ∆m is the metric score
difference.

Figure 3 shows the (log) p-value of the signifi-
cance test with bootstrap resampling on the metric

scores for BLEU, YISI-1 and TASER-REF score
difference of each system pair. Additional figures
(Figures 12-14 in Appendix C) show the same anal-
yses for all metrics. Using the same lookup method
described in the previous study, Table 11 shows the
cut-offs of ∆m when Pr(pm < 0.05 |∆m) = 0.8
for each metric. We run 10-fold cross-validation,
and Table 11 shows that the range of precision in
the cross-validation is consistently high across met-
rics. This means that the metric cutoffs we find
using the regression model are reliable.

Table 11 serves as a reference of metric dif-
ferences that correspond to statistical significance
with high confidence. For example, we see that a
BLEU difference of 0.87 corresponds to 80% confi-
dence that the difference is statistically significant.
Meanwhile, a TASER-REF score difference of 1.1
would have the same 80% chance of being statisti-
cally significant. Our results, agreeing with Marie
(2022), show that to claim significant differences
(pm < 0.05) on BLEU with high confidence (80%),
the differences should be higher than the shared un-
derstanding (0.5 BLEU) in the research community.

We have to emphasize again that this result
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Metric min∆m c.v. precision

Baselines
YiSi-1 0.0078 [86-94%]
chrF 2.8 [89-93%]
spBLEU 4.0 [88-94%]
BERTScore 0.014 [87-94%]
BLEU 3.0 [86-92%]
COMET22 0.017 [84-92%]
sentinel-cand 0.23 [79-91%]
COMETKiwi22 0.048 [82-100%]
sentinel-src — —

Primary
GEMBA-v2 2.1 [89-94%]
TASER-No-Ref 5.1 [93-97%]
rankedCOMET 0.057 [80-90%]
MetricX-25 2.9 [85-93%]
mr7_2_1 2.6 [86-93%]
SEGALE-QE 4.0 [83-97%]
Polycand-2 2.9 [82-93%]
Q_Relative-MQM 7.4 [87-94%]
EnsembleSlick 0.070 [55-100%]
hw-tsc 0.051 [83-100%]
UvA-MT 0.53 [74-100%]

Secondary
TASER-Ref 4.2 [90-96%]
MetricX-25-Ref 2.3 [84-93%]
baseCOMET 0.017 [84-92%]
MetricX-25-QE 2.4 [84-91%]
mr6 2.2 [85-94%]
Q_MQM 1.9 [85-93%]
Polyic-3 3.2 [83-95%]
AutoLQA 0.015 [79-91%]
Polycand-1 2.6 [77-94%]
CollabPlus 0.025 [71-90%]
CollabSlick 0.043 [72-94%]
hw-tsc-max 0.061 [87-100%]
hw-tsc-base 0.052 [79-100%]

LLM-as-a-judge
GPT-4_1 6.1 [89-95%]
CommandA 2.8 [86-93%]
Claude-4 3.7 [88-96%]
DeepSeek-V3 1.9 [86-95%]
Qwen3-235B 3.8 [89-95%]
Qwen2_5-7B 1.2 [82-91%]
AyaExpanse-32B 1.7 [83-95%]
Llama-3_1-8B 2.3 [75-95%]
Llama-4-Maverick 0.37 [79-91%]
CommandR7B 1.2 [76-92%]
Mistral-7B 3.5 [70-100%]
AyaExpanse-8B 0.77 [79-95%]

Table 10: Minimum ∆m when Pr(ph < 0.05 |∆m) =
0.8 for each metric in all language pairs with refer-
ences (rounded to 2 significant figures), and the range
of precision for the isotonic regression model in 10-fold
cross-validation.

should not be interpreted as evidence to forego
significance test or appropriate human evaluation.
Instead, we are only providing assistance to build
an intuition on the meaning of the scores provided
by the new metrics to encourage the transition

Metric min∆m c.v. precision

Baselines
YiSi-1 0.0013 [98-100%]
chrF 0.66 [99-100%]
spBLEU 0.75 [99-100%]
BERTScore 0.0029 [99-100%]
BLEU 0.87 [99-100%]
COMET22 0.0041 [99-100%]
sentinel-cand 0.039 [99-100%]
COMETKiwi22 0.0046 [99-100%]
sentinel-src 0.00 [100-100%]

Primary
GEMBA-v2 0.71 [99-100%]
TASER-No-Ref 1.2 [100-100%]
rankedCOMET 0.018 [100-100%]
MetricX-25 0.64 [99-100%]
mr7_2_1 0.82 [98-100%]
SEGALE-QE 0.95 [99-100%]
Polycand-2 0.47 [98-99%]
Q_Relative-MQM 2.1 [99-100%]
EnsembleSlick 0.0064 [99-100%]
hw-tsc 0.0060 [99-100%]
UvA-MT 0.030 [99-100%]

Secondary
TASER-Ref 1.1 [99-100%]
MetricX-25-Ref 0.52 [99-100%]
baseCOMET 0.0041 [99-100%]
MetricX-25-QE 0.45 [99-100%]
mr6 0.85 [99-100%]
Q_MQM 0.53 [99-100%]
Polyic-3 0.43 [98-100%]
AutoLQA 0.0099 [99-100%]
Polycand-1 0.32 [98-100%]
CollabPlus 0.0079 [98-100%]
CollabSlick 0.0066 [99-100%]
hw-tsc-max 0.0056 [99-100%]
hw-tsc-base 0.0057 [99-100%]

LLM-as-a-judge
GPT-4_1 1.5 [99-100%]
CommandA 0.85 [99-100%]
Claude-4 1.1 [99-100%]
DeepSeek-V3 0.61 [98-100%]
Qwen3-235B 0.87 [99-100%]
Qwen2_5-7B 0.85 [98-100%]
AyaExpanse-32B 0.55 [98-100%]
Llama-3_1-8B 1.6 [99-100%]
Llama-4-Maverick 0.74 [99-100%]
CommandR7B 0.90 [99-100%]
Mistral-7B 0.94 [98-100%]
AyaExpanse-8B 0.45 [98-100%]

Table 11: Minimum ∆m when Pr(pm < 0.05|∆m) =
0.8 for each metric in all language pairs with refer-
ences (rounded to 2 significant figures), and the range
of precision for the isotonic regression model in 10-fold
cross-validation.

away from lexical metrics towards more recent and
stronger metrics.
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5 Task 2: Span-Level Error Detection

This section presents the span-level error detection
task in more detail. We discuss in more depth the
error annotations per language pair (Section 5.1),
and describe the baselines (Section 5.2) and the
participant submissions (Section 5.3). Our meta-
evaluation is described in Section 5.4. We then
present the results, mostly focusing on the primary
submissions, in Section 5.5.

5.1 Error Annotations

We use the ESA and MQM annotations sourced
from the General MT task for this task as well, con-
sidering only the subset of documents and systems
that were human-evaluated. We note that the er-
ror span patterns vary significantly per language
as shown in Figure 4, which is a complementary
view of Figure 1. For the translation pairs referring
to lower-resource languages (e.g. English-Maasai),
we frequently have the phenomenon where the
whole segment is annotated as an error (frequently
corresponding to hallucinated text). In contrast,
annotations for higher-resource language pairs (e.g.
Czech-German, English-Italian) correspond mostly
to smaller, isolated error spans.

5.2 Baselines

XCOMET (Guerreiro et al., 2024) XL (3.5B)
and XXL (10.7B) are neural models that are trained
to identify MQM error spans in sentences along
with a final quality score, thus leading to an explain-
able neural auto-rater. It adopts a unified input and
output approach, allowing the prediction of trans-
lation quality assessment in multiple input modes
(SRC-ONLY, SRC+REF and REF-ONLY), as well
as generates sentence-level and word-level qual-
ity assessments. We use the SRC+REF mode with
word-level predictions as the official shared task
baselines.

Human2 For a subset of languages (except JA-
ZH_CN and EN-KO_KR), the General MT shared
task also collected a second round of human anno-
tations. While not strictly a baseline, comparing
submissions against a HUMAN2 set of evaluations
provides additional insights into how automated
metrics perform relative to human judgment. We re-
port some statistics on HUMAN2 against HUMAN1
annotations in Table 12.

# Errors # Major Errors

Human1 33.56% 18.54%
Human2 32.48% 16.95%

Table 12: Translation error distribution on human anno-
tations.

5.3 Submissions
We note that, this year, all task participants em-
ployed an LLM-based auto-rater to produce the
fine-grained annotations. Specifically, the follow-
ing systems were submitted to the task:

AIP (Yeom et al., 2025) The participants propose
a tagged span annotation (TSA) approach, i.e., us-
ing reasoning LLMs to introduce inline numbered
tags (e.g. < v0 > error_span < \v0 >) that
explicitly mark error spans, and can easily map
to diverse annotations (error severity, type, etc.)
within the translated text. They enhance the tag
schema to allow for annotation of omissions using
zero-length tags. To be able to insert such tags
on the hypothesis segments, they employed the
OpenAI o3 and o4-mini reasoning models, leverag-
ing the structured-output response mode to detect
translation errors at the span level, formatted as
JSON strings with the TSA approach mentioned
above. They use few-shot examples and optimize
for precision and minimality, explicitly prompting
the models to (i) only label spans that it is confident
are erroneous, and (ii) restrict the annotation to the
minimal substring responsible for the error.

AutoLQA (Hrabal et al., 2025) The participants
leveraged their Automatic Linguistic Quality As-
sessment (AutoLQA) systems, i.e., LLM-based
evaluators designed to produce complete MQM-
style annotations, including error spans, categories,
and severities. The team fine-tuned GPT-4.1 and
GPT-4o-mini model variants using internal data
(≈100,000 segments), and using the WMT-QE-22
and Google-MQM datasets (dev + test) to deter-
mine performance improvements. They experiment
with different prompts, controlling for the annota-
tion structure, i.e., relaxing the MQM annotations
to remove the category and approximate the ESA
style. Their primary submission corresponds to the
fine-tuned GPT-4o-mini and the secondary to the
GPT-4.1-mini version, respectively.

GemSpanEval (Juraska et al., 2025) The partic-
ipants fine-tuned a Gemma 3 27B model on past
WMT MQM annotations formatted as JSON. Train-
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Figure 4: Distribution of error span ratio over the full segment length per language pair.

Language Pair Baselines Primary Submissions Human2

XCOMET-XL XCOMET-XXL AutoLQA AIP GemSpanEval

P R f1 P R f1 P R f1 P R f1 P R f1 P R f1

CS-DE_DE 24.55 5.15 8.52 25.17 5.22 8.65 17.71 4.02 6.56 11.94 20.37 15.06 28.89 6.02 9.96 30.46 41.08 34.98
CS-UK_UA 25.02 4.00 6.90 28.21 3.56 6.32 20.73 1.93 3.54 13.60 10.16 11.63 35.94 3.58 6.52 27.67 28.95 28.30
EN-AR_EG 11.57 19.53 14.54 8.48 17.92 11.51 11.45 22.95 15.28 2.51 30.41 4.63 19.23 22.18 20.60 79.61 76.37 77.96
EN-BHO_IN 22.87 3.47 6.02 33.46 3.40 6.17 15.55 3.48 5.69 9.38 8.19 8.74 28.40 3.68 6.52 61.31 54.03 57.44
EN-CS_CZ 16.06 6.02 8.76 22.67 6.87 10.55 14.22 4.12 6.39 7.27 15.30 9.85 24.20 6.38 10.10 14.40 24.86 18.24
EN-ET_EE 14.93 16.66 15.75 16.56 17.07 16.81 14.84 11.82 13.16 5.71 20.34 8.92 23.09 12.28 16.04 33.31 32.87 33.09
EN-IS_IS 22.41 27.72 24.78 29.10 28.30 28.70 8.85 19.68 12.21 9.15 35.69 14.57 25.90 19.58 22.30 36.44 40.10 38.18
EN-IT_IT 30.60 4.16 7.33 23.40 5.40 8.77 17.89 2.55 4.47 10.45 13.70 11.86 33.71 5.47 9.41 30.52 30.62 30.57
EN-JA_JP 13.97 3.67 5.81 14.85 3.69 5.92 22.70 2.30 4.18 8.88 11.72 10.10 28.47 3.32 5.94 10.61 13.93 12.04
EN-KO_KR 8.74 14.64 10.95 9.96 17.09 12.58 20.23 7.26 10.69 4.81 25.89 8.12 17.65 10.54 13.20 - - -
EN-MAS_KE 10.23 34.84 15.81 11.35 36.31 17.29 15.14 38.95 21.80 27.94 28.65 28.29 35.03 35.67 35.35 94.73 92.14 93.41
EN-RU_RU 16.70 8.59 11.34 17.95 8.48 11.52 13.77 3.84 6.01 8.74 16.77 11.49 28.28 6.49 10.55 25.28 27.56 26.37
EN-SR_CYRL 21.18 21.59 21.38 24.17 21.07 22.52 13.61 15.16 14.35 6.81 27.11 10.88 21.66 15.67 18.18 61.67 58.32 59.95
EN-UK_UA 21.84 2.98 5.25 27.31 3.20 5.73 15.48 1.32 2.43 12.63 6.98 8.99 37.01 2.19 4.13 34.76 39.28 36.88
EN-ZH_CN 22.62 3.80 6.50 19.45 4.14 6.83 13.08 2.92 4.78 7.72 10.43 8.87 30.02 3.37 6.07 11.84 12.82 12.31
JA-ZH_CN 26.89 21.80 24.08 24.07 20.04 21.87 14.83 13.58 14.18 8.47 41.64 14.08 25.35 17.46 20.68 - - -

Average 19.39 12.41 12.11 21.01 12.61 12.61 15.63 9.74 9.11 9.75 20.21 11.63 27.68 10.87 13.47 47.04† 48.31† 47.48†

Table 13: Task 2 micro-F1 (%) by language pair for all auto-raters. †: average is computed over all but JA-ZH_CN
and EN-KO_KR.

ing data covered the period WMT20–24 (Specia
et al., 2020, 2021; Zerva et al., 2024), and optimiza-
tion was performed with the Adafactor (Shazeer
and Stern, 2018). A central focus of their approach
was the resolution of error span ambiguity, ensuring
that predicted spans are uniquely identifiable within
the hypothesis segment. The model was trained to
extend spans with additional context whenever a
substring was not unique. The context expansion

covers both preceding and following context and
proceeds incrementally — word by word for al-
phabetic languages and character by character for
logographic or syllabic languages such as Chinese
and Japanese — until a unique substring is ob-
tained. The model was designed to operate in both
reference-based and reference-free (QE) modes,
and the team submitted both variants as their pri-
mary and secondary systems, respectively.
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Language Pair Baselines Primary Submissions Secondary Submissions Human2

XCOMET-XL XCOMET-XXL AutoLQA AIP GemSpanEval AutoLQA-4.1 AIP GemSpanEval-QE

CS-DE_DE 13.07 16.22 13.91 36.45 17.08 16.63 31.22 19.14 64.46
CS-UK_UA 17.49 19.37 11.44 37.74 15.67 11.99 32.48 16.33 67.55
EN-AR_EG 10.54 10.07 11.53 18.86 12.24 10.12 14.04 12.89 79.33
EN-BHO_IN 20.00 9.88 7.14 22.44 7.01 5.46 13.40 7.71 78.86
EN-CS_CZ 10.79 10.93 17.36 31.78 12.68 13.14 25.72 14.28 60.70
EN-ET_EE 11.62 13.72 12.97 24.89 10.83 11.43 18.18 11.17 64.77
EN-IS_IS 15.87 18.50 10.01 21.83 14.95 9.59 17.22 15.24 62.51
EN-IT_IT 7.65 11.41 11.51 32.03 11.92 11.93 29.34 11.91 52.23
EN-JA_JP 10.67 16.15 11.50 44.81 8.33 10.39 37.91 12.15 64.29
EN-KO_KR 12.27 14.32 14.05 26.44 11.77 15.36 24.98 13.27 -
EN-MAS_KE 49.07 49.19 27.42 36.13 31.45 26.88 15.59 31.59 96.33
EN-RU_RU 13.19 13.80 19.09 30.50 10.77 18.06 27.29 11.20 58.49
EN-SR_CYRL 14.08 15.19 18.72 23.76 12.05 16.94 15.59 12.22 64.19
EN-UK_UA 10.17 10.79 16.97 33.69 6.55 10.07 27.20 6.37 72.02
EN-ZH_CN 6.55 8.65 32.37 38.14 7.50 32.29 33.65 8.01 59.82
JA-ZH_CN 20.17 19.78 18.90 25.83 25.74 18.48 25.03 26.76 -

Average 15.20 16.12 15.93 30.33 13.53 14.92 24.30 14.39 71.60†

Table 14: Task 2 macro-F1 (%) by language pair for all auto-rater submissions. †: average is computed over all but
JA-ZH_CN and EN-KO_KR.

5.4 Meta-Evaluation

For Task 2, we use the micro-F1 score between
the predicted and the gold error spans calculated
at the character level as the primary metric. The
score is weighted to allow for half points for cor-
rectly identified spans with misclassified severity.
Compared to the previous year, instead of comput-
ing the best matching annotation for each character
(Zerva et al., 2024), we compute F1 over multi-
ple error annotations per character, allowing for
separate comparisons for each overlapping error
span.

More specifically, for each hypothesis, we com-
pute the counts for the number of “major” and
“minor” errors at each character index separately
for both gold annotations and predictions. This
results in four statistics per hypothesis: gold major
counts, gold minor counts, predicted major counts,
and predicted minor counts, each of length equal
to the length of the hypothesis. We then calculate a
true positive (TP) score by iterating through each
character position and assigning full credit based to
the number of overlaps between gold and predicted
counts of the same severity type (major with major,
minor with minor) at each character. In the case
of overlapping annotations with different severity,
we assign a partial credit to the unmatched gold
counts and predicted counts at the same character
position, regardless of the original severity. This
allows a predicted major error to get partial credit
if it aligns with a character that was part of a gold
minor error, and vice-versa. These TP scores are

summed across all characters and all hypotheses.
Finally, precision (P), recall (R), and F1 score are
calculated based on the aggregated TP, total gold
counts, and total predicted counts. The complete
logic can be seen in Algorithm 1.

5.5 Main Results

Table 13 presents the complete results for all evalu-
ated systems. Below are our primary observations
and findings from these performance results.

Current auto-raters fail to localize errors.
Across all language pairs where HUMAN2 scores
are available, there is a very large gap between
the auto-raters’ performance scores and the human
rater scores. HUMAN2 scores range from around
12% to over 93%, while the best auto-raters rarely
exceed 35%, indicating the task is very challenging
for current automated methods.

There is large variation across language pairs.
No single auto-rater consistently outperforms oth-
ers across all language pairs. The range of scores
across different language pairs suggests varying
levels of difficulty for the auto-raters. For exam-
ple, most systems struggle significantly with EN-
UK_UA, yielding very low F1 scores. In contrast,
EN-MAS_KE allows the GemSpanEval system to
achieve its peak scores. On average, GemSpanEval
achieves the highest micro-F1 score (13.47%). AIP
follows next with decent average performance
(11.63% Primary). AutoLQA systems have the
lowest average scores.
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Auto-raters exhibit different precision-recall
tradeoffs The AIP submissions, unlike all oth-
ers, seem to be obtaining higher micro-recall, at
the cost of lower micro-precision, despite includ-
ing precision-focused instructions in the prompt.13

This outcome contrasts sharply with XCOMET,
AutoLQA/ESA, and GemSpanEval, which tend to
be more conservative, often achieving higher preci-
sion than recall, especially on difficult languages.
Human2, on the other hand, shows that high per-
formance requires excelling in both measures, a
balance that the auto-rater systems currently fail to
achieve.

Auto-raters show different strengths in general-
ization and consistency. Table 14 reports macro-
F1 score for all primary and secondary submissions.
Similar to the primary evaluation (macro-F1), HU-
MAN2 achieves the best scores across the board.
Interestingly, AIP stands out as the best submission
in terms of macro-F1, averaging 30.33%. This
is significantly higher than AutoLQA (15.93%)
and GemSpanEval (13.53%). This largely suggests
that AIP can achieve good F1 scores on average
across language pairs, but its overall performance
on the sheer volume of errors might be hampered
by poor performance on certain heavily-weighted
error segments or language pairs. For example, EN-
AR_EG has many segments with full spans marked
as errors due to hypotheses being in the wrong
dialect (see Figure 4), and the gap in micro- and
macro-F1 is large (14.23%). On the other hand,
GemSpanEval’s micro-F1 (13.47) is very close to
its macro-F1 (13.53), which suggests a more con-
sistent performance across language pairs in terms
of the number of errors.

Overall, the results suggest that precisely locat-
ing error spans remain a challenging problem for
auto-rater systems.

6 Task 3: Quality-Informed
Segment-Level Error Correction

The subtask received a total of 6 submissions, from
3 participants. The results depict a clear outcome
in terms of the winning system.

6.1 Data and Baselines

We reduced the number of language pairs to 6,
and overall data size to a total of 6,000 instances

13Table 23 shows that AIP achieves higher precision than
recall on macro-F1 scores, which is aligned with their focus
on being precision-focused at the instance level.
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Figure 5: Task 3 - Language-pair-specific COMET score
distribution of translations in the evaluation set

with an equal number of samples per pair. The
preparation of the test set ensured representation of
samples across all quartiles of the COMET score
distribution. Due to Codabench limitations and
memory-intensive COMET models used for eval-
uation, we displayed leaderboard results using a
fixed 100 random samples from each submission
during the competition phase. Figure 5 shows the
COMET score distribution of the evaluation set of
each language pair. We observe that for all lan-
guage pairs, we have similar distributions skewed
towards high-quality scores.

We include the following baselines along with
the participants’ submissions:

• BASELINE-S1 This baseline translates the
source segment from scratch using Gemma3-
it-27B LLM (Gemma Team et al., 2025). It ig-
nores the MT system output, and retranslates the
input source segment. We provide the prompt
used in Appendix Table 25.

• BASELINE-S2 The final baseline uses QE in-
formation from post-edit original translation
based on quality estimation from XCOMET-
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XL (Guerreiro et al., 2024), and then uses
Gemma3-it-27B for APE. We provide the
prompt used in Appendix Table 26.

6.2 Submissions
PHRASE (Hrabal et al., 2025) Participants lever-
age GPT models, specifically, o3 and o3-mini,
to produce corrections over MT output given the
source segment, without using the provided QE in-
formation. They use a proprietary common prompt
for all systems submitted, and add variations to the
prompt to change the correction strategy. The three
proposed training-free approaches focus on either
“only correcting errors (-S3)”, “improving fluency
(-S2)”, and “improving fluency with steps to reason
for corrections (-S1)”.

SURREYPAI (Padmanabhan, 2025) Participant
proposed two training-free approaches to Quality-
informed error correction. The first approach (-
S1) leverages the provided DA score, uses it as
a selector, and routes to a specific open-weight
LLM for re-translation using input QE information.
This approach leverages one of six selected open-
weight LLMs, wherein some LLMs were selected
for their robust performance on other NLP tasks
in the target language. The second approach (-S2)
uses fine-grained error span information to replace
an erroneous token with “__BLANK__” and then
uses an LLM to replace this token contextually and
“fills in the blank”.

PACIFICO (Sharma, 2025) Participant proposed
using natural language explanations as an inter-
mediate step to the “detector-corrector” approach,
which proposes error identification and then error
correction. They use xTower to generate interme-
diate natural language explanations based on input
QE information. The approach then feeds the ex-
planation along with the source segment and MT
output to the Gemini-1.5-Pro model to obtain final
corrections.

6.3 Evaluation Metrics
We evaluate the quality of the corrections over MT,
using ∆COMET as the primary metric, and Gain-
to-Edit Ratio (GER) to quantify efficiency.

∆COMET: Measures how much the in-post-
edits improve over the original MT output (hyp)
based on COMET score (Rei et al., 2022b).
COMET14 is a neural evaluation metric trained

14Unbabel/wmt22-cometkiwi-da

on human quality assessments, designed to capture
meaning preservation and fluency by comparing
translations against the source:

∆COMET = COMET(src, pe)− COMET(src, hyp)

Positive values signal that post-editing yields a
translation judged closer to human quality, while
negative values imply a degradation relative to the
initial MT output.

Gain-to-Edit Ratio: This metric evaluates the
efficiency of edits by relating quality gains to the
editing effort. According to our formulation, it is
defined as the ratio between ∆COMET and the
Translation Edit Rate (TER)15 (Snover et al., 2006)
between the post-edited output (pe) and the original
MT output (hyp):

Gain-to-Edit Ratio =
∆COMET

TER(pe, hyp)

Higher values indicate that larger quality im-
provements are achieved with fewer edits, while
lower or negative values suggest limited or detri-
mental improvements relative to the editing cost.

6.4 Main Results

The main results for Task 3 are summarized in
Table 15, and other metrics used for analysis are re-
ported in Table 16. Submissions are ranked primar-
ily by the average ∆COMET across languages (Ta-
ble 15). SURREYPAI-S1 attains the best system-
wide performance, leading on both ∆COMET for
every language pair; PHRASE-S1 stands at the next
best, and these two are the only submissions that
surpass the BASELINE-S2 results over the primary
metrics. However, in terms of efficiency of edits
(GER), PHRASE-S1 obtains a higher score for En-
Is, and BASELINE-S2 seems to perform the best
for En-Uk.

Figure 6 illustrates the mean change in
∆COMET for eight different systems, includ-
ing two baselines, across six target languages.
A clear finding is the superior performance of
the SURREYPAI-S1 system, which consistently
achieves a positive ∆COMET across all language
pairs, indicating an improvement in translation
quality. This system shows particularly strong
gains for Icelandic (is_IS) and Russian (ru_RU).

15Computed using TERCOM-0.7.25 with default flags ex-
cept the case sensitivity. Character-level tokenization is used
for Chinese and Japanese, and sacrebleu (Post, 2018) ‘13a’
for the rest.

https://huggingface.co/Unbabel/wmt22-cometkiwi-da
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System Name En-Cs En-Is En-Ja En-Ru En-Uk En-Zh Average
∆COMET GER ∆COMET GER ∆COMET GER ∆COMET GER ∆COMET GER ∆COMET GER ∆COMET GER

SURREYPAI-S1 0.019 0.015 0.037 0.027 0.010 0.008 0.020 0.016 0.016 0.012 0.018 0.015 0.020 0.016
PHRASE-S1 0.003 0.006 0.032 0.058 -0.006 -0.012 -0.004 -0.007 -0.003 -0.006 -0.002 -0.005 0.003 0.006
BASELINE-S2 0.000 0.000 0.007 0.026 -0.008 -0.036 0.002 0.009 0.004 0.017 -0.005 -0.023 0.000 -0.001
BASELINE-S1 -0.002 -0.002 0.008 0.005 -0.005 -0.004 -0.001 -0.001 -0.003 -0.002 0.002 0.002 0.000 0.000
PACIFICO -0.008 -0.032 0.019 0.054 -0.018 -0.085 -0.016 -0.061 -0.008 -0.034 -0.007 -0.036 -0.006 -0.033
PHRASE-S3 -0.008 -0.030 0.027 0.063 -0.016 -0.060 -0.019 -0.056 -0.016 -0.045 -0.006 -0.023 -0.006 -0.025
PHRASE-S2 -0.011 -0.027 0.025 0.050 -0.018 -0.049 -0.024 -0.050 -0.020 -0.043 -0.009 -0.026 -0.010 -0.024
SURREYPAI-S2 -0.007 -0.005 -0.010 -0.006 -0.013 -0.008 -0.008 -0.005 -0.014 -0.009 -0.013 -0.010 -0.011 -0.007

Table 15: Task 3 - Performance of systems across languages with ∆COMET and Gain to Edit Ratio (GER) metrics.
Systems are ranked in order of average ∆COMET.
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Figure 6: Task 3 - Mean ∆COMET scores per language pair across submissions.

In contrast, most other systems exhibit mixed or
negative results, with PHRASE-S2 systems fre-
quently showing a degradation in quality, especially
for Russian and Ukrainian (uk_UA). Interestingly,
the English–Icelandic language pair exhibits the
most notable overall improvements, with several
systems achieving consistent gains. In contrast, per-
formance on English–Japanese remains relatively
limited across all systems. Correlating these out-
comes with the corresponding evaluation sets sug-
gests that LLM-based approaches follow trends ob-
served in earlier transformer encoder–decoder APE
systems (Akhbardeh et al., 2021; Bhattacharyya
et al., 2023; Zerva et al., 2024). Specifically, when
baseline translations are weaker—evidenced by
TER distributions skewed toward higher values,
APE systems tend to yield larger improvements,
and vice versa. A similar pattern is observed with
COMET: When the score distribution is skewed
toward the upper end (Figure 5), the marginal im-
provements achievable by LLM-based automatic
post-editing systems tend to diminish.

Figure 7 indicates that while SURREYPAI-S1
improves translations across all four domains,
PHRASE-S1 shows mildly positive or negligible
improvements on all. Interestingly, PACIFICO

shows decent gains on literary and social domain
data, but degradation in performance on the news
and speech data, leads to its lower rank on the over-
all results. It also indicates that improvements in
the speech domain are tough to obtain and no other
system, except SURREYPAI-S1, shows improve-
ments in terms of translation quality. We note that
the speech domain data is derived from ASR tran-

scriptions, indicating that text data derived from
multimodal input may need further investigation or
a different approach to correction.

Edit-Operations Figure 8 illustrates the distri-
bution of post-editing operations like insertion
(green), deletion (blue), substitution (orange), and
shift (red) across various systems for six different
language pairs. A clear and consistent trend is ob-
servable across all conditions: substitution is the
most frequent edit operation, typically accounting
for more than 50% of all changes. This suggests
that the primary challenge for the translation sys-
tems lies in lexical choice rather than fluency. Dele-
tion is generally the second most common error,
followed by insertion. Shift operations, which cor-
rect word order, are consistently the least frequent
type of edit, indicating that the models generally
produce syntactically plausible translations. While
this distribution pattern holds for all systems and
language pairs, there are subtle variations; for in-
stance, translations into typologically distant lan-
guages like Japanese and Chinese appear to neces-
sitate a mildly higher proportion of insertions and
deletions compared to the other language pairs.

6.5 Meta-Evaluation Metrics

While the main evaluation relies on reference-
less evaluation through ∆COMET and GER,
we complement them using reference-based met-
rics for further analysis. In particular, we
adopt ∆BLEURT (Sellam et al., 2020), a neu-
ral metric that captures semantic similarity, and
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Figure 7: Task 3 - Mean ∆COMET scores per domain across submissions.

System Name En-Cs En-Is En-Ja En-Ru En-Uk En-Zh Average
∆BLEURT ∆chrF++ ∆BLEURT ∆chrF++ ∆BLEURT ∆chrF++ ∆BLEURT ∆chrF++ ∆BLEURT ∆chrF++ ∆BLEURT ∆chrF++ ∆BLEURT ∆chrF/∆chrF++

SURREYPAI-S1 -0.002 -3.460 0.053 0.000 0.003 0.000 0.009 0.000 0.002 0.000 -0.003 0.000 0.010 -0.577
PHRASE-S1 -0.012 2.256 0.031 2.856 -0.033 -0.558 -0.030 -11.636 0.023 13.758 -0.045 -0.279 -0.011 1.066
BASELINE-S2 -0.027 0.059 0.025 0.264 -0.007 -2.272 -0.006 0.733 -0.002 0.214 -0.007 -1.086 -0.004 -0.348
BASELINE-S1 -0.019 8.902 0.012 2.199 -0.009 4.358 0.011 0.954 0.018 7.267 0.007 -1.662 0.003 3.670
PACIFICO -0.035 8.546 -0.004 10.434 -0.030 2.934 -0.039 -42.936 -0.024 6.791 -0.010 5.989 -0.024 -1.374
PHRASE-S3 -0.110 6.550 -0.075 7.117 -0.053 -0.579 -0.210 -14.537 -0.171 8.471 -0.090 0.331 -0.118 1.226
PHRASE-S2 -0.104 4.810 -0.076 5.120 -0.050 -2.228 -0.206 -16.787 -0.176 3.223 -0.083 4.760 -0.116 -0.184
SURREYPAI-S2 -0.015 -1.219 0.002 -5.248 -0.024 0.029 -0.007 0.041 0.002 -22.708 -0.024 0.000 -0.011 -4.851

Table 16: Task 3 - Performance of participant systems across languages with ∆chrF for En-Ja, En-Zh, ∆chrF++ for
the rest, and ∆BLEURT for all language pairs.
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Figure 8: Task 3 - Language pair-wise distributions
of edit operations performed on the original transla-
tion. Green indicates insertion, Blue indicates deletion,
Orange indicates substitution, and Red indicates shift
operations.

∆chrF++16 (Popović, 2017), a character n-gram
overlap metric that emphasises lexical similarity.
Unlike the primary reference-less metrics, which
measure how much system outputs diverge from
the raw translations in the desired direction, these
allow us to have an indication of how much closer
system outputs have moved toward the reference or
gold-standard translations in terms of semantics
and lexical distance.

∆ BLEURT: BLEURT is a learned, reference-
based evaluation metric that leverages pretrained
language models fine-tuned on human-rated data
to capture semantic adequacy and fluency beyond
surface overlap (Sellam et al., 2020). According to

16Computed using sacrebleu (Post, 2018) with default flags

our formulation, ∆BLEURT measures the change
in BLEURT when moving from the original MT
output (hyp) to the post-edited output (pe) against
the same reference (ref):

∆BLEURT = BLEURT(pe, ref)− BLEURT(hyp, ref)

A positive ∆BLEURT indicates that resultant
corrections improve semantic similarity to the ref-
erence, while a negative value suggests a reduction
in quality.

∆chrF++: chrF++ computes an F-score over
word-level n-gram precision and recall between the
hypothesis translation and a reference (Popović,
2017). The ∆chrF++ captures word n-gram quality
gains, providing an additional cross-check beyond
semantic metrics such as COMET.

∆chrF++ = chrF++ (pe, ref)− chrF++ (hyp, ref)

A positive ∆chrF++ indicates that corrections im-
prove similarity to the reference, while a negative
value suggests a reduction in quality. We report
∆chrF for Chinese and Japanese and ∆chrF++ for
the rest.

6.6 Meta-Evaluation Results
From Table 16, we observe that gains are mixed
across participant systems and languages. Over-
all, ∆BLEURT improvements are only visible
for SURREYPAI-S1 and BASELINE-S1, indi-
cating that corrections did not substantially im-
prove semantic adequacy across most systems.
Multiple systems perform strongly on the En-
glish–Icelandic pair, particularly in ∆chrF++,
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while English–Chinese exhibits degradation for
nearly all submissions, and English–Czech re-
sults remain mixed. On English–Ukrainian,
PHRASE-S1 and BASELINE-S1 clearly outperform
SURREYPAI-S1 by a wide margin.

BASELINE-S1 achieves the highest system aver-
age for ∆chrF++, with PHRASE-S3 and PHRASE-
S1 also showing moderate positive gains. In con-
trast, no other systems achieve consistent improve-
ments in overall translation quality. Among base-
lines, BASELINE-S1 is comparatively closer to ref-
erences, delivering competitive results across mul-
tiple languages, whereas BASELINE-S2 remains
close to neutral.

Several systems (PACIFICO, PHRASE-S2,
SURREYPAI-S2) show negative deltas on the sec-
ondary metrics for some languages, suggesting that
their edits often diverge from reference translations
despite attempted corrections. Notably, PACIFICO

displays extreme variance—achieving large gains
on English–Icelandic and English–Chinese, but
severe degradation on English–Russian (–42.936
∆chrF++), indicating the instability of certain
LLM-based approaches across language pairs.

A closer comparison of both SurreyPAI submis-
sions shows contrasting behaviour: SURREYPAI-
S1 achieves the best system average in ∆BLEURT
(+0.010), suggesting modest improvements in se-
mantic adequacy, but its chrF average remains
negative. In contrast, SURREYPAI-S2 underper-
forms on both metrics, with the steepest degra-
dation in chrF (–4.851), particularly on the En-
glish–Ukrainian pair (–22.708), highlighting the
sensitivity of system design choices to specific lan-
guage pairs. Given the approach to SURREYPAI-
S1, the system is able to retranslate and improve
on translation quality, but Table 16 shows that such
an approach does not bring the output closer to
a known reference. At a language level, English-
Icelandic seems to show the most consistent im-
provements, while English-Russian shows the most
severe degradations. English-Chinese and English-
Japanese also prove challenging, with limited gains,
which may suggest that languages with morphologi-
cal richness (Ukrainian and Icelandic) may offer op-
portunities for effective corrections, whereas typo-
logically distant languages (Chinese and Japanese)
are still harder to handle.

We also conducted batchwise significance test-
ing with ∆COMET scores to compare system per-
formance. The dataset with 6, 000 instances was
divided into 60 fixed batches with unique sam-

ples and 100 additional randomly sampled batches,
yielding a total of 160 batchwise averages per sys-
tem. For each batch, the system with the highest
∆COMET score was identified, and the frequency
of these “wins” across all batches served as an indi-
cator of each system’s consistency and robustness.
Table 17 shows SURREYPAI-S1 dominates the
evaluation with 157 out of 160 wins, while all other
systems achieved at most two wins (PHRASE-S2
with 2 and PHRASE-S1 with 1), and the remaining
systems failed to win a single batch. Testing reveals
SURREYPAI-S1 to be the best system consistently
across both static and random batch settings.

System Win Count

SURREYPAI-S1 157
PHRASE-S2 2
BASELINE-S2 0
BASELINE-S1 0
PHRASE-S1 1
PACIFICO 0
PHRASE-S3 0

Table 17: Task 3 - Batch-wise meta-evaluation: winning
counts per system.

6.7 Task Overview
This sub-task marks the first instance where transla-
tions were majorly generated by LLMs rather than
by traditional NMT systems. We observe that LLM-
based APE systems struggle to further improve
these translations. This trend is analogous to ear-
lier iterations: while neural APE systems could suc-
cessfully enhance SMT outputs, they initially faced
difficulties in improving NMT-generated transla-
tions. Then last year, LLM-based APE systems
demonstrated the ability to improve NMT trans-
lations even for underrepresented languages. In
contrast, when confronted with LLM-generated
translations, even in high-resource languages, they
now appear to encounter similar challenges. It re-
quires innovative and sophisticated strategies that
can effectively address the unique challenges in-
herent in the high-quality translations produced by
LLMs.

7 Challenge Sets

For the third year, our shared task included a sub-
task involving challenge sets. This subtask is in-
spired by the Build it or break it: The Language
Edition shared task (Ettinger et al., 2017), which
aimed at testing the generalizability of NLP sys-
tems beyond the distributions of their training data.
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Challenge Set LPs Phenomena Items

CoDrift 3 continuation drift 3,326
(Tan et al., 2025)
GAMBIT+ 33 gender bias 289,443
(Filandrianos et al., 2025)
MSLC25 2 low quality MT 369
(Knowles et al., 2025)
SSA-MTE 11 African languages 12,769
(Li et al., 2025a)

Table 18: Overview of the participation at the metrics
challenge sets subtask.

Whereas the standard evaluation of the shared task
is conducted on test sets containing generic text
from real-world content, the challenge set evalua-
tion is based on test sets designed with the aim of
revealing the abilities or the weaknesses of the met-
rics or evaluating particular translation phenomena.
In order to shed light on different perspectives on
evaluation, the subtask takes place in a decentral-
ized manner: contrary to the main metric task, the
test sets are not provided by the organizers but by
different research teams, who are also responsible
for analyzing and presenting the results.

7.1 Subtask Structure
This subtask is made of three consecutive phases;
(1) the Breaking Round, (2) the Scoring Round, and
(3) the Analysis Round:

1. In the Breaking Round, every challenge set
participant (Breaker) submits their challenge
set S composed of examples for different phe-
nomena, where every example (s, t, r) ∈ S
contains one source sentence s, one transla-
tion hypothesis t, and one reference r.

2. In the Scoring Round, the metrics participants
from the main task (the Builders) are asked to
score with their metrics the translations in the
given test set. Also, in this phase, the metrics
task organizers score all data with the baseline
metrics.

3. Finally, after having gathered all metric scores,
the organizers return the respective scored
translations to the Breakers for the Analysis
Round, where they employ their own evalua-
tion for the performance of the metrics with
regard to the phenomena they intended to test.

7.2 Challenge Set Descriptions
This year there were 4 submissions, covering a
wide range of phenomena and 23 different language

pairs, which supersede the official language pairs
of the Metrics Shared Task. An overview of the
submitted challenge sets can be seen in Table 18.
A short description of every submission follows:

CoDrift (Tan et al., 2025) Quality Estimation
(QE) models such as COMET-KIWI, MetricX, and
ReMedy exhibit a recurring failure mode: they
often assign high scores to translations that start
faithfully but subsequently drift into fluent yet
irrelevant content. To systematically investigate
this issue, Tan et al. (2025) present CoDrift, a
WMT25 challenge set designed to stress-test QE
robustness against continuation drift. The dataset
is constructed entirely from controlled large lan-
guage model (LLM) experiments: for each source
sentence, we generate multiple “drift” candidates
whose continuation length and topical proximity
are systematically manipulated. This design en-
ables precise control over the degree of seman-
tic divergence, while maintaining surface fluency,
thereby creating challenging cases that can mislead
current QE systems. CoDrift aims to provide the
community with a targeted benchmark for diagnos-
ing and improving QE models in the presence of
subtle off-target content.

Gambit+ (Filandrianos et al., 2025) In this sub-
mission, the authors introduce GAMBIT+17, a
large-scale challenge set designed to probe gender
bias in QE systems. The dataset extends the GAM-
BIT corpus of English gender-ambiguous occupa-
tional terms to three source languages (English,
Turkish, Finnish), where occupational gender is
not specified, and 11 target languages with gram-
matical gender: Arabic, Czech, Greek, Spanish,
French, Icelandic, Italian, Portuguese, Russian, Ser-
bian, and Ukrainian. Importantly, all occupations
are linked to the ISCO-08 classification, an interna-
tionally recognized standard for categorizing jobs,
which enables fine-grained per-occupation analysis
and ensures coverage of the full occupational spec-
trum. For each source text, two parallel target trans-
lations were produced, one masculine and one fem-
inine, differing only in the gender of the occupation
and all dependent grammatical elements (e.g., pro-
nouns, adjectives) to ensure consistency. An unbi-
ased auto-rater should assign near-identical scores
to both versions. Each source-target language pair
contains over 8,500 source texts, with two paral-
lel target translations (masculine and feminine),

17huggingface.co/datasets/ailsntua/gambit-plus

https://huggingface.co/datasets/ailsntua/gambit-plus
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resulting in more than 17,000 source-translation
pairs per language pair and over 550,000 pairs in
total across the 33 language combinations. With
its scale, full ISCO coverage, and strictly paral-
lel design, GAMBIT+ provides a comprehensive
and controlled resource for investigating gender
fairness in QE metrics.

The authors benchmarked three baseline metrics
and eight shared task submissions on GAMBIT+,
though one baseline was excluded from the analy-
sis since it evaluated only source texts rather than
target translations. Across the remaining auto-rater
systems, all showed statistically significant differ-
ences between masculine and feminine outputs, but
the scale of these differences varied widely. For in-
stance, UvA-MT and rankedCOMET displayed av-
erage normalized score gaps of over 100% and 70%
respectively, while Polycand variants and Polyic
metrics registered less than 4%. Bias magnitude
was influenced by both the source and target lan-
guages, with English sources and target languages
such as Arabic, Russian, and Icelandic exhibiting
stronger disparities. At the occupational level, most
auto-raters favored masculine translations overall,
yet stereotypically female-associated roles (e.g.,
nursing, midwifery, cleaning professions) often
saw the opposite pattern, reflecting known tenden-
cies in MT systems. These results show that QE
systems are sensitive to gender even in cases where
they shouldn’t be, amplifying occupational stereo-
types rather than remaining neutral, underscoring
the need for systematic auditing and fairness-aware
design.

MSLC25 Challenge Set (Knowles et al., 2025)
Based on the past two iterations of the Metric Score
Landscape Challenge (MSLC; Lo et al., 2023b;
Knowles et al., 2024), MSLC25 is a smaller-scale
study of auto-rater performance on a broad range
of MT quality along with several specific corner
cases and phenomena. MSLC25 includes a col-
lection of low- to medium-quality MT systems’
output on Japanese–Chinese news data from the
WMT25 General MT Shared Task test set. As
in previous editions, the challenge set explores
auto-rater scores assigned to empty strings in the
source or target, showing unexpected results for
some auto-rater systems. In small-scale proof-of-
concept experiments (using Japanese, Chinese, En-
glish, and Czech data) the challenge set also ex-
amines auto-rater scores assigned to mixed- and
wrong-language text and English language spelling

variants. The results of MSLC25 continue to high-
light the need for auto-rater builders to test their
systems on corner cases and wide ranges of MT
quality before releasing them to the broader re-
search community.

SSA-MTE Challenge Set (Li et al., 2025b,a)
The SSA-MTE challenge set is a large-scale bench-
mark for machine translation evaluation in Sub-
Saharan African languages. It comprises 12,768
human-annotated adequacy scores across 11 lan-
guage pairs involving English, French, and Por-
tuguese, evaluated on outputs from six commer-
cial and open-source machine translation sys-
tems. Results indicate that correlations with hu-
man judgments remain generally low, with most
systems achieving Spearman correlations below
the 0.4 threshold for medium-level agreement.
Performance varies substantially across language
pairs, and in extremely low-resource cases such
as Portuguese–Emakhuwa, correlations drop to
around 0.1, underscoring the challenge of eval-
uating MT for very low-resource African lan-
guages. Notably, the long-standing baseline met-
ric chrF (Popović, 2015) achieves performance
comparable to the strongest neural supervised sub-
mission, MetricX-25 (Juraska et al., 2025), an
encoder-only regression model initialized from
Gemma3 (12B) (Gemma Team et al., 2025) and
fine-tuned on WMT15–23 DA and MQM scores.
However, these findings still highlight the urgent
need for more robust and generalizable machine
translation evaluation methods tailored to under-
resourced African languages.

7.3 Challenge Set Results Overview

The studies collectively reveal critical weaknesses
in current automatic MT evaluation systems. Co-
Drift shows that popular QE models like COMET-
KIWI and MetricX often fail when translations
drift into fluent but semantically irrelevant con-
tinuations, highlighting the need for robustness
against subtle off-target content. GAMBIT+ uncov-
ers systematic gender bias in QE systems across
33 language combinations, with some auto-raters
showing over 100% score gaps between masculine
and feminine translations, amplifying occupational
stereotypes. MSLC25 emphasizes that auto-raters
can behave unpredictably on low- to mid-quality
outputs and corner cases such as empty strings
or mixed-language outputs, stressing the impor-
tance of thorough auto-rater testing for real-world
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robustness. Finally, SSA-MTE demonstrates that
auto-rater correlations with human judgments re-
main very low for Sub-Saharan African languages,
especially in extremely low-resource pairs, under-
scoring the urgent need for inclusive, generalizable
evaluation methods.

8 Conclusion

This paper documented the results of the WMT25
shared task on automated machine translation eval-
uation systems, which unified the Metrics and QE
Shared Tasks from previous years. The shared task
this year consisted of three subtasks: (1) segment-
level quality score prediction, (2) span-level trans-
lation error annotation, and (3) quality-informed
segment-level error correction. Task 1 results in-
dicate the strong performance of large LLM-as-a-
judge auto-rater systems at the system level, while
reference-based baseline metrics outperform LLMs
at the segment level. Task 2 results indicate that ac-
curate error detection and balancing precision and
recall are persistent challenges. Task 3 results show
that minimal editing is challenging even when in-
formed by quality indicators. Robustness across
the broad diversity of languages remains a major
challenge across all three subtasks. As described
throughout the paper, this year marked significant
changes to multiple dimensions of the evaluation.
Evaluation data, originating from the General-MT
task, was more challenging for MT systems, and
covered a diverse set of new language-pairs. The
move to long segments and the adoption of ESA
human annotation for most of the languages were
also new. We strongly believe that these changes
were all warranted by the changing landscape in
the field of MT and that they better align our evalu-
ation with the current landscape. However, these
changes are also likely responsible for some of the
unexpected results observed this year, particularly
for Task-1. We encourage further analysis of these
results by the MT research community at large.

9 Ethical Considerations

The data for this shared task was generated,
screened and human-annotated by the General Ma-
chine Translation Shared Task. We acknowledge in-
heriting any ethical limitations and concerns raised
by their shared task. We do not foresee any addi-
tional ethical concerns.
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A LLM Prompt for Task 1

Segment-level quality scores from the “LLM as a judge” submissions to Task 1 (Section 4.1.3) were
prompted using the template below. Placeholders in curly braces indicate the name of the source language,
name of the target language, source segment text, and target segment text.

Score the following translation from {source_lang} to
{target_lang} on a scale from 0 to 100, where a score of 0 means a
broken or poor translation; 33 indicates a flawed translation
with significant issues; 66 indicates a good translation with
only minor issues in grammar, fluency, or consistency; and 100
represents a perfect translation in both meaning and grammar.
Answer with only a whole number representing the score, and
nothing else.

{source_lang} source text:
{source_seg}
{target_lang} translation:
{target_seg}

B Complete Task 1 Results per Language Pair

Table 19 (part 1) and Table 20 (part 2) show the full detailed results of the segment-level quality score
prediction task broken down by individual language pair. Correlations are computed using SPA at the
system level and acc∗eq at the segment level, against the “human1” gold-standard annotations, matching
the approach taken in the summary results of Section 4.3.

Table 21 and Table 22 show a similar detailed per-language-pair breakdown of the results as above,
except now using “human2” as the gold standard. Only language pairs annotated with ESA have this
second human score; Japanese→Chinese and English→Korean are thus excluded from these tables.
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C Task 1 Score Difference Interpretation Additional Figures

Figures 9-11 show the (log) p-value of one-sided paired t-test on the human scores against the score
difference of each auto-rater for each system pair. Figures 12-13 show the (log) p-value of significance
test with bootstrap resampling on the auto-rater scores against the score difference of that auto-rater for
each system pair in each language pair.
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Figure 9: Log p-value of one-sided paired t-test on MQM scores (ph) against the score difference of each auto-rater
for each system pair. The red line is the isotonic regression fit to all data points, representing Pr(ph < 0.05 |∆m).
Note: for readability, values of ph are rounded up to 0.0001 when they are less than 0.0001. (Part 1/3)



451

0.4 0.2 0.0 0.2 0.4
EnsembleSlick

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
En

se
m

bl
eS

lic
k)

40 20 0 20 40 60 80 100
GEMBA-v2

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
GE

M
BA

-v
2)

20 0 20 40 60
GPT-4_1

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
GP

T-
4_

1)

0.2 0.1 0.0 0.1 0.2
hw-tsc

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
hw

-ts
c)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
hw-tsc-base

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
hw

-ts
c-

ba
se

)

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
hw-tsc-max

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
hw

-ts
c-

m
ax

)

15 10 5 0 5 10 15
Llama-3_1-8B

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
Lla

m
a-

3_
1-

8B
)

20 10 0 10 20 30
Llama-4-Maverick

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
Lla

m
a-

4-
M

av
er

ick
)

30 20 10 0 10 20 30 40
MetricX-25

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
M

et
ric

X-
25

)

30 20 10 0 10 20 30 40
MetricX-25-QE

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
M

et
ric

X-
25

-Q
E)

20 10 0 10 20 30 40
MetricX-25-Ref

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
M

et
ric

X-
25

-R
ef

)

20 15 10 5 0 5 10
Mistral-7B

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
M

ist
ra

l-7
B)

30 20 10 0 10 20 30 40
mr6

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
m

r6
)

20 10 0 10 20 30 40
mr7_2_1

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
m

r7
_2

_1
)

20 10 0 10 20 30
Polycand-1

10 4

10 3

10 2

10 1

lo
g(

p h
)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(p

h
<

0.
05

|
Po

ly
ca

nd
-1

)

Figure 10: Log p-value of one-sided paired t-test on MQM scores (ph) against the score difference of each auto-rater
for each system pair. The red line is the isotonic regression fit to all data points, representing Pr(ph < 0.05 |∆m).
Note: for readability, values of ph are rounded up to 0.0001 when they are less than 0.0001.(Part 2/3)
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Figure 11: Log p-value of one-sided paired t-test on MQM scores (ph) against the score difference of each auto-rater
for each system pair. The red line is the isotonic regression fit to all data points, representing Pr(ph < 0.05 |∆m).
Note: for readability, values of ph are rounded up to 0.0001 when they are less than 0.0001.(Part 3/3)
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Figure 12: Log p-value of significance test with bootstrap resampling (pm) on system-level against the score
difference of each auto-rater for each system pair. The red line is the isotonic regression fit to all data points,
representing Pr(pm < 0.05 |∆m). Note: for readability, values of pm are rounded up to 0.0001 when they are less
than 0.0001. (Part 1/3)
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Figure 13: Log p-value of significance test with bootstrap resampling (pm) on system-level against the score
difference of each auto-rater for each system pair. The red line is the isotonic regression fit to all data points,
representing Pr(pm < 0.05 |∆m). Note: for readability, values of pm are rounded up to 0.0001 when they are less
than 0.0001. (Part 2/3)
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Figure 14: Log p-value of significance test with bootstrap resampling (pm) on system-level against the score
difference of each auto-rater for each system pair. The red line is the isotonic regression fit to all data points,
representing Pr(pm < 0.05 |∆m). Note: for readability, values of pm are rounded up to 0.0001 when they are less
than 0.0001. (Part 3/3)
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D Task 2 Additional Details

Algorithm 1 Character-Level Error Span F1 Score

1: function GET_CHAR_F1(Lhyp, Egold, Epred, ρ)
▷ Lhyp: List of hypothesis lengths

▷ Egold: List of lists of gold error dicts
▷ Epred: List of lists of predicted error dicts

▷ ρ: Partial credit factor (e.g., 0.5)
2: tp← 0
3: total_gold← 0
4: total_pred← 0

5: for i ∈ 0 . . . LENGTH(Lhyp)− 1 do
6: Hlen ← Lhyp[i]
7: Gmaj, Gmin ← GET_COUNTS(Egold[i], Hlen)
8: Pmaj, Pmin ← GET_COUNTS(Epred[i], Hlen)

9: total_gold← total_gold +
∑

Gmaj +
∑

Gmin

10: total_pred← total_pred +
∑

Pmaj +
∑

Pmin

11: for j ← 0 To Hlen − 1 do
12: cg_maj ← Gmaj[j]
13: cp_maj ← Pmaj[j]
14: cg_min ← Gmin[j]
15: cp_min ← Pmin[j]

▷ Full credit for same severity match at index j
16: tp← tp+min(cg_maj, cp_maj)
17: tp← tp+min(cg_min, cp_min)

▷ Partial credit for cross-severity match at index j
18: gunmatched ← max(0, cg_maj − cp_maj) + max(0, cg_min − cp_min)
19: punmatched ← max(0, cp_maj − cg_maj) + max(0, cp_min − cg_min)
20: tp← tp+min(gunmatched, punmatched)× ρ
21: end for
22: end for

23: P,R, F1← PREC_REC_F1(tp, total_gold, total_pred)
24: return P,R, F1
25: end function
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Figure 15: F1 Score by Error Category.

E Full Results for Task 2

We report complete results for all submissions (primary and secondary) in Tables 23 (micro-F1) and 24
(macro-F1) respectively. We also show macro-F1 scores broken down by error category and error ratio in
Figure 15 and Figure 16 respectively.
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Figure 16: F1 Score by Error Ratio.
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F Prompts Used for Task 3

Translate the following from source_lang to target_lang. Include only the
translation (without the <>) and nothing else.
>source_text<

Table 25: Prompt for Quality-Informed Segment-Level Error Correction task with translating from scratch.

Post-edit the following translation from source_lang to target_lang:
>original_translation< given these errors error_spans. Include only the translation
(without the <>) and nothing else.
>source_text<

Table 26: Prompt for Quality-Informed Segment-Level Error Correction task with post-editing existing translation.
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