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Abstract

In recent years, neural machine translation
(NMT) systems have been integrated with ex-
ternal databases with the aim of improving ma-
chine translation (MT) quality and enforcing
domain-specific terminology and other conven-
tions in the MT output. Most of the work in
incorporating external knowledge with NMT
has concentrated on integrating a single source
of information, usually either a terminology
database or a translation memory. However,
in real-life translation scenarios, all relevant
knowledge sources should be used in parallel.
In this article, we evaluate different methods of
integrating external knowledge from multiple
sources in a single NMT system. In addition
to training single models trained to utilize mul-
tiple kinds of information, we also ensemble
models that have been trained to utilize a single
type of information. We evaluate our models
against state-of-the-art LLMs using an exten-
sive purpose-built English to Finnish test suite.

1 Introduction

Most NMT systems receive as their input a source
sentence on its own, without any additional context.
This is problematic, as producing a correct transla-
tion often requires information that is external to
the source sentence. For instance, source sentences
that are translated as part of a larger document have
to be consistent with other parts of the document.
Even if the translation of a sentence is not con-
strained by document context, the translation often
needs to conform to terminological or phraseologi-
cal conventions of a genre, domain, or a house style.
Beyond acting as a contextual constraint, external
information may also improve translation quality
by providing the NMT system with translation ex-
amples. These examples can simplify the task of
translation, as the NMT system does not have to
generate the translation from scratch, but can adapt
the provided external information.

One method of providing relevant external infor-
mation to an NMT system is to query an external
database for data based on the source sentence,
and then either include the retrieved information as
part of the NMT system input or constrain the de-
coding process based on the retrieved information.
As similar information retrieval approaches used
with large language models are called retrieval-
augmented generation (RAG) (Lewis et al., 2020),
we will refer to this family of methods as retrieval-
augmented translation (RAT), following Hoang
et al. (2023).

Even though almost all published RAT meth-
ods concentrate on a single kind of retrieved infor-
mation (usually either terminology or translation
memory matches), in actual practical translation
scenarios all the kinds of retrieved information are
used simultaneously. For instance, a human trans-
lator working in a computer-assisted translation
(CAT) tool will be provided with matches from
both terminology database and translation memo-
ries, and they will need to make their translations
conform with both of these information sources.

In this article, we introduce several NMT sys-
tems, which can utilize different kinds of retrieved
information when generating translations. We ex-
periment with both single NMT models that are
trained to utilize multiple kinds of information, and
with systems that combine models that have been
trained to utilize a single kind of information us-
ing a novel ensembling method called contrastive
ensembling. We also compare our models with
instruction-tuned LLMs, which have a native capa-
bility of utilizing multiple types of retrieved infor-
mation.

Our models are trained to utilize two kinds of
information:

1. Fuzzy matches: Parallel sentences retrieved
from a translation database (translation mem-
ory or TM). The search is based on the edit dis-
tance between the source sentence being trans-
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lated and the source sentence in the translation
database. Usually the matches are restricted to
those whose normalized edit distance exceeds
a specific threshold (in the translation industry
a threshold corresponding to a similarity level
of 70 percent is normally used).

2. Term matches: Terms retrieved from a ter-
minology database (termbase or TB). The
database is searched for all the sub-strings
of the source sentence being translated, and
all terms where the source term matches the
sub-string are returned. As the TB usually
contains the terms in their dictionary forms,
the sub-strings are lemmatized or stemmed
before the search.

The motivation for including these two kinds of
information is that they are routinely used in the
CAT tools that professional translators use. They
represent the types of information that are readily
available and have been found useful in real-life
translation workflows (Hutchins, 1998). Building
the RAT system around widely used types of infor-
mation also ensures that it can easily be integrated
into existing workflows.

As mentioned, RAT can be used in two ways:
either as constraining the MT system to utilize the
retrieved information in its output (especially in the
case of terminology), or as providing contextual
information to enable the generation of better trans-
lations. In this article, we are mainly concerned
with constraining RAT, as it has applications in
professional translation. One of the problems in
developing constraining RAT systems is that the
common MT evaluation methods, such as BLEU
and COMET, are not well suited to evaluating them,
as they provide no information on how well the
retrieved information has been utilized. To help
us develop and evaluate our models, we therefore
compiled an extensive test suite, which contains
test cases consisting of source sentences, terms,
fuzzy matches, and tests that can be used to check
whether the terms and fuzzy matches are used in
translations.

2 Related work

We structure our system around retrieval methods
that have been used in professional translation since
the 1960s. These methods have been developed
gradually and organically within the translation
industry, so their origins are often unclear. For

background on fuzzy match and term retrieval, see
Hutchins (1998).

The first MT method that can be characterized
as RAT was example-based machine translation
(EBMT) (Nagao, 1984), where translations were
generated based on examples retrieved from a trans-
lation database. Statistical machine translation
(SMT) methods could also be characterized as a
form of RAT, as they rely on retrieving partial trans-
lations from a database of translation fragments,
and retrieval was also more explicitly integrated
into SMT systems (Koehn and Senellart, 2010).

In the context of NMT, one of the first methods
recognizable as RAT was introduced in Gu et al.
(2017), where fuzzy matches were retrieved from
a TM and the attention component of the model
was modified to cover the matches in addition to
the source sentence. Constraining NMT to adhere
to retrieved terminology was first introduced in
Hokamp and Liu (2017), where the beam search
decoder is modified to always produce the speci-
fied target terms in the output. Song et al. (2019)
was the first to implement RAT using data-based
methods, by replacing sub-strings in the source sen-
tences of the training data with equivalent target
language sub-strings. Dinu et al. (2019) introduced
data-based RAT for terminology and Bulte and Tez-
can (2019) for fuzzy matches.

While most work on RAT has concentrated on
a single kind of information, there has been some
recent work on unified RAT, where NMT systems
can utilize multiple kinds of information. Wang
et al. (2023) prefix the inputs and outputs of their
model with three different kinds of retrieved in-
formation: fuzzy matches, translation templates,
and terms. Raunak et al. (2024) fine-tune an NMT
model with data augmented with many different
kinds of instructions, some of which are similar to
RAT, such as an instruction to utilize a particular
term in the translation. Moslem et al. (2023) ex-
periment with prompting an LLM with both terms
and fuzzy matches to generate adapted translations.
What differentiates our approach from the previ-
ous implementations is that we focus exclusively
on the types of information that are routinely used
in CAT tools, which enables easy integration with
professional workflows. We also use an ensemble
of specialized models in addition to a single model
trained to utilize multiple types of information.

The concept of generating translations using
multiple different inputs originates from the field
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of multi-source translation (Och and Ney, 2001),
where the different inputs are equivalent source
sentences in different languages. Firat et al. (2016)
were the first to implement multi-source translation
by ensembling different NMT models that are pro-
vided with different inputs, which resembles our
ensembling method.

For evaluation, we will use a dedicated test suite
for the phenomena we want to tackle. Test suites
have been used for evaluating MT quality since at
least the 1990s (King and Falkedal, 1990), and they
have become more popular in recent years (see for
example Macketanz et al., 2022), as the dramati-
cally improving MT quality has created A demand
for more granular evaluation methods. As far as
we know, our test suite is the first suite designed
specifically for RAT evaluation.

3 Models

We train a selection of models, including separate
term and fuzzy match RAT models, and unified
RAT models, which process both types of retrieved
information. For term models we train models that
can process a single term, and models which can
process up to ten terms. For fuzzy models, we train
models that can process a single fuzzy match, and
models that can process up to three fuzzy matches.

Models are created with continued training using
the Tatoeba-Challenge (Tiedemann, 2020) mod-
els as the base models. As our test suite is En-
glish to Finnish, we only train models in that lan-
guage direction. For all models but one we use the
standard transformer model opusTCv20210807+bt-
2021-09-01 as the base model. To see the ef-
fect of model size, we also train one model us-
ing a base model with the transformer-big archi-
tecture (opusTCv20210807+news+bt_transformer-
big_2023-04-13). Continued training has many
advantages compared to training the models from
scratch: as continued training is much faster, it
is easier to test different model variations and the
carbon footprint of the training is smaller. The
base models can also be used as strong baselines
for evaluation, as they have been trained on all the
available data from the OPUS corpus (Tiedemann,
2009).

Our models use special symbols to separate the
retrieved information from normal source text (see
the left column in Figure 1 for an example of how
the symbols are used). The vocabularies of the
base models do not have any spare symbols that

can be used as these special symbols, so we need
to re-purpose some of the existing symbols. We
pick ten of the least common symbols from the
vocabulary, and assign them as our special symbols.
Not all symbols are used in the experiments, but we
reserve extra symbols in case more are needed in
future experiments with the same models. As the
vocabularies remain otherwise identical, we can
easily ensemble the trained models with each other
and with the base model.

Training is continued with a high-quality subset
of the Tatoeba-Challenge dataset that was origi-
nally used to train the base models. Ten million
sentences are included in the continued training
subset. The subset does not include data from
crawled corpora due to quality problems associ-
ated with them (Kreutzer et al., 2022). The data is
also scored with BiCleaner-AI (Zaragoza-Bernabeu
et al., 2022), and sentence pairs scoring less than
0.7 are excluded from the subset. The duration
of continued training is one epoch, and the learn-
ing rate is set to 0.00001 to prevent catastrophic
forgetting (McCloskey and Cohen, 1989).

For both fuzzy and term models, the training set
is annotated with the appropriate RAT data for that
type (see Figure 1 for examples of the annotations).
The models are trained using the Marian NMT
framework (Junczys-Dowmunt et al., 2018).

3.1 Term models
The terminology models are trained using the data
augmentation method first introduced in Dinu et al.
(2019): source terms are identified in the source
sentence, and target terms are appended to the
source sentence after the corresponding source
terms. Following Bergmanis and Pinnis (2021) we
append the source sentence with lemma forms of
the target terms instead of the surface forms, in or-
der to train the model to inflect the provided target
terms on the target side instead of copying them
directly. We also follow Bergmanis and Pinnis
(2021) in using synthetic terms, which are gener-
ated by aligning the parallel data on the token-level
using fast-align (Dyer et al., 2013) and then select-
ing aligned noun and verb phrases as the synthetic
terms. Stanza (Qi et al., 2020) was used for lemma-
tization and to identify noun and verb phrases.

3.2 Fuzzy match models
The fuzzy match models are trained using the Neu-
ral Fuzzy Repair (NFR) method introduced in Bulte
and Tezcan (2019). We use the continued training
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subset as a translation database from which fuzzies
are retrieved. The database is searched for matches
using the fuzzy-match1 library, and the target sides
of the matches are prefixed to the source sentences
to produce the training data.

Preparing training data for fuzzy match models
is more complicated than for term models. In the
term model training data we can always make sure
that the target term appended to the source sen-
tence is actually present on the target side, but the
situation is different with fuzzy matches. Fuzzy
matches have to be retrieved from naturally occur-
ring data, as producing them synthetically is not
feasible. Also, fuzzy matches are not binding in the
sense that terminology is: in the case of terms, the
target term can almost always be used in a transla-
tion, but it is very common to have a fuzzy match
that cannot be used in any valid translation for a
source sentence. Because of this, the ideal train-
ing data for fuzzy match models consists of the
following types of sentence pairs:

1. Positive examples: Sentence pairs, where
the source sentence is appended with a us-
able fuzzy match (i.e. a fuzzy match that can
be used in a valid translation for the source
sentence), and parts of that fuzzy match are
present in the target sentence.

2. Negative examples: Sentence pairs, where
the source sentence is appended with an un-
usable fuzzy match (i.e. a fuzzy match that
cannot be used in a valid translation for the
source sentence), and that fuzzy match is not
used in the target sentence.

If fuzzy matches are retrieved based on source
similarity, the mix of training examples is not op-
timal, as it will contain many examples where a
usable fuzzy match is not used on the target side.
On the other hand, if fuzzy matches are retrieved
based only on target similarity, the training set will
only contain positive examples, and the model will
learn to always copy from the fuzzy matches, even
when inappropriate. Because of this, we retrieve
fuzzies using both source and target similarity, as
in Nieminen et al. (2025).

3.3 Unified model

In addition to the separate term and fuzzy models
we also train a unified model, which is trained on

1https://github.com/SYSTRAN/fuzzy-match

both two types of data. The training data for this
model is generated by merging the training data
for the term and fuzzy models. Specifically, we
combine the training data of those models, that are
trained to process multiple terms or fuzzies, as the
unified model also has to process multiple terms
and fuzzies.

4 Multisource ensembling

In addition to using a unified model capable of
processing both terms and fuzzies, we ensemble
models trained to utilize a single kind of informa-
tion to produce a system that can utilize multiple
kinds of information. Each model in the ensemble
has its own input, which is prefixed (full matches)
or interleaved (terms) with appropriate retrieved
information. See Figure 1 for a schematic of the
inference pipeline. The ensemble decoder is imple-
mented by modifying the generation functionality
in the HuggingFace Transformers library2.

We experiment with the following ensembling
methods (see Figure 2 for a visual example):

1. Naive ensembling: The next token probabil-
ities of each model in the ensemble are av-
eraged during inference, with equal weight
given to each model.

2. Contrastive ensembling: Naive ensembling
dilutes the effect of the individual models in
the ensemble. This is undesirable in our use
case, as we want certain models to have more
effect than other models at certain phases of
generation. For instance, when the next token
to be generated is part of the translation for
a source term, we want to emphasize the ef-
fect of the terminology model that has been
provided that specific source term as part of
its input. To achieve this, we compare the
next token probability distribution for each
model to the token probabilities of a contrast
model which has not been provided any exter-
nal information. If a symbol’s probability of a
model differs significantly from its probability
with the base model, the weight of the symbol
is boosted in the ensemble (see source code3

for implementation details). We use the base
model from which the RAT models have been
trained from as the contrast model.

2https://github.com/huggingface/transformers
3https://github.com/Helsinki-NLP/OpusDistillery/

blob/modularization/pipeline/hf/multisource_eval.py
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Open the <term_start>
service door <term_end>
huoltoluukku
<translation_end> by
pressing the button

Open the service
door by pressing the
<term_start> button
<term_end> painike
<translation_end>

Avaa ovi painamalla
painiketta <fuzzy_break>
Open the service door by
pressing the button

Next Token
Probabilities Combine

Beam
search

Translation: Avaa
huoltoluukku
painamalla
painiketta

Sh
ar

ed
ou
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if next token
is </s>

Term Model Inputs

Fuzzy Model Inputs

Figure 1: The ensembling inference pipeline with three models and three different inputs. The output tokens are
always shared between the models. Note differences in utilization: terms are used completely and inflected, and
fuzzy matches are used partially.

Ensembling serves two purposes. First it allows
us to utilize multiple kinds of retrieved information
during inference, but it also acts as conventional
ensembling, the purpose of which is to improve
generic output quality. We also hypothesize that en-
sembling models trained for different RAT methods
and provided with different inputs during inference
will enhance the quality improving effect of ensem-
bling, as it has been shown (Hoang et al., 2024) that
ensembling diverse models produces better results
than ensembling similar models, such as different
checkpoints of a single training run.

5 Evaluation

RAT systems can be used both for improving
generic translation quality and for domain adap-
tation. When used to improve generic translation
quality, it is not relevant whether the translations
actually adhere to the terminology and phraseology
used in the retrieved examples. For domain adapta-
tion, however, adherence to the retrieved examples
is important.

We evaluate model performance from two points
of view: correct utilization of the retrieved infor-
mation in the translations, and general translation
quality. For evaluating the correct utilization, we
use our test suite, which is covered in detail be-
low. The main purpose of general translation qual-
ity evaluation is to see whether continued training
with RAT-augmented data degrades generic transla-

tion quality. Measuring general translation quality
for RAT systems is complicated by the fact that
RAT systems are meant to be used with retrieved
information: their performance when not provided
with any such information is almost irrelevant, as
any RAT system can be paired in production with
a back-off system that processes source sentences
with no retrieved information.

Therefore evaluating RAT systems with standard
evaluation sets, which are not paired with retrieved
information, does not provide much useful informa-
tion about the primary use case for RAT systems.
Because of these concerns, we use our test suite
also as the generic quality test set, so that we can
provide retrieved information to the systems. As
the test suite does not contain any reference transla-
tions, we use the reference-free wmt23-cometkiwi-
da-xl metric (Rei et al., 2023) for evaluation. This
metric has been shown (Freitag et al., 2024) to cor-
relate reasonable well with human judgments and
to perform better than many standard reference-
based metrics such as BLEU and chrF.

5.1 Test suite

To evaluate the utilization of retrieved information
in the generated translations, we created a test suite
consisting of source sentences, examples of re-
trieved information, and tests for checking whether
the examples of retrieved information have been
utilized in the translations. The test suite was gen-
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Check the
<term_start> box
<term_end> ruutu
<translation_end>

<term_start> Check
<term_end> tarkista
<translation_end>
the box

Check the box

Next Token
Probabilities

laatikko
ruutu

rasia

laatikko
ruutu
rasia

laatikko
ruutu

rasia

Probabilities are averaged,
term model effect is diluted

Naive ensemble

Emphasize probabilities that
differ from contrast model

Contrasted ensemble

laatikko ✗
ruutu

rasia

laatikko
ruutu ✓

rasia
ta

rk
is

ta

Term Model Inputs

Contrast Model Input

Output
tokens

Figure 2: An example of the two ensembling methods. The graph represents a scenario where the source sentence is
Check the box, and so far the output token tarkista has been generated. The word box that is being translated in the
example is highly polysemous, but the context favours the translation laatikko. However, our terminology stipulates
that the translation ruutu must be used. Naive ensembling produces incorrect output due to treating all models as
equal in the context, while contrasted ensembling correctly emphasizes the model that is relevant in the context.

erated semi-automatically: an LLM was used to
generate the data, which was then validated and
edited by a human reviewer. Initially we tested
whether a test suite could be created in a single
phase using an LLM (DeepSeek-V3), by prompting
the LLM to produce complete test cases. While this
approach worked for a small test suite (ten or so
test cases), when prompted to generate a larger test
suite (tens of test cases), the LLM output quality
started to degrade noticeably. Because of this degra-
dation, we decided to divide the task into smaller
sub-tasks.

As the first step of test suite creation, we
prompted the LLM to generate English source sen-
tences. Again, prompting for a large amount of out-
put lead to noticeable output quality degradation,
such as repetitive and short sentences. To gener-
ate a sufficient amount of high-quality source sen-
tences, we also had to subdivide the sentence gen-
eration task to sub-tasks. First we specified seven
domains (medical, pharmaceutical, public admin-
istration, EU texts, IT administration, IT customer
support, and legal), for which sentences could be
separately generated for. To add variety, for each
of the domains we prompted for the generation of
sentences in three different length classes (short,
medium, long). In total, we therefore used 21 dif-
ferent prompts, each requesting ten sentences, to
generate the source sentences.

The LLM was then prompted to generate a num-
ber of fuzzy matches for each of the generated

source sentences. For each sentence, three types of
fuzzies were generated:

• Addition fuzzies: Sentences, which contain
additional tokens compared to the source sen-
tence.

• Deletion fuzzies: Sentences, which are modi-
fications of the source sentence where some
part has been removed.

• Replacement fuzzies: Variation of the source
sentence where some part has been replaced
with a semantically different part.

Note that at this phase only the source side of
the fuzzy matches were generated, the target sides
were generated later in a separate phase. The edit
distance between the generated fuzzies and source
sentences was calculated, and all fuzzies below
a 70 percent similarity threshold (standard in the
translation industry) were automatically discarded.

Once the source sentences and fuzzies had been
generated, a human reviewer validated them us-
ing a graphical interface (also generated using
an LLM) displaying each source sentence and its
fuzzy matches on different pages. The reviewer
selected 1-5 credible fuzzies for each source sen-
tence. If there were no suitable fuzzies, the re-
viewer deleted the sentence from the test suite. The
reviewer also corrected minor mistakes in some
sentences and fuzzy matches.
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Source sentence:
The doctor prescribed antibi-
otics to reduce the inflamma-

tion in the patient’s throat.

Fuzzy matches Terms

Fuzzy source:
The nurse recommended

antibiotics to reduce
the inflammation in
the patient’s throat.

fuzzies

Fuzzy target:
Sairaanhoitaja su-

ositteli antibiootteja
potilaan kurkun tule-

hduksen vähentämiseksi.

targets

Source term:
doctor

terms

Target term:
lääkäri

targets

Include:
antibiootteja, potilaan,

kurkun, tulehduk-
sen, vähentämiseksi

Do not include:
Sairaanhoitaja, suositteli

tests
Regex test:

\b[Ll]ääkäri[e][ˆ ]*?\b

test

Figure 3: A single test sentence from the test suite. Fading arrows indicate that there can be multiple elements
(only one element is shown in the graph to save space).

After the fuzzy validation phase, we prompted
the LLM to generate terms and their Finnish trans-
lations for each source sentence, as well as regular
expression tests for checking whether the term is
used in Finnish sentence. The prompt specified
that there should be multiple plausible translations
for each term. This is important, since if a term
has only one plausible translation, it cannot be
used to make distinctions between MT systems,
as most MT systems are likely to include the cor-
rect translation in their output. The terms were
also validated manually by a human reviewer us-
ing an LLM-generated graphical interface, where
the reviewer could select the most plausible terms
and their translations, and remove test cases for
which no plausible terms had been generated. The
reviewer also corrected terms using the interface.
The regular expression tests for correct term use
that the LLM generated were not usable as such
due to them not reflecting Finnish morphology, so
the reviewer had to manually correct the tests.

The next phase was to generate translations for
the fuzzies. For all other generation phases we used
DeepSeek-V3, but as the quality of its English to
Finnish translations was very uneven, we switched
to GPT4.1 model for generating the translations.
The reviewer again reviewed, validated and cor-
rected the translations using an LLM-generated
user interface.

The last phase of the test suite generation was
generating tests for identifying correct usage of
fuzzy matches. Unlike naturally occurring fuzzies,
all of the fuzzies in the test suite can be used to

construct a valid translation for the source sentence.
The test suite is also aimed at scenarios, such as
professional translation, where using as much of
the fuzzy as possible is desirable, in order to ensure
consistency with previous translations. Because
of this, we decided to use simple lexical tests to
identify whether a fuzzy has been correctly used in
a translation. We divided the tokens in each fuzzy
into two sets: 1. Include: those that correspond
semantically to tokens in the source sentence, and
should be used in the translation and; 2. Do not
include: those tokens that have no semantic equiva-
lents in the source sentence and should not be used
in the translation.

To create the Include and Do not include sets,
we prompted an LLM with the source sentence,
fuzzy source, and the translation of the fuzzy, and
instructed the LLM to divide the tokens into the
two sets. We also tested traditional word alignment
methods, but their accuracy turned out to be too
low.

The completed test suite contains 128 source
sentences, 434 fuzzy source sentences, 620 fuzzy
translations, 403 terms, and 870 term translations.
In total, over 200,000 different test cases can be
constructed by combining the fuzzy source sen-
tences, fuzzy translations and terms in different
combinations. To keep the test suite size manage-
able for testing (especially with larger models), we
create a limited test suite by first organizing the
test suite into groups based on how many terms
and fuzzy matches each test case contains. Then
we randomly pick 50 test cases from each group,
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whilst making sure to pick a similar amount of test
cases from each domain. We exclude test cases
with more than three fuzzy matches to simplify
the evaluation task. Our limited test suite contains
1150 test cases.

During evaluation, the test suite produces eight
different scores:

1. Term success (TS): the target sentence passes
the term test.

2. Term failure (TF): the target sentence fails
the term test.

3. Suitable fuzzy token included (FP): the tar-
get sentence contains a fuzzy token from the
Include token list.

4. Suitable fuzzy token not included (FN): the
target sentence does not contain a fuzzy token
from the Include token list.

5. Invalid fuzzy token not included (IN): the
target sentence does not contain a token from
the Do not include token list.

6. Invalid fuzzy token included (IP): the target
sentence contains a token from the Do not
include token list, indicating over-copying.

7. Suitable fuzzy token bigram included (BP):
the target sentence contains a bigram of fuzzy
tokens from the Include token list.

8. Suitable fuzzy token bigram not included
(BN): the target sentence does not contain a
bigram of fuzzy tokens from the Include token
list.

The bigram scores are included to reward using
the same order of tokens in the translation as in the
fuzzy. If there are multiple fuzzy matches available
to the system, the fuzzy match that has the best
overall score is used as the basis of the fuzzy match
scores.

We report average term and fuzzy scores for each
system, which are calculated with the following
formulas:

TermScore =
TS

TS + TF
(1)

FuzzyScore =

1

3

(
FP

FP + FN
+

IN

IN + IP
+

BP

BP +BN

)
(2)

To facilitate comparison between systems, we
also produce a composite score using the following
formula:

CompositeScore =

5 ∗ TermScore+ 3 ∗ FuzzyScore

8
(3)

The composite score intentionally emphasizes
term accuracy, as using correct terminology is more
important than utilizing fuzzies maximally. Also,
in many cases a fuzzy will contain a translation for
a term, and if that happens to be different from the
specified term, using the correct term lowers the
fuzzy scores. Emphasizing term scores compen-
sates for that. The composite score for the whole
test suite is calculated as the average of the com-
posite scores for individual test cases, to lessen the
effect of test cases with many terms and fuzzies on
the overall score.

5.2 Comparison to LLMs

LLMs have been shown to produce better transla-
tions than traditional NMT models, at least for high-
resource language pairs, such as English to Spanish
(Kocmi et al., 2024). LLMs can also be used for
RAT by modifying the prompt used to generate the
translations (Moslem et al., 2023). While LLM
superiority has been shown in the field of generic
MT, RAT implemented with NMT (NMT-RAT)
has not been thoroughly compared to RAT imple-
mented with LLMs (LLM-RAT). Bouthors et al.
(2024) compares NMT-RAT with LLM-RAT us-
ing 1-3 fuzzy matches, and finds NMT-RAT much
better, but the LLM they compare against does not
represent the state of the art.

We compare our models against two recent
LLMs, Gemma 3 12B and EuroLLM 9B. We
choose these models as they are both competitive
and relatively small. We do not compare our mod-
els against the largest available models, as our mod-
els are aimed at professional translation, where la-
tency and the possibility to deploy models locally
is important.

One use case that we foresee for RAT systems
is interactive MT, where the MT output is influ-
enced by translator actions. Interactive MT with
RAT can for instance take the form of excluding an
irrelevant match or modifying a somewhat relevant
match manually during translation. This requires
very fast generation of translations, as the transla-
tor should be able to see the effect of their actions
almost immediately. Traditional NMT can gener-
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System Description
Baseline Standard MT model trained without term or fuzzy annotations.
TermOnly Model trained with 1-10 term annotations per sentence.
FuzzyOnly Model trained with 1-3 fuzzy annotations per sentence, using both source and target

similarity fuzzies.
TermAndFuzzy Model trained with both 1-10 term and 1-3 fuzzy annotations, using both source and

target similarity fuzzies.
TermAndFuzzyBig Model trained with both 1-10 term and 1-3 fuzzy annotations, using both source and

target similarity fuzzies. Transformer-big model.
ContrastEnsembleTS Contrastive ensemble of a term and a fuzzy model (trained with both source and

target similarity fuzzies). Each term and fuzzy gets own model in the ensemble.
ContrastEnsembleS Contrastive ensemble of a term and a fuzzy model (trained with source similarity

fuzzies). Each term and fuzzy gets own model in the ensemble.
ContrastEnsembleT Contrastive ensemble of a term and a fuzzy model (trained with target similarity

fuzzies). Each term and fuzzy gets own model in the ensemble.
BaselineEnsembleTS Normal ensemble of a term and a fuzzy model (trained with both source and target

similarity fuzzies). Each term and fuzzy gets own model in ensemble.
ContrastEnsembleMulti Contrastive ensemble of a term and a fuzzy model (trained with both source and target

similarity fuzzies). Ensemble contains one model for all terms, and one model for all
fuzzies.

Gemma3-12B-IT Instruction-tuned Gemma-3 LLM model with 12B parameters.
EuroLLM-9B-Instruction Instruction-tuned EuroLLM model with 9B parameters.

Table 1: MT systems evaluated using the test suite.

ate translations fast enough, even running on desk-
top computers, but it is an open question whether
LLMs can achieve the same. While it is not feasible
currently to generate translations quickly enough
locally with Gemma 3 12B and EuroLLM 9B, we
use them as stand-ins for near-future LLMs that
can produce translations almost immediately on
desktop computers.

5.3 Results

0.8 0.82 0.84 0.86 0.88 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

COMET Score

C
om

po
si

te
Sc

or
e

We evaluated the output of 12 systems with the

0.2 0.4 0.6 0.8
0.35

0.4

0.45

0.5

0.55

Term Score

Fu
zz

y
Sc

or
e

EuroLLM-9B-Instruction Gemma3-12B-IT
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Figure 4: Term score vs Fuzzy score and COMET score
vs Composite score.

test suite (see models and their descriptions in Table
1). The main impression of the evaluation is that the
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System COMET Comp. Term Fuzzy Fuzzy score
ref-free score score score (0 terms)

Baseline 0.871 0.343 0.305 0.407 0.520
TermOnly 0.893 0.595 0.736 0.361 0.481
FuzzyOnly 0.850 0.383 0.292 0.533 0.680
TermAndFuzzy 0.838 0.524 0.548 0.483 0.670
TermAndFuzzyBig 0.855 0.542 0.603 0.442 0.608
ContrastEnsembleTS 0.869 0.536 0.558 0.500 0.687
ContrastEnsembleS 0.874 0.540 0.578 0.478 0.642
ContrastEnsembleT 0.867 0.537 0.552 0.512 0.676
BaselineEnsembleTS 0.893 0.415 0.391 0.455 0.675
ContrastEnsembleMulti 0.855 0.534 0.560 0.491 0.659
Gemma3-12B-IT 0.877 0.671 0.811 0.438 0.639
EuroLLM-9B-Instruction 0.820 0.465 0.470 0.456 0.592

Table 2: Test suite scores for each model. The Comet model used is wmt23-cometkiwi-da-xl.

test suite is difficult for MT systems, with most sys-
tems performing poorly. The strongest performer
by far is Gemma-12B-IT, which is also the largest
evaluated model. This is a further demonstration
of the edge that LLMs have over traditional NMT
models, although it should also be noted that the
second evaluated LLM (EuroLLM-9B-Instruction)
performed worse than the NMT-RAT models. It is
also noteworthy that Gemma-12B-IT excels above
all in using the correct terminology in its transla-
tions. However, it does not score nearly as well
in the fuzzy categories. As mentioned, high term
accuracy impacts the scores of the fuzzy categories,
but Gemma-12B-IT fuzzy score is lower than with
the NMT-RAT systems also in cases where there
are no terms in the input (see the last column in
Table 2).

When comparing the NMT-RAT systems to each
other, we can confirm that naive ensembling of
models (BaselineEnsembleTS) results in the dilu-
tion of the impact of individual models, causing
lower term and fuzzy scores. Contrastive ensem-
bling (ContrastEnsemble models) clearly remedi-
ates this problem, although term scores remain low
compared to the scores produced by the pure term
model. The only transformer-big model (TermAnd-
FuzzyBig) in the evaluation has comparable per-
formance to the ContrastEnsemble models, which
again demonstrates the effectiveness of contrastive
ensembling.

The reference-free COMET scores are fairly sim-
ilar across systems, with EuroLLM-9B-Instruction
being the only outlier. Based on these scores, the
RAT methods used do not degrade general output

quality.
It is notable that the term scores are low relative

to comparable previously published scores, such
as those in Alam et al. (2021). This is likely due
to the fact that the terms in the test suite have mul-
tiple feasible translations by design, which makes
the task of applying the correct terminology more
difficult.

6 Conclusion

Our experiments demonstrate that combining mul-
tiple types of information in a RAT system remains
an open problem, even though LLMs show much
promise also in this field. The main contributions
of this paper are the introduction of contrastive en-
sembling and the dedicated, extensive test suite for
evaluating RAT. Using the test suite we confirm
that contrastive ensembling with separate term and
fuzzy models provides better results than naive en-
sembling or single models that can process both
terms and fuzzies. While contrastive ensembling
does not perform as well as Gemma-12B-IT LLM,
its computational requirements are much lower,
which makes it suitable to more use cases, such as
local low-latency RAT. We have made the training
and evaluation pipeline4 and the test suite5 avail-
able under a permissive license.

7 Limitations

Because we rely entirely on the test suite for evalu-
ation, our experiments are limited to one language

4https://github.com/Helsinki-NLP/OpusDistillery/tree/
modularization

5https://github.com/TommiNieminen/RatTestSuite
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direction. However, as our language direction is
challenging due to a morphologically complex tar-
get language, we can be reasonably confident that
the results also apply to less demanding language
directions. The test suite has been generated semi-
automatically, and while all the test items have
been reviewed manually, they may not fully resem-
ble naturally occurring data. The formulas we use
to calculate the composite scores of the test suite
are motivated by practical considerations, but they
may place too much emphasis on certain aspects of
the translations, especially correct terminology use.
While reference-free MT quality metrics have been
shown to work well in recent evaluations (Freitag
et al., 2024), they may behave unexpectedly with
unusual text types and language pairs.
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A Prompt used for generating RAT
output with LLMs

Both LLMs tested use the same system prompt,
but the user prompt had to be customized for each
model to produce clearly delineated translation out-
put.

System prompt for both LLMs: You are a
translator translating from English to Finnish.

User prompt for Gemma3-12B-IT: Translate
the sentence below to Finnish using the specified
terms and fuzzy matches. Use the structure of the
fuzzy matches in the translation if appropriate,
but do not copy parts of the fuzzy match to the
translation if they are not semantically present
in the source sentence. Using the specified
term is more important than using the fuzzy
match, so if a term and the fuzzy match conflict,
always prefer the term. Output the answer in the
following format, and do not output anything else:
TRANSLATION: TRANSLATION GOES HERE
Terms: source term 1=target term 1,source term
2=target term 1...
Fuzzy match 1: target side of fuzzy match 1
Fuzzy match 2: target side of fuzzy match 2...

User prompt for EuroLLM-9B-Instruction:
Translate the sentence below to Finnish using
the specified terms and fuzzy matches. Use the
structure of the fuzzy matches in the translation
if appropriate, but do not copy parts of the fuzzy
match to the translation if they are not semantically

present in the source sentence. Using the specified
term is more important than using the fuzzy match,
so if a term and the fuzzy match conflict, always
prefer the term. Only output the translation.
Terms: source term 1=target term 1,source term
2=target term 1...
Fuzzy match 1: target side of fuzzy match 1
Fuzzy match 2: target side of fuzzy match 2...
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