@inproceedings{aizaz-etal-2025-whose,
    title = "Whose {P}alestine Is It? A Topic Modelling Approach to National Framing in Academic Research",
    author = "Aizaz, Maida  and
      Kim, Taegyoon  and
      Kim, Lanu",
    editor = "Zhang, Chen  and
      Allaway, Emily  and
      Shen, Hua  and
      Miculicich, Lesly  and
      Li, Yinqiao  and
      M'hamdi, Meryem  and
      Limkonchotiwat, Peerat  and
      Bai, Richard He  and
      T.y.s.s., Santosh  and
      Han, Sophia Simeng  and
      Thapa, Surendrabikram  and
      Rim, Wiem Ben",
    booktitle = "Proceedings of the 9th Widening NLP Workshop",
    month = nov,
    year = "2025",
    address = "Suzhou, China",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2025.winlp-main.7/",
    pages = "28--40",
    ISBN = "979-8-89176-351-7",
    abstract = "In this study, we investigate how author affiliation shapes academic discourse, proposing it as an effective proxy for author perspective in understanding what topics are studied, how nations are framed, and whose realities are prioritised. Using Palestine as a case study, we apply BERTopic and Structural Topic Modelling (STM) to 29,536 English-language academic articles collected from the OpenAlex database. We find that domestic authors focus on practical, local issues like healthcare, education, and the environment, while foreign authors emphasise legal, historical, and geopolitical discussions. These differences, in our interpretation, reflect lived proximity to war and crisis. We also note that while BERTopic captures greater lexical nuance, STM enables covariate-aware comparisons, offering deeper insight into how affiliation correlates with thematic emphasis. We propose extending this framework to other underrepresented countries, including a future study focused on Gaza post-October 7."
}