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Abstract
Sandhi, the phonological merging of mor-
phemes, is a central feature of Sanskrit
grammar. While Sandhi formation is well-
defined by Pāṇini’s Aṣṭādhyāyī, the reverse
task, Sandhi splitting, is substantially more
complex due to inherent ambiguity and context-
sensitive transformations. Accurate splitting
is a critical precursor to tokenization in San-
skrit, which lacks explicit word boundaries
and presents densely fused compounds. In
this work, we present a data-driven approach,
fine-tuning the Gemma-3 4B large language
model on a dataset of over 49,000 training and
2,000 test examples of compound words and
their morpheme-level decompositions. Lever-
aging the Unsloth framework with low-rank
adaptation (LoRA) and 4-bit quantization, we
train the model to predict these splits. Our
work yields a scalable, Sandhi-aware system
designed to enhance modern NLP pipelines
for classical Sanskrit, demonstrating an effec-
tive application of LLMs to this linguistic chal-
lenge.

1 Introduction
Sanskrit, an ancient language with a vast literary
corpus (Kulkarni, 2010; Huet, 2003) and a gram-
mar codified by Pāṇini (Cardona, 1997; Kiparsky,
2009) that is a cornerstone of linguistics (Briggs,
1985), features a key morphological process called
Sandhi (संɠध). This rule-governed merging of ad-
jacent morphemes (Dave et al., 2021; Rama and
Lakshmanan, 2009), illustrated in Figure 1, cre-
ates long, uninterrupted compound words. While
Sandhi formation is deterministic, the reverse pro-
cess of splitting, or viccheda (ɟवǵेद), is signifi-
cantly more complex due to inherent ambiguity
(Aralikatte et al., 2018; Gantayat et al., 2018). This
complexity makes effective tokenization, a founda-
tional NLP step, extremely challenging. Naïve to-
kenizers fail on compounds like तदुपासनीयम् (which
must be split to तत् + उपासनीयम्) (Reddy et al., 2018;

Bhatt et al., 2024), and even modern subword al-
gorithms like BPE (Sennrich et al., 2016) or Word-
Piece (Wu et al., 2016; Schuster and Nakajima,
2012) struggle because the transformations disrupt
statistical regularities (Li and Girrbach, 2022; Li,
2023). To address this, we frame Sandhi split-
ting as a data-driven, linguistically-informed pre-
tokenization task. We fine-tune a large language
model on an annotated dataset to accurately seg-
ment these compounds, with our overall approach
depicted in Figure 2.

Figure 1: Overview of Sanskrit Sandhi types, common
transformation patterns, and key splitting challenges.
Refer to Section 1 for discussion.

2 Related Works

Automated Sanskrit Sandhi splitting has pro-
gressed through several computational paradigms,
as surveyed by Gaikwad and Jatinderkumar (2021)
and more recently for deep learning techniques
by S et al.. Early approaches were rule-based,
grounded in Pāṇini’s grammar (Rama and Laksh-
manan, 2009; Raja et al., 2014) and exemplified by
tools like the JNU Splitter (Mittal, 2010) and IN-
RIA Reader (Huet, 2005; Goyal and Huet, 2013).
These systems, however, often exhibit low perfor-
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mance on benchmarks like the SandhiKosh corpus
(Bhardwaj et al., 2018) due to the inherent ambigu-
ity of Sandhi. A conceptual shift came with deep
learning, which framed the task as a sequence-to-
sequence problem Aralikatte et al. (2018).Models
like the Double Decoder RNN (DD-RNN) learned
transformations directly from character data using
a two-stage process (locate split, then reconstruct),
a paradigm also explored by Gantayat et al. (2018).
This two-stage neural approach was later refined
by Dave et al. (2021), whose model first identified
a localized ”Sandhi window” before decoding, im-
proving efficiency on a large dataset from the UoH
corpus (Krishna et al., 2020). Building on these
foundations, this work shifts to modern Large Lan-
guage Models (LLMs). While their application
to this specific task is underexplored, we propose
that fine-tuning an LLM offers a more generaliz-
able and simpler approach than specialized archi-
tectures. We leverage instruction tuning (Ouyang
et al., 2022; Wei et al., 2021; Sanh et al., 2021) and
parameter-efficient methods (Lialin et al., 2023;
Ding et al., 2023) to adapt a model for this nuanced
linguistic challenge.

3 Methodology

To address Sandhi splitting, we adopt a super-
vised fine-tuning approach using the Gemma-3 4B
Instruction-Tuned large language model (Gemma
Team et al., 2024). The goal is to adapt the model’s
generative capabilities to split compound Sanskrit
words into their morphemic components. Our over-
all pipeline is summarized in Figure 2.

We selected the Gemma-3 4B variant as its
instruction-tuned nature aligns well with our
prompt-response task format (Ouyang et al., 2022;
Wei et al., 2021), and its 4-billion parameter size
offers a practical balance between performance
and resource efficiency. The model’s Transformer
architecture (Vaswani et al., 2017) incorporates
features like Rotary Position Embeddings (RoPE)
(Su et al., 2024), and its SentencePiece tokenizer
(Kudo and Richardson, 2018) supports the Devana-
gari script.

3.1 Training Objective
The model is trained to generate correct Sandhi
splits by framing the task as an instruction-
following problem. Each training instance con-
sists of a dialogue where the model must produce
a structured output:

System: “Please split the Sandhis”
User: Compound word (e.g., श्रीमद्भगवद्गʍता,
śrīmadbhagavadgītā) Assistant: Cor-
rect split (e.g., श्रीमत्+भगवत्+गीता, śrī-
mat+bhagavat+gītā)

To focus learning, only the assistant’s response is
used as the target for the loss function, reinforcing
the generation of linguistically accurate decompo-
sitions. The constituent morphemes in the target
are separated by a + character.

3.2 Fine-Tuning Strategy
To efficiently adapt the model, we use parameter-
efficient fine-tuning (PEFT) (Lialin et al., 2023;
Ding et al., 2023), specifically Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022b), with 4-bit quantiza-
tion via the Unsloth framework (Unsloth AI, 2023)
to reduce memory usage and mitigate overfitting.
We selected a LoRA rank (r) of 32 and scaling fac-
tor α=32 after experiments with r=8 (79.6% accu-
racy), r=16 (82.4%), and r=32 (87.7%) on a vali-
dation set demonstrated its superior performance
(see Figure 2). The model was trained for one full
epoch over 48,000 examples using the AdamW op-
timizer (Loshchilov and Hutter, 2019) with 0.01
weight decay and a learning rate of 2e-4 with a lin-
ear schedule and 5 warmup steps (Hu et al., 2022a).
We used a cross-entropy loss on assistant tokens
only, a max sequence length of 2048, and an effec-
tive batch size of 8 (2 per-device with 4 gradient
accumulation steps) to balance stability with mem-
ory constraints on A10G GPUs. The full training,
implemented in PyTorch (Paszke et al., 2019) and
Hugging Face Transformers (Wolf et al., 2020), re-
quired approximately 3 GPU hours.

4 Results and Evaluation
4.1 Dataset
For training and evaluation, we utilized a curated
dataset derived from the University of Hyderabad
(UoH) corpus data (Krishna et al., 2016, 2020), a
common resource in prior Sandhi splitting research
(Aralikatte et al., 2018; Dave et al., 2021). Our fi-
nal dataset consists of over 48,000 training exam-
ples and a held-out test set of approximately 2,000
examples, with a 10% validation set used for hy-
perparameter tuning1. The data was meticulously
prepared for our instruction-tuning approach: each

1The actual dataset contains only Devanagari script;
transliterations are provided throughout this paper for reader
accessibility.
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Figure 2: Instruction-Based Fine-tuning Pipeline and Technical Architecture Details for Sanskrit Sandhi Splitting.
For detailed discussion of components, see Section 3 and Section 4.

instance pairs a Devanagari compound word (e.g.,
ɟवद्यालयः (vidyālayaḥ)) with its morphemic split us-
ing a + separator (e.g., ɟवद्या+आलयः (vidyā+ālayaḥ))
and is structured in the conversational prompt for-
mat described in Section 3. These details are sum-
marized in Figure 2.

4.2 Evaluation Metric
The performance of our fine-tuned Gemma-3 4B
model was evaluated using exact match accuracy.
This strict metric counts a prediction as correct
only if the entire generated sequence of mor-
phemes, including all characters and + separators,
perfectly matches the ground truth. We chose this
rigorous metric because the Sandhi splitting task
demands absolute precision, as partially correct
splits are often linguistically invalid and would hin-
der downstream NLP tasks. This corresponds to
the ”Split Prediction Accuracy” in our comparative
results (Table 1) and is noted in Figure 2.

4.3 Quantitative Results
On the held-out test set of approximately 2,000
examples, our fine-tuned Gemma-3 4B model
achieved a Split Prediction Accuracy (Exact
Match) of 87.7%.

Table 1 provides a detailed comparison of our
model’s performance against several previously re-
ported systems for Sanskrit Sandhi splitting. This
includes traditional rule-based tools (JNU, UoH,
INRIA) and specialized neural architectures like
the DD-RNN by Aralikatte et al. (2018) and the
Two-Stage Seq2Seq model by Dave et al. (2021).
The ”Location Prediction Accuracy” metric, rele-
vant primarily for models that perform split point
detection as a separate stage, is marked as not appli-
cable (”-”) for our end-to-end LLM, as it performs

the task in a single generative step.
The 87.7% accuracy achieved by our model is a

strong result that is highly competitive in this do-
main. It significantly outperforms traditional tools
and surpasses the reported accuracy of specialized
architectures like the DD-RNN (79.5%). While the
tailored Two-Stage Seq2Seq model by Dave et al.
(2021) also achieved a strong accuracy of 86.8%,
our approach offers the advantage of a more uni-
fied and potentially simpler fine-tuning pipeline.
By leveraging a general-purpose pre-trained LLM,
we avoid the need to engineer distinct components
for location prediction and morpheme generation.
This highlights the capability of modern LLMs,
adapted through PEFT, to effectively tackle com-
plex, rule-governed linguistic tasks.

4.4 Error Analysis
A qualitative analysis of the 246 incorrect predic-
tions on our 2000-example test set reveals sev-
eral key limitations. The most common issues
were Boundary Errors ( 35%), where the split loca-
tion was incorrect (e.g., for input तस्येदम् (tasyedam),
the model produced तस्ये+दम् (tasye+dam) instead of
the ground truth तस्य+इदम् (tasya+idam) ), and Mor-
pheme Reconstruction Errors ( 28%), with imper-
fectly restored sounds (e.g., for ɡचदानन्दः (cidānan-
daḥ), it produced ɡचद+्आनन्दः (cid+ānandaḥ) instead
of ɡचत्+आनन्दः (cit+ānandaḥ)). Other significant cat-
egories included Under-splitting ( 18%), where a
required split was missed (e.g., प्रत्येकम् (pratyekam)
was not split into प्रɟत+एकम् (prati+ekam)), and Over-
splitting ( 12%), where a spurious split was intro-
duced (e.g., अɧस्त (asti) was split into अस्+ɟत (as+ti)).
The remaining errors ( 7%) involved formatting
issues or failures on rare Sandhi patterns. This
analysis indicates that while the model has learned
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Table 1: Comparative Performance on Sanskrit Sandhi Splitting. “Split Prediction Accuracy” refers to exact match
accuracy of the final morphemic split. JNU, UoH, and INRIA results are as reported in Dave et al. (2021) from their
Table 3, reflecting performance of rule-based/traditional tools on their test sets. DD-RNN results from Aralikatte
et al. (2018). Two-Stage Seq2Seq results are from Dave et al. (2021). “Location Prediction Accuracy” is specific
to two-stage models.

Model Location Prediction Acc (%) Split Prediction Acc (%)
JNU Tool - 8.1
UoH Tool - 47.2
INRIA Tool - 59.9
DD-RNN (Aralikatte et al., 2018) 95.0 79.5
Two-Stage Seq2Seq (Dave et al., 2021) 92.3 86.8
Gemma-3 4B (Ours) - 87.7

many patterns, precise boundary detection in am-
biguous contexts, consistent reversal of subtle pho-
netic changes, and identifying multiple sequential
junctions remain key challenges.

4.5 Discussion
The 87.7% exact match accuracy achieved by
our fine-tuned Gemma-3 4B model underscores
the potential of modern LLMs for specialized
linguistic tasks like Sanskrit Sandhi splitting.
By combining an instruction-tuning approach
(Ouyang et al., 2022) with parameter-efficient fine-
tuning (PEFT) methods like LoRA, we effec-
tively adapted the model’s extensive pre-trained
knowledge, enabling it to implicitly learn complex
morpho-phonological rules from data without ex-
plicit grammatical encoding.

Our LLM-based approach substantially outper-
forms traditional rule-based systems and is highly
competitive with specialized neural architectures
like the DD-RNN (Aralikatte et al., 2018) and the
Two-Stage Seq2Seq model (Dave et al., 2021). No-
tably, our simpler, unified pipeline achieves this
strong performance without the architectural com-
plexity of prior multi-component models. This
PEFT-facilitated simplification makes advanced
NLP more accessible for morphologically com-
plex languages (Tsarfaty et al., 2010; Voutilainen,
1997), a challenge also seen in other Indic lan-
guages like Malayalam (DevadathV. et al., 2014;
Sebastian and Kumar, 2020), Kannada (Shree
et al., 2016), Bangla (Ghosh et al., 2022), and
Hindi (Gupta and Goyal, 2009).

However, our error analysis reveals persistent
challenges in precise boundary detection for am-
biguous splits and the perfect reconstruction of
morphemes after subtle phonetic changes. The

model’s tendency to under- or over-split suggests
that refinements like targeted data augmentation
or more sophisticated prompting could yield im-
provements. Despite these limitations, the re-
sults are highly encouraging. They demonstrate
that fine-tuning moderately-sized LLMs is a viable
and efficient strategy for developing robust tools
for computational Sanskrit, and the implicit learn-
ing paradigm shows promise for other morpho-
phonological tasks in classical languages.

5 Conclusion
In this paper, we have presented a data-driven
approach for Sanskrit Sandhi splitting by fine-
tuning the Gemma-3 4B Large Language Model.
Our method leverages parameter-efficient tech-
niques (LoRA) and an instruction-based learning
paradigm, achieving a competitive exact match
accuracy of 87.7% on a curated dataset of over
50,000 examples. This result demonstrates that
general-purpose pre-trained LLMs can be effec-
tively adapted to handle complex, rule-governed
morpho-phonological phenomena in Sanskrit with-
out requiring specialized architectures or full
model fine-tuning. Our methodology, which com-
bines instruction following with LoRA, offers a
scalable and resource-efficient path for tackling
similar tasks. The findings affirm the potential of
LLMs as powerful and adaptable tools for compu-
tational linguistics, especially for morphologically
rich and low-resource languages. Future work will
focus on refining the instruction-tuning process, ex-
ploring more diverse and larger datasets, and inves-
tigating methods to integrate lexical or grammati-
cal knowledge to further enhance performance and
address the identified error categories.
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