@inproceedings{yongsatianchot-marsella-2025-investigating,
    title = "Investigating Motivated Inference in Large Language Models",
    author = "Yongsatianchot, Nutchanon  and
      Marsella, Stacy",
    editor = "Zhang, Chen  and
      Allaway, Emily  and
      Shen, Hua  and
      Miculicich, Lesly  and
      Li, Yinqiao  and
      M'hamdi, Meryem  and
      Limkonchotiwat, Peerat  and
      Bai, Richard He  and
      T.y.s.s., Santosh  and
      Han, Sophia Simeng  and
      Thapa, Surendrabikram  and
      Rim, Wiem Ben",
    booktitle = "Proceedings of the 9th Widening NLP Workshop",
    month = nov,
    year = "2025",
    address = "Suzhou, China",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2025.winlp-main.30/",
    pages = "182--196",
    ISBN = "979-8-89176-351-7",
    abstract = "Our desires often influence our beliefs and expectations. Humans tend to think good things are more likely to happen than they actually are, while believing bad things are less likely. This tendency has been referred to as wishful thinking in research on coping strategies. With large language models (LLMs) increasingly being considered as computational models of human cognition, we investigate whether they can simulate this distinctly human bias. We conducted two systematic experiments across multiple LLMs, manipulating outcome desirability and information uncertainty across multiple scenarios including probability games, natural disasters, and sports events. Our experiments revealed limited wishful thinking in LLMs. In Experiment 1, only two models showed the bias, and only in sports-related scenarios when role-playing characters. Models exhibited no wishful thinking in mathematical contexts. Experiment 2 found that explicit prompting about emotional states (being hopeful) was necessary to elicit wishful thinking in logical domains. These findings reveal a significant gap between human cognitive biases and LLMs' default behavior patterns, suggesting that current models require explicit guidance to simulate wishful thinking influences on belief formation."
}Markdown (Informal)
[Investigating Motivated Inference in Large Language Models](https://preview.aclanthology.org/ingest-emnlp/2025.winlp-main.30/) (Yongsatianchot & Marsella, WiNLP 2025)
ACL