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Abstract

Abstract Meaning Representation (AMR) is a
graph-based semantic representation that has
been incorporated into numerous downstream
tasks, in particular due to substantial efforts
developing text-to-AMR parsing and AMR-to-
text generation models. However, there still
exists a large gap between fluent, natural sen-
tences and texts generated from AMR-to-text
generation models. Prompt-based Large Lan-
guage Models (LLMs), on the other hand, have
demonstrated an outstanding ability to produce
fluent text in a variety of languages and do-
mains. In this paper, we investigate the extent
to which LLMs can improve the AMR-to-text
generated output fluency post-hoc via prompt
engineering. We conduct automatic and human
evaluations of the results, and ultimately have
mixed findings: LLM-generated paraphrases
generally do not exhibit improvement in auto-
matic evaluation, but outperform baseline texts
according to our human evaluation. Thus, we
provide a detailed error analysis of our results
to investigate the complex nature of generat-
ing highly fluent text from semantic representa-
tions.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a graph-based semantic
representation which captures the meaning of a
phrase or sentence, with particular emphasis on
semantic roles such as “who does what to whom.”

The substantial efforts towards AMR-to-text gen-
eration (producing text from an AMR graph, see
an example AMR graph and generated sentence
in Figure 2) and text-to-AMR parsing (producing
the graphs from the text) have enabled the AMR
schema to be incorporated into a range of down-
stream tasks (Wein and Opitz, 2024).
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Reference Text:

It's more comfortable to me.

Reference Graph:

(¢ / comfortable-02
:ARGO (12 / it)
:ARGL (i / i)
:degree

Generated Sentence:

I'm more comfortable with it.

(m / more))

Figure 2: Example text generated by AMRBART from
an AMR graph in AMR2.0 dataset. The reference text’s
AMR graph is in ‘PENMAN’ notation (Kasper, 1989).

Currently, AMR-to-text generation models can
produce fairly fluent and adequate sentences that
reflect the meaning of the graph. Still, the quality
of the generated text from AMR-to-text generation
models can be improved, both according to auto-
matic metrics and human evaluation: state-of-the-
art AMR-to-text generation models achieve approx-
imately 50 BLEU points (Cheng et al., 2022; Bai
et al., 2022) out of 100, and Manning et al. (2020)
find that AMR-to-text generated output occasion-
ally suffers from repetition of words or anonymiza-
tion of low-frequency tokens.

In recent years, Large Language Models (LLMs)
show the incredible ability to generate highly flu-
ent text for a range of natural language process-
ing tasks, such as machine translation and summa-
rization. Therefore, in this work, we examine the
ability of several prominent LLMs, including a rea-
soning model, to improve the fluency of AMR-to-
text generation output. Specifically, we investigate
whether passing the output of an AMR-to-text
generation model through a prompt-based LLM
tasked with paraphrasing the text output can
enable heightened fluency (see Figure 1).

Paraphrases generally refer to varied expressions
that convey the same meaning (Bhagat and Hovy,
2013). Here, we aim to preserve semantic meaning
while improving fluency. We first generate texts
from four state-of-the-art AMR-to-text generation
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Figure 1: Experiment workflow, passing the original AMR data through AMR-to-text generation models, which
results in our baseline texts. We then compare these baseline texts (via automatic metrics and human evaluations) to

the texts output by the LLM prompt engineering.

models to serve as baselines. Then, we prompt
the LLMs to output paraphrases for these texts
through multiple prompting protocols. Finally, we
compare the baseline texts and the LLM-generated
paraphrases via four automatic metrics and a survey
of human judgments. Our contributions include:

» Experimentation using prompt-based LLMs
to increase the fluency of four AMR-to-text
generation models post-hoc, including a vari-
ety of prompts across three LLMs.

¢ Automatic and human evaluations of our work,
using four reference-based automatic metrics
of 448 items and human judgments for both
fluency and adequacy for 80 randomly se-
lected items.

* A discussion and error analysis addressing our
findings, as our prompts lead to mixed results.

2 Approach

In our experiments, we first pass AMR2.0 and
AMR3.0 data into AMR-to-text generation models
to generate baseline texts (§2.1). Then, we prompt
LLMs (§2.2) to produce more fluent paraphrases
of these texts through several prompting protocols
(§2.3). Finally, we compare the results via auto-
matic metrics and human evaluation (§2.4).

2.1 Data & Models

We use the AMR2.0 and AMR3.0 (Knight et al.,
2017, 2020) test splits to generate texts to be passed
into the LLMs for paraphrasing. AMR?2.0 test data
consists of 1,364 English sentences and their gold
AMRs, while the AMR3.0 test data consists of
1,891 sentences and their gold AMRs, and collec-
tively are made up of primarily newswire, web
discussion forum, and fiction texts.

We use these gold AMRs as input to four state-
of-the-art models: BiBL (Cheng et al., 2022), AM-
RBART (Bai et al., 2022), SPRING (Bevilacqua
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et al., 2021), and StructAdapt (Ribeiro et al., 2021).
The output of these AMR-to-text generation mod-
els serve as the baseline, in order to ascertain
whether the LLM-generated paraphrases are more
fluent text by comparison.

2.2 Large Language Models

We prompt three LLMs: GPT-40 mini (OpenAl
et al., 2024a), GPT-4.1 (OpenAl et al., 2024b), and
Qwen3-14B (Yang et al., 2025). GPT-40 mini is
a cost-efficient model that surpasses many small-
sized models in textual processing. We first test
all of the prompts with GPT-40 mini, then test
the other models with the best-performing prompt.
GPT-4.1 has strengths in instruction-following and
complex tasks, while Qwen3-14B is an efficient
reasoning model (especially for text generation).
We enable Qwen3-14B’s thinking mode and use
the default values for all models.

2.3 Prompting Protocols

To task the LLMs with paraphrasing the AMR-to-
text generated output, we develop several prompts.
Every protocol is composed of the system prompt
and the user prompt. We start by using a simple
prompt that does not involve any examples, con-
straints, or role-playing.

Simple Prompt

System: You are an expert in paraphrasing.
User: Paraphrase the following sentence.
Sentence: <test_sentence>

Paraphrase:

As role-playing is shown to improve zero-shot
performance (Kong et al., 2024), we then experi-
ment with two role-play prompts. Given that the
test sentences are from AMR-to-text generation



models, it may be helpful to let the LLM serve as
an expert in editing such machine-generated text.
As the datasets largely consist of newswire and
web posts, we also craft a prompt having the LLMs
role-play an editor specialized in this domain.

Role-playing Machine-Generated Text Paraphras-

ing Expert (Zero-Shot RP1)

System: You are an expert paraphraser trained to
edit machine-generated text.

User: Rephrase the following sentence to make it
more fluent. Ensure the paraphrase conveys the same
meaning, with no omissions or additions.

Sentence: <test_sentence>

Paraphrase:

\ J

LLMs may associate the words “paraphrase” or
“rephrase” in the prompt with generating more di-
verse output, which may jeopardize meaning preser-
vation. Thus, we experiment with a constrained
rewording extension of the role-playing prompts.
We instruct the model to avoid replacing words
with their synonyms and instead improve sentences
primarily via syntactic changes.

Constrained Rewording Extension of Role-Play

Newswire Editor (Zero-shot RP2)

System: You are a professional English copyeditor
specializing in both news articles and online
discussion posts. Your primary goal is to improve
sentence fluency only by restructuring sentences,
changing their word order, or splitting and merging
clauses as needed. Avoid replacing words with their
synonyms.

User: Rephrase the following sentence to make it
more fluent. Ensure the paraphrase conveys the same
meaning, with no omissions or additions.

Sentence: <test_sentence>

Paraphrase:

\ J

Next, we experiment with few-shot prompting:
positive examples only and both positive and neg-
ative examples. We select the examples from the
texts generated by AMRBART on the AMR2.0
dataset. We choose positive examples at test time
for five-shot prompting via either sentence similar-
ity or AMR similarity. For sentence similarity, we
obtain the top 5 similar sentences in the dataset to
the test sentence based on chrf++ scores. For AMR
similarity, we obtain the top 5 similar AMRs in the
dataset to the test sentence’s AMR based on the
Smatch scores (Cai and Knight, 2013), then map
these AMR graphs back to their corresponding sen-

tences. The chosen sentences serve as positive ex-
ample sentences, with their reference texts used as
positive example paraphrases. We manually select
the negative examples from the generated AMR2.0
texts from AMRBART that clearly do not preserve
the reference text’s meaning. We then manually
write explanations on how it is a negative example
(see Appendix A for an example).

Positive Examples with Role-Play & Constrained

Rewording (Five-Shot Sent/AMR+RP1%)

System: You are an expert paraphraser trained to
edit machine-generated text. Your primary goal is
to improve sentence fluency only by restructuring
sentences, changing their word order, or splitting and
merging clauses as needed. Avoid replacing words
with their synonyms.

User: Rephrase the following sentence to make it
more fluent. Ensure the paraphrase conveys the same
meaning, with no omissions or additions.

Sentence: <positive_example_sentence_1>
Paraphrase: <positive_example_paraphrase_1>

<more positive examples>

Sentence: <test_sentence>
Paraphrase:

J

Finally, we create AMR-augmented prompts.
In addition to the example and test sentences in
five-shot prompting, we include their respective
AMR graphs in the user prompt.' The graphs are
linearized and in text-based PENMAN notation.

2.4 Evaluation

We use BLEU (Papineni et al., 2002), BERTScore
(Zhang et al., 2020), METEOR (Banerjee and
Lavie, 2005), and chrf++ (Popovi¢, 2017) to evalu-
ate the baseline texts from the AMR-to-text gener-
ation models, and then the output paraphrases after
prompting the LLMs.

We additionally conduct a human evaluation
with four college students who are native English
speakers. The survey has 20 questions and 80
judgments in total. For each question, we pro-
vide the reference sentence chosen randomly from
the AMR?2.0 dataset, and its four paraphrase candi-
dates: (1) AMRBART-generated text (baseline), (2)
zero-shot paraphrase from GPT-40 mini on baseline
text, (3) paraphrase from GPT-4.1 on baseline text,
and (4) paraphrase from Qwen3 on baseline text.
The annotators are asked to evaluate fluency and ad-

'Since the LLMs may have seen the gold AMRs during
pre-training, we use StructBart (Lee et al., 2022) to produce
AMR graphs.



BERTScore

GPT-40 mini GPT-41 Qwen3
No AMR AMR-augmented AMR-augmented

Zero-Shot Five-Shot Five-Shot Five-Shot

Model / Prompt  Baseline | Simple ~ RP1 RP1* RP2 | Sent+RP1* AMR+RPI1* Neg+RP1* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 87.985 | 76.385 78.829 80.393 81.223 85.345 85.080 85.911 86.023 86.417 86.911  86.478
SPRING 86.050 | 75.887 77.652 79.394 80.176 83.914 83.515 84.407 84.453 84.767 85.333  84.753
BiBL 87.896 | 76.493 78.467 80.571 81.206 85.409 85.110 85.884 85.968 86.292 86.826  86.397
StructAdapt 85370 | 76.446 78.573 81.048 82.198 85.323 85.133 85.629 85.947 86.266 86.620  86.466

Table 1: BERTScore results on the AMR2.0 dataset. Baseline: AMR-to-text generation model results, Simple:
simple prompt, RP1: role-play expert in editing machine-generated text, RP1*: RP1 with constrained rewording,
RP2: role-play newswire editor with constrained rewording, Sent: positive examples chosen by sentence similarity,
AMR: positive examples chosen by AMR graph similarity, Neg: both positive and negative examples.

Models | Fluency | Adequacy | Sum
Baseline 3.475 3.163 6.638
Zero-shot | 3.763 3.175 6.938
GPT-4.1 3.382 3.213 6.594
Qwen3 3.447 3.038 6.485

Table 2: Human evaluation results on the four para-
phrase candidates of the chosen sentences (Section 2.4).

equacy on a scale from 1 to 4 (instructions provided
to the annotators are available in Appendix C). Flu-
ency is judged first, without access to the reference,
and then adequacy is judged with respect to the ref-
erence. All punctuation is normalized to ensure that
the annotators do not unduly penalize text when
they suspect it is machine-generated. 2

3 Results

Table 1 presents the BERTScore results for GPT-40
mini on all the prompts applied to texts generated
by each of the four AMR-to-text generation mod-
els.> We find that most LLM-generated texts score
lower than the baseline, except for some minimal
improvement in texts generated by StructAdapt.
The poor performance of the simple prompt via
automatic metrics follows the results of prior re-
search (Zhou et al., 2024). Without any given con-
straints, GPT-40 mini tends to output diverse re-
sults through synonym substitution, which may not
preserve the original meaning, for example:

Generated text from SPRING:
Pledge to fight to defend the Diaoyu Islands

and its related islands by .
GPT-40 mini paraphrase:

Commit to defending the Diaoyu Islands and
their associated territories with

unwavering determination §

2Our experimentation cost approximately 70 USD.
3See Appendix D for more automatic evaluation results.
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BERTScore appears to be the most resistant
metric to synonym substitution. With the sim-
ple prompt, BLEU drops by approximately 60%
and METEOR and chrf++ by approximately 40%,
while BERTScore decreases by only 10%. This
may be attributed to its reliance on word embed-
ding similarity rather than exact word mapping.

Role-playing shows a substantial improvement,
increasing zero-shot performance by approximately
30-40% for METEOR and chrf++ and 65-90% for
BLEU compared to the simple prompt. The best
zero-shot results come from prompting the model
as a newswire copyeditor, confirming our conjec-
ture that role-specific prompting triggers LLMs to
draw upon their domain familiarity.

AMR-augmented prompting results in a mixed
performance. BERTScore decreases slightly with
zero-shot, while the rest show minor improvement.
However, the improved performance may have re-
sulted from LLMs extracting the reference text’s
exact words retained in AMR graphs, whereas the
generation model might have substituted them with
synonyms.

Test Sentence: The youngest brother remains a
tender youth.
Qwen3 Paraphrase: The youngest brother is
still a tender youth.
(y2 / youth
:ARGl-of

:domain

(t / tender-02)

(p / person

:ARGO-of (h / have-rel-role-91
:ARG2 (b / brother))

(y / young

:degree (m / most)))

(s / still))

:mod

:mod

Thus, by referencing the AMR, LLMs generally
produce sentences that are “better” in the sense
that they more closely match the reference text.
This is supported by the fact that BERTScore does
not increase as much as BLEU when using AMR-



augmented prompting. Although paraphrases gen-
erated by GPT-4.1 and Qwen3 outperform those of
GPT-40 mini’s, they do not exceed the baseline.

Table 2 presents the human evaluation results.
Surprisingly, the best-performing zero-shot prompt
(i.e., role-playing newswire copyeditor with con-
strained rewording) attains the best fluency and
overall scores, outperforming the baseline in this
case. By conducting a paired ¢-test comparing the
zero-shot and baseline scores, we find that the mean
difference is statistically significant (the one-tailed
p-value is 0.00955), which suggests that zero-shot
prompting actually yields mixed results.

The preference for zero-shot prompting output in
the human evaluation may be attributed to the use
of more common phrases and prepositions, such as
the baseline saying “athletes [...] competing under
strong sunlight” versus “in strong sunlight.”

4 Related Work

The rise of LLMs and the subsequent development
of prompt engineering (Liu et al., 2021) have led to
recent work prompting LLMs to generate text in a
variety of domains, such as paraphrasing math prob-
lem to improve solve rates (Zhou et al., 2024) and
to produce specific types of paraphrases following
linguistic instructions (Vahtola et al., 2025). How-
ever, it has been noted that LLMs tend to provide
overly complicated lexical expressions (Wu and
Arase, 2025) and struggle to understand sentence
structure (Vahtola et al., 2025) when paraphrasing,
which presents a challenge for our approach.
Although in-context learning (ICL) prompting is
common, work integrating AMR graphs has been
sparse. One such study (Raut et al., 2025) discov-
ers that AMR-augmented prompting may improve
LLMs’ performance in tasks involving long con-
text, such as summarization, which suggests that
AMRs may help with certain text generation tasks.
In regard to AMR-to-text generation, the out-
put is mostly evaluated with automatic metrics,
such as BLEU (Papineni et al., 2002), that com-
pare the generated text with the human-annotated
reference. However, it is unclear whether these
metrics are suitable for assessing paraphrases, as
they punish results with less n-gram overlap despite
successful semantic preservation (Jin and Gildea,
2022). BERTScore (Zhang et al., 2020), on the
other hand, relies on comparing contextual embed-
dings to more accurately reflect semantic similarity.
In addition to automatic metrics, using human eval-
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uation has been emphasized for a fuller analysis of
AMR-to-text output (Manning et al., 2020).

5 Conclusion & Future Work

In this work, we explore the extent to which prompt-
ing LLMs to paraphrase can improve AMR-to-
text generated output fluency, experimenting with
variations of prompts such as constrained reword-
ing, role-playing, and AMR augmentation. Our
findings are mixed. Through automatic evalua-
tion, we find that none of the prompts lead to
better LLM-generated paraphrases compared to
the baseline. Specifically, we reveal LLMs’ ten-
dency to relate paraphrasing to synonym substitu-
tion, which may result in meaning drift. We dis-
cover LLMs’ sensitivity to prompt wording, espe-
cially when given rewording constraints. Few-shot
and AMR-augmented prompting improve LLMs’
performance in most cases, but this may have arisen
from LLMs extracting the surface form instead of
truly utilizing the semantic content of the AMR
graphs. Human evaluation, on the other hand,
shows that the best zero-shot prompt leads to a sta-
tistically significant increase in fluency. The higher
ratings may be due to the fact that the zero-shot
prompting has not been exposed to the rigid AMR-
generated outputs and still has sufficient freedom to
use more natural phrases and grammar. Addition-
ally, applying role-play exhibits potential in aiding
output fluency, given LLMs’ massive training and
thus the need to specify a trigger of specific do-
main knowledge. Our study highlights the complex
nature of generating fluent text from a semantic
representation that abstracts away from the surface
form, as we find that leveraging a wide range of
LLM prompts post-hoc to paraphrase the AMR-to-
text generation system output generally does not
improve performance.

Limitations

Our work is conducted using the AMR2.0 and
AMR3.0 datasets (Knight et al., 2017, 2020), which
consist primarily of broadcast scripts, newswire,
and web discussion posts. Thus, it is unclear
whether our results can be generalized to other
domains of knowledge. Since domain-specific
role-playing performs relatively better than other
prompts in our study, future work might experi-
ment with other role-play prompts with different
datasets, such as The Little Prince (Banarescu et al.,
2013). Future work may also investigate how other



models or syntactically controlled generation could
be leveraged to improve AMR-to-text generation.
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A Demonstration of Negative Examples

Sentence: I'm just passing by.
Paraphrase: I just passed.
Explanation: The original sentence is
present continuous, meaning the
speaker is currently near the place, but
the paraphrase is past tense, meaning
the speaker is no longer near the place.
Therefore, meaning is not preserved.

Figure 3: A demonstration of our negative example. Sentence:
reference text, Paraphrase: text generated by AMRBART on
a sentence from AMR2.0, Explanation: manually drafted to
explain why the output fails to be a fluent paraphrase.

B Additional Prompt Templates

Constrained Rewording Extension of Role-playing

Machine-Generated Text Paraphrasing Expert
(Zero-Shot RP1%)

System: You are an expert paraphraser trained to
edit machine-generated text. Your primary goal is to
improve sentence fluency only by restructuring
sentences, changing their word order, or splitting and
merging clauses as needed. Avoid replacing words
with their synonyms.

User: Rephrase the following sentence to make it
more fluent. Ensure the paraphrase conveys the same
meaning, with no omissions or additions.

Sentence: <test_sentence>

Paraphrase:
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Positive & Negative Examples with Role-Play &

Constrained Rewording (Five-Shot Neg+RP1%*)

System: You are an expert paraphraser trained to
edit machine-generated text. Your primary goal is
to improve sentence fluency only by restructuring
sentences, changing their word order, or splitting and
merging clauses as needed. Avoid replacing words
with their synonyms.

In the task, you will be shown positive and negative
examples. Positive examples show correct paraphras-
ing that preserves meaning while improving fluency.
Negative examples show incorrect paraphrases that
change the meaning, use synonyms, or add/remove
information. Produce output that matches the style
and constraints of the positive examples and avoids
the mistakes shown in the negative examples.

User: Rephrase the following sentence to make it
more fluent. Ensure the paraphrase conveys the same
meaning, with no omissions or additions.

Sentence: <positive_example_sentence_1>
Paraphrase: <positive_example_paraphrase_1>

<more positive examples>

Sentence: <negative_example_sentence_1>
Paraphrase: <negative_example_paraphrase_1>
Explanation: <negative_example_explanation_1>

<more negative examples>

Sentence: <test_sentence>
Paraphrase:
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AMR-augmented Positive & Negative Examples

with Constrained Rewording Extension of Role-
playing (AMR-augmented Five-Shot Neg+RP1%*)

System: You are an expert paraphraser trained to
edit machine-generated text. Your primary goal is to
improve sentence fluency only by restructuring
sentences, changing their word order, or splitting and
merging clauses as needed. Avoid replacing words
with their synonyms.

In the task, you will be shown positive and negative
examples. Positive examples show correct
paraphrasing that preserves meaning while
improving fluency. Negative examples show
incorrect paraphrases that change the meaning, use
synonyms, or add/remove information. Produce
output that matches the style and constraints of the
positive examples and avoids the mistakes shown in
the negative examples.

User: Rephrase the following sentence to make it
more fluent. Ensure the paraphrase conveys the same
meaning, with no omissions or additions. You may
use the provided linearized Abstract Meaning
Representation (AMR) structure of the sentence to
your aid.

Sentence: <positive_example_sentence_1>
AMR: <positive_example_amr_1>
Paraphrase: <positive_example_paraphrase_1>

<more positive examples>
Sentence: <negative_example_sentence_1>
AMR: <negative_example_amr_1>
Paraphrase: <negative_example_paraphrase_1>
Explanation: <negative_example_explanation_1>
<more negative examples>

Sentence: <test_sentence>
AMR: <test_sentence_amr>
Paraphrase:




AMR-augmented Positive & Negative Examples

with Constrained Rewording Extension of Role-
playing (AMR-augmented Five-Shot Neg+RP2)

System: You are a professional English copyeditor
specializing in both news articles and online
discussion posts. Your primary goal is to improve
sentence fluency only by restructuring sentences,
changing their word order, or splitting and merging
clauses as needed. Avoid replacing words with their
synonyms.

In the task, you will be shown positive and negative
examples. Positive examples show correct paraphras-
ing that preserves meaning while improving fluency.
Negative examples show incorrect paraphrases that
change the meaning, use synonyms, or add/remove
information. Produce outputs that match the style
and constraints of the positive examples and avoid
the mistakes shown in the negative examples.

User: Rephrase the following sentence to make it
more fluent. Ensure the paraphrase conveys the same
meaning, with no omissions or additions. You may
use the provided linearized Abstract Meaning Repre-
sentation (AMR) structure of the sentence to your aid.

Sentence: <positive_example_sentence_1>
AMR: <positive_example_amr_1>
Paraphrase: <positive_example_paraphrase_1>

<more positive examples>

Sentence: <negative_example_sentence_1>
AMR: <negative_example_amr_1>

Paraphrase: <negative_example_paraphrase_1>
Explanation: <negative_example_explanation_1>

<more negative examples>

Sentence: <test_sentence>
AMR: <test_sentence_amr>
Paraphrase:

C Human Evaluation Instruction

GPT4AMR Human Evaluation

Please read the instructions carefully to understand how you should evaluate the
sentences.

Fluency

How fluent is this text as an example of English? Is it well-formed grammatically with
correct spelling and punctuation? Are the terms appropriately used according to common
convention? Is the text generally interpretable by a native speaker of English?

For all of the items that follow, select one of these four levels of fluency:

1. Nonsense: Not understandable.

2. Poor: Many or serious mistakes which make the text hard to understand.
3. Good: Few or minor mistakes. The text is mostly understandable.

4. Flawless: Perfectly formed English with no mistakes.

Adequacy
How much of the meaning from the reference text (text located at the top of each page) is
included in the text options?

Note: Grammatical or spelling mistakes should not be considered here. This is not a
question of fluency.

For all of the items that follow, select one of these four levels of adequacy / meaning
preservation:

1. None: The text is lated to the X

2. Little: Some of the meaning is preserved, but much of the meaning has been lost or
much additional meaning has been added.

3. Most: Most of the meaning from the reference is preserved, with a little information
missing or added in the text.

4. All: All of the meaning is conveyed.

Figure 4: Human evaluation instructions that specify the scale
of assessing fluency and adequacy.

Assess the fluency of the following texts using this metric:

1. Nonsense: Not understandable.

2. Poor: Many or serious mistakes which make the text hard to understand.
3. Good: Few or minor mistakes. The text is mostly understandable.

4. Flawless: Perfectly formed English with no mistakes.

The survey showed that poppy cultivation has retreated in much of Afghanistan  *
and is overwhelmingly concentrated in 7 of the 34 provinces where the
insurgency remains strong, mostly in the south.

1 2 3 4

g Nonsense O O O O Flawless

Figure 5: Instructions for evaluating sentence fluency and a
sample question.

Reference: The survey showed that poppy cultivation had retreated in much of

Afghanistan and was overwhelmingly concentrated in 7 of 34 provinces where the
insurgency remains strong, most of those in the south.

Now you will assess the adequacy of the same texts, in comparison to the above reference,
using this metric:

1. None: The text is completely unrelated to the reference.

2. Little: Some of the meaning is preserved, but much of the meaning has been lost or
much additional meaning has been added.

3. Most: Most of the meaning from the reference is preserved, with a little information
missing or added in the text.

4. All: All of the meaning is conveyed.

The survey showed that poppy cultivation has retreated in much of Afghanistan ~ *
and is overwhelmingly concentrated in 7 of the 34 provinces where the
insurgency remains strong, mostly in the south.

1 2 3 4

None (@) ©) ©) (©) Al

Figure 6: Instruction for evaluating sentence adequacy and a
sample question.
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D More Automatic Metrics Results

BLEU
GPT-40 mini GPT-4.1 Qwen3
No AMR AMR AMR
Zero-Shot Five-Shot Five-Shot Five-Shot
Model / Prompt  Baseline | Simple RP1 RP1* RP2 Sent+RP1* AMR+RPI* Neg+RPI* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 48.236 | 17.220 23.247 28375 32.567 38.185 38.481 40.162 41.423 43.273 46311 44.768
SPRING 42.337 | 16.630 21.657 26.148 29.667 34.759 34.672 36.884 36.963 39.077 41.154  39.732
BiBL 47.997 | 17585 23.190 28.594 32820 | 39.039 39.132 41.156 41.500 43824 | 46311 44539
StructAdapt 45.181 17.350  23.185 28.727 32.372 37.973 37.797 39.866 40.905 42.783 45.483  44.056
Table 3: BLEU results on the AMR2.0 dataset.
METEOR
GPT-40 mini GPT-4.1_Qwen3
No AMR AMR d | AMR
Zero-Shot Five-Shot Five-Shot Five-Shot
Model / Prompt ~ Baseline | Simple ~ RP1 RPI1* RP2 | Sent+RP1* AMR+RP1#* Neg+RP1* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 78.633 | 47.098 55322 62390 66.712 71.824 71.747 73.885 74.928 75.832 76.928  76.319
SPRING 74932 | 46.609 53377 60.666 63942 | 68.703 68.394 70.608 71.797 72.631 73.699  72.740
BiBL 78.274 | 47.746  55.034 62.863 66.296 72.334 71.803 73.881 75.064 75.868 76702 76.160
StructAdapt 75.566 | 47.288 55237 63.252 66.712 71.870 71.242 73.415 74.470 75.303 76.377  75.689
Table 4: METEOR results on the AMR2.0 dataset.
chrf++
GPT-40 mini GPT-4.1 Qwen3
No AMR AMR AMR
Zero-Shot Five-Shot Five-Shot Five-Shot
Model / Prompt  Baseline | Simple ~ RP1 RP1* RP2 | Sent+RP1* AMR+RP1* Neg+RP1* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 73.209 | 45872 52903 59.724 63.399 66.258 66.497 68.297 69.442 70.507 72.139  71.005
SPRING 69.212 | 45.110 51.555 57.825 60.976 63.388 63.362 65.392 66.171 67.232 68.649  67.425
BiBL 73.205 | 46.369 53.236 59.913 63.664 66.822 66.905 62.787 69.652 70.728 72238 71.035
StructAdapt 71.889 | 46.126 51.942 59955 63.273 66.187 66.111 68.010 69.214 70.255 71.764  70.769
Table 5: chrf++ results on the AMR?2.0 dataset.
BERTScore
GPT-40 mini GPT-4.1 Qwen3
No AMR AMR d AMR d
Zero-Shot Five-Shot Five-Shot Five-Shot
Model / Prompt  Baseline | RP1* RP2 Sent+RP1* AMR+RP1* Neg+RP1* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 87.958 | 80.899 81.689 85.628 85.362 86.011 86.024 86.518 86.876  86.829
SPRING 86.187 | 80.008 80.709 84.364 84.237 84.964 84.976 85.340 85.614  85.362
BiBL 87.945 | 81.052 81.764 85.741 85.386 86.232 86.388 86.693 86.990  86.667
StructAdapt 84.068 | 81.118 82.173 85.613 85.386 85.950 86.127 86.430 86.810  86.499
Table 6: BERTScore results on the AMR3.0 dataset.
BLEU
GPT-40 mini GPT-4.1 Qwen3
No AMR AMR d AMR d
Zero-Shot Five-Shot Five-Shot Five-Shot
Model / Prompt  Baseline | RP1* RP2 | Sent+RP1* AMR+RP1* Neg+RP1* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 47.818 | 28.682 32.808 38.172 37.807 40.281 40911 42.936 45.698  44.181
SPRING 41.809 | 26.880 30.591 35.050 34.737 36.740 37.480 39.177 41.392  39.755
BiBL 47.565 | 29.408 33.258 38.665 38.460 40.695 41.733 43.661 45.856  44.007
StructAdapt 42733 | 28.612 32438 37.359 37.342 39.016 40.540 41.999 44.707 42886
Table 7: BLEU results on the AMR3.0 dataset.
METEOR
GPT-40 mini GPT-4.1 Qwen3
No AMR AMR d AMR d
Zero-Shot Five-Shot Five-Shot Five-Shot
Model / Prompt  Baseline | RP1* RP2 | Sent+RP1* AMR+RP1* Neg+RP1* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 77.146 | 62390 65.626 71.393 71.142 73.112 74.011 75.047 75752 75.188
SPRING 73.660 | 60.240 63.498 68.920 68.773 70.773 71.523 72.422 73102 72272
BiBL 76.957 | 62322 65.573 71.818 71.378 73.532 74.481 75.149 75.887  75.002
StructAdapt 71.347 | 61.834 65.291 71.306 70.754 72.934 73.669 74.608 75.358  73.828
Table 8: METEOR results on the AMR3.0 dataset.
chrf++
GPT-40 mini GPT-4.1 Qwen3
No AMR AMR d AMR d
Zero-Shot Five-Shot Five-Shot Five-Shot
Model / Prompt  Baseline | RP1* RP2 | Sent+RP1* AMR+RP1* Neg+RP1* | Neg+RP1* Neg+RP2 Neg+RP2
AMRBART 72415 | 59.568 63.114 65.711 65.655 67.655 68.681 69.771 71368  70.080
SPRING 68.374 | 57.528 61.008 62.982 62.902 64.768 69.092 70.247 68.155  67.019
BiBL 72.409 | 60.011 63.443 66.081 66.044 68.073 69.092 70.247 71.491 70.279
StructAdapt 70.510 | 59.345 62.656 65.221 65.206 67.057 68.362 69.417 70.779  69.566

Table 9: chrf++ results on the AMR3.0 dataset.
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