
Proceedings of the 9th Widening NLP Workshop, pages 65–74
November 8, 2025 ©2025 Association for Computational Linguistics

ECCC: Edge Code Cloak Coder for Privacy Code Agent

Haoqi He*

Wenzhi Xu
Ruoying Liu
Xiaokai Lin

School of Cyber Science and Technology
Shenzhen Campus of Sun Yat-sen University
{hehq23, linxk5}@mail2.sysu.edu.cn

Jiarui Tang
Chengdu University

tomoyo8311@gmail.com

Bairu Li
School of Innovation and Technology

Glasgow School of Art
bairu.li@gsa.ac.uk

Abstract

Large language models (LLMs) have signif-
icantly advanced automated code generation
and debugging, facilitating powerful multi-
agent coding frameworks. However, deploy-
ing these sophisticated models on resource-
constrained edge devices remains challeng-
ing due to high computational demands,
limited adaptability, and significant privacy
risks associated with cloud-based process-
ing. Motivated by these constraints, we pro-
pose Edge Code Cloak Coder (ECCC), a
novel edge-cloud hybrid framework integrating
lightweight quantized LLM with robust AST-
based anonymization and edge-side privacy
validation. ECCC enables high-performance,
privacy-preserving LLM capabilities on con-
sumer GPUs, anonymizing user code before
securely delegating abstracted tasks to cloud
LLMs. Experimental evaluations demonstrate
that ECCC achieves competitive correctness
(within 4–5pp of the GPT-4-based frameworks)
and a perfect privacy score of 10/10, effectively
balancing functionality and security for sensi-
tive and proprietary code applications.

1 Introduction

Large language models (LLMs) exhibit strong ca-
pabilities in code understanding, generation, and
reasoning, catalyzing rapid progress in multi-agent
frameworks exemplified by Code Agents (Huang

*Corresponding author: hehq23@mail2.sysu.edu.cn

et al., 2023; Adnan et al., 2025). Such systems
typically coordinate roles including a program-
mer agent, test designer, test executor, and de-
bugger, forming an automatic generate–verify–
repair loop that efficiently solves complex pro-
gramming tasks. However, efficiently and trust-
worthily deploying powerful LLMs—especially
large-parameter models—on resource-constrained
edge devices (e.g., personal workstations and small
business servers) faces three key challenges:

• High Computational Cost: Deploying and
running large-scale models on consumer-
grade hardware is severely limited by memory
and computational power constraints (Fedus
et al., 2022; Achiam et al., 2023).

• Customization and Adaptability Limita-
tions: Direct fine-tuning of large-scale mod-
els (e.g., QLoRA (Dettmers et al., 2023)) to
specific domain requirements, such as code
generation tasks, is impractical due to the sub-
stantial resource demands and risk of general
performance degradation.

• Privacy Vulnerabilities: Using cloud-based
API services involves the transmission of po-
tentially sensitive or proprietary code data,
posing significant privacy risks and limiting
deeper model customization (Horlboge et al.,
2022; Boutet et al., 2025).

65

To democratize the advancements of LLMs for
all user groups, we propose a novel approach that
addresses the above challenges comprehensively:

We introduce Edge Code Cloak Coder
(ECCC), an innovative hybrid edge-cloud agent
framework leveraging a lightweight, quantized
open source LLM to enable efficient deployment
on edge devices (e.g., a single RTX 3090).

The key innovation of ECCC lies in its robust
privacy protection abstraction layer, known as the
Privacy Shield, implemented entirely on the edge
device.

Crucially, only this anonymized abstract code is
transmitted to powerful cloud-based LLMs (such
as DeepSeek-V3 (Liu et al., 2024)) for logic en-
hancement or bug correction. The cloud returns
anonymized code modifications without ever re-
ceiving identifiable user-specific symbols, effec-
tively maintaining privacy. Local edge devices sub-
sequently handle de-anonymization and determinis-
tic testing, ensuring that sensitive identifiers never
traverse the network.

Contributions.

• ECCC: an Efficient and Privacy-
Preserving Edge-Cloud Framework.
We introduce ECCC, a method combining
quantized LLM and edge-based privacy
verification, enabling robust and private
LLM-assisted code generation and debugging
on resource-constrained hardware.

• Competitive Performance on Edge Re-
sources. Experiments show that ECCC
achieves near state-of-the-art performance
comparable to larger models, despite its
lightweight quantized design.

• Effective Trade-off between Privacy and
Functionality. ECCC significantly enhances
privacy with minimal impact on functional
performance, demonstrating a favorable bal-
ance suitable for sensitive and proprietary
code applications.

2 Methodology

Edge Code Cloak Coder (ECCC) executes a four-
stage edge–cloud pipeline that keeps raw source
code private while exploiting the reasoning strength
of large cloud LLMs. The system follows a multi-
stage pipeline as illustrated in Fig. 1, designed
to integrate general-purpose generation, privacy

protection, and semantic-level validation under
a lightweight and locally executable architecture.
The algorithmic details are described below.

Edge Foundational Model Preparation: We
compress DeepSeek-Coder-V2 Lite to a 4-bit quan-
tization to fit consumer GPUs. The resulting 16
GB model sustains on a single RTX 3090.

2.1 Privacy Shield
Stage 1: Code Anonymisation on the Edge
AST rewrite. Using LIBCST, every identifier is
replaced by a stable placeholder (VAR1, FUNC2, . . .).
Comments and all docstrings are replaced with the
sentinel string "CLOAKED DOCSTRING"; optional
dead-code stubs (if False: pass) may be in-
serted to mask stylistic fingerprints. The map-
ping table M (real→placeholder) resides solely in
volatile memory.

Stage 2: Local Privacy Check
Before any network call, the local privacy agent
runs a “null” completion whose system prompt in-
structs it to verify that no user identifiers remain.
If the check fails, anonymisation is re-applied; oth-
erwise the anonymised code C̃ is sent to the cloud.
The prompts used for privacy checking can be
found in the appendix.

2.2 Cloud-Side Completion
A full-size LLM e.g. DeepSeek-V3 or other LLM
receives C̃ together with a system prompt.

The cloud thus transforms logic or fixes bugs
without ever seeing proprietary symbols, yielding
the patched abstraction C̃′.

The prompts used for code completion can be
found in the appendix.

2.3 De-anonymisation and Validation
Here we reverse the anonymous code, generate the
final code snippet, and test it.

Reconstruction. Placeholders in C̃′ are mapped
back to real names using M, producing C′.

Deterministic testing. A local test harness (e.g.
pytest) executes predefined unit tests such as
has_close_elements. On failure, a concise trace
is appended to the user prompt and the pipeline
re-enters Stage of Cloud-Side Completion for at
most three iterations.

Security Boundary Throughout the process only
C̃ and its subsequent cloud-modified forms traverse
the network. No raw identifiers, variable maps,

66

Complete the code snippet:

from typing import List

def has_close_elements(numbers, threshold) -> bool:

```Check if in given list of numbers, are any two numbers 

closer to each other than given threshold.

>>>has_close_elements([1.,2.,3.],0.5) False

>>>has_close_elements([1.,2.8,3.,4.,5.,2.],0.3) True

```

Open source LLM
e.g. DS V2 Code-Lite

Identifier

Generalization

4 bit

Quantization

Foundational Model
1. Anonymisation

2. Privacy Agent

Code Requirements

</>

Protecting

Code

Reading

Privacy

Checking

def has_close_elements(numbers, threshold)

for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):

if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold: return True

return False

Code Snippets

1. Edge Cases:

assert has_close_elements([], 0.5) == False

assert has_close_elements([1.,1.], 0.) == True

2. Large Numbers:

Large_list = [i * 0.1 for i in range(10000)]

assert has_close_elements(Large, 0.0999) == False

Test Cases

Testing

Local Agent

Privacy Check

Code & Prompt

Reading

Fixing

Lazy Semantic

Injection

If False:

print(“AAA”)

/* {gen_random_text()} */

def func1(arg1, arg2, arg3)

Answers

</>

Reversed

Local Agent

Local

API

Figure 1: Workflow of the ECCC local-cloud agent framework for privacy-aware LLM-based coding task.

runtime traces, or unit-test outputs ever leave the
edge device, ensuring end-to-end privacy under the
assumed threat model.

3 Experiment

We evaluate ECCC with local privacy agent, DS-
Coder-V2-Lite-Instruct and DS V3-chat API (Zhu
et al., 2024; Liu et al., 2024). Local inference will
consume roughly up to 16 GB of GPU memory.
We first elaborate the experimental setup, and then
measure the code capability and privacy guard of
ECCC, respectively.

3.1 Experiment Setup
All experiments were conducted on a computer
with an Intel(R) Xeon(R) Gold 6226R CPU @
2.90GHz with 64 GB RAM and an NVIDIA
GeForce RTX 3090 24GB GPU.

Matrices We use pass@1 as the evaluation met-
ric for code correctness, the most widely adopted
metric in the literature of automatic code genera-
tion (Chen et al., 2021).

Anonymisation quality is reviewed by three
LLMs (GPT-4o, GPT-O3, DeepSeek-R1) and
scored on Functional, Privacy, and Cleanliness
dimensions, following recent code-anonymisation
work (Horlboge et al., 2022).

Functional The Functional score measures
whether the generated code correctly implements
the specification (10 = exact behavioural match, 8
= plausible but different, 0 = no code).

Privacy The Privacy score assesses the absence
of original identifiers (10 = no identifier leakage, 2
= leaks present).

Cleanliness The Cleanliness score evaluates the
output format and brevity (10 = code-only fenced
output, −4 for missing fences, −3 for long prose,
floor 0) are averaged over each task set).

Datasets. We benchmark on four public sets: Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021), and their enhanced variants HumanEval-ET
and MBPP-ET (Dong et al., 2025). HumanEval
focuses on diverse algorithmic challenges, whereas
MBPP targets idiomatic Python tasks.

Baseline Model baselines span AlphaCode (Li
et al., 2022), Llama 3 (Dubey et al., 2024), CodeL-
lama 34B (Roziere et al., 2023), InCoder 6.7B
(Fried et al., 2022), CodeGeeX 13B (Zheng et al.,
2023), StarCoder 15.5B (Li et al., 2023), CodeGen-
Mono 16B (Nijkamp et al., 2022), Codex 175B
(Chen et al., 2021), GPT-3.5-turbo (Brown et al.,
2020), GPT-4 (Achiam et al., 2023), PaLM-Coder
(Chowdhery et al., 2023), and Claude-instant-1
(Anthropic, 2023).

Optimisation-method baselines include Few-
shot prompting (Brown et al., 2020), Chain-of-
Thought (CoT) (Wei et al., 2022), ReAct (Yao
et al., 2023b), Reflexion (Shinn et al., 2023), Tree-
of-Thought (ToT) (Yao et al., 2023a), RAP (Wang
et al., 2023b), Self-Edit (Mousavi et al., 2023), Self-
Planning (Jiang et al., 2024), Self-Debugging (Ad-

67

nan et al., 2025), Self-Collaboration (Dong et al.,
2024), SCOT (Wang et al., 2023a), CodeCoT (Li
et al., 2025).

3.2 How Does ECCC Perform?

We perform post-processing on the data returned
by the API. First, we clean the data and reverse-
engineer the code. Then, we use the local agent
for inspection and repair, and finally conduct tests.
Detailed result could be found in Appendix.

Method HumanEval MBPP

AlphaCode 17.1 –
StarCoder 34.1 43.6
CodeLlama 51.8 69.3
GPT-3.5-turbo 57.3 52.2
GPT-4 67.6 68.3
DS-Coder-V2-Lite 65.2 70.4
DS-Coder-V2-Lite (4-bit) 40.1 42.6
DS-V3 (API) 86.6 89.9

Reflexion (GPT-4) 91.0 77.1
MetaGPT (GPT-4) 85.9 87.7
AgentCoder (GPT-4) 96.3 91.8

ECCC (Ours) 90.0 93.5

Table 1: Pass@1 results of ECCC and main baselines on
HumanEval and MBPP. Full results and improvements
over backbones are in Appendix/Table X.

In Table 1, percentages in brackets denote im-
provement over the corresponding zero-shot back-
bone. The score of ECCC within each block is
highlighted in bold. Table 1 shows that ECCC
attains 90.0, 78.5, 93.5 and 84.7 pass@1 on Hu-
manEval, HumanEval-ET, MBPP and MBPP-ET,
respectively. These scores are (i) within 4–5 pp
of GPT-4-based agent stacks despite using only
a 4-bit, edge-deployable MoE backbone, and (ii)
above every zero-shot baseline except the 671 B-
parameter DS-V3. Hence, lightweight quantisation
plus cloud-side reasoning delivers near-state-of-
the-art correctness on commodity GPUs. Due to
the lack of information brought by anonymity, the
agent framework improves the metrics incremen-
tally compared with DS V3-chat API.

3.3 How Anonymous is the code passed to
LLM by API?

We intercept the content sent to the Internet by
the Local Privacy Agent, and then use the LLM
to judge. The prompts used for evaluation can be
found in the appendix.

In Table 2, the first two rows are direct zero-shot
baselines without any anonymisation.

Setting Func. Priv.↑ Clean.

DS-Coder-V2-Lite 9.36 2.00 6.00
DS-V3 API 9.46 2.00 8.34
ECCC (Ours) 8.93 10.00 6.51

Table 2: Privacy, cleanliness, and functional accuracy
for all settings.

ECCC is our EdgeCodeCloak Coder pipeline
that anonymises prompts locally using a quan-
tized DS-Coder-V2-Lite-Instruct model, calls the
DeepSeek-V3 cloud API for completion, and then
de-anonymises the result. Boldface highlights
ECCC’s perfect privacy retention despite a slight
drop in functional parity.

From Table 2, anonymisation lifts the Privacy
score from 2.0 (raw prompts) to a perfect 10.0,
while Cleanliness remains comparable (6.51 vs.
6.00 / 8.34). The functional impact is modest: 8.93
versus 9.36–9.46 for zero-shot baselines.

3.4 Analysis

The quantitative results in Tables 1 and 2 confirm
three key take-aways.

(1) Competitive correctness with lightweight
edge resources. Although ECCC runs a 4-
bit quantised model locally and delegates only
anonymised code to the cloud, respectively—on par
with much larger DS-V3 and only 4–5 pp behind
state-of-the-art GPT-4-based agent stacks. This
demonstrates that our lightweight MoE + quan-
tisation recipe can still supply strong functional
performance to edge users.

(2) Perfect privacy without degrading cleanli-
ness. Table 2 shows that the anonymisation stage
pushes the Privacy metric from 2.0 → 10.0 while
retaining Cleanliness 6.5. Zero-shot baselines ex-
pose all user identifiers; ECCC completely sup-
presses such leakage yet keeps code-only outputs
concise, satisfying downstream auto-grading.

(3) Minimal functional cost for maximal privacy.
The functional gap between ECCC (8.93) and raw
DS-V3 (9.46) is just 0.5 points, whereas the privacy
gain is +8 points.

Hence, under our scoring rubric, one point of
functional loss buys eight points of privacy—an
attractive trade-off for sensitive corporate or propri-
etary code. Closed source LLMs excel at code rea-
soning, leading to multi-agent coding frameworks,
but edge users struggle with compute, catastrophic

68

forgetting and privacy risks. ECCC mitigates all
three by (i) MoE quantisation for consumer GPUs;
(ii) leaving backbone weights frozen; and (iii) ship-
ping only anonymised ASTs to the cloud.

The empirical evidence above indicates that such
a design lets “every edge programmer” benefit from
modern LLM capabilities without sacrificing data
sovereignty.

4 Conclusion

This work introduces ECCC, an edge–cloud agent
framework. Experiments show that ECCC keeps
pass@1 within 4–5pp of GPT-4–based agent stacks
while achieving a perfect 10/10 privacy score and
preserving output cleanliness. The results verify
that lightweight quantitation, frozen backbones and
deterministic de-anonymisation together provide
a practical path for “every edge programmer” to
harness large-scale reasoning without surrendering
source-code secrecy.

References
Abanoub E Abdelmalak, Mohamed A Elsayed, David

Abercrombie, and Ilhami Torunoglu. 2025. An ast-
guided llm approach for svrf code synthesis.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Muntasir Adnan, Zhiwei Xu, and Carlos CN Kuhn.
2025. Large language model guided self-debugging
code generation. arXiv preprint arXiv:2502.02928.

Anthropic. 2023. Claude technical overview. https:
//www.anthropic.com.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Antoine Boutet, Lucas Magnana, Juliette Sénéchal, and
Hélain Zimmermann. 2025. Towards the anonymiza-
tion of the language modeling. arXiv preprint
arXiv:2501.02407.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Chun Jie Chong, Chenxi Hou, Zhihao Yao, and Seyed
Mohammadjavad Seyed Talebi. 2024. Casper:
Prompt sanitization for protecting user privacy in
web-based large language models. arXiv preprint
arXiv:2408.07004.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, and 1 others. 2023. Palm: Scaling
language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1–113.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Advances in neural information
processing systems, 36:10088–10115.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo
Li, and Zhi Jin. 2025. Codescore: Evaluating code
generation by learning code execution. ACM Trans-
actions on Software Engineering and Methodology,
34(3):1–22.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024.
Self-collaboration code generation via chatgpt. ACM
Transactions on Software Engineering and Method-
ology, 33(7):1–38.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv e-prints, pages arXiv–2407.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Zixu Hao, Huiqiang Jiang, Shiqi Jiang, Ju Ren, and
Ting Cao. 2024. Hybrid slm and llm for edge-cloud
collaborative inference. In Proceedings of the Work-
shop on Edge and Mobile Foundation Models, pages
36–41.

Micha Horlboge, Erwin Quiring, Roland Meyer, and
Konrad Rieck. 2022. I still know it’s you! on chal-
lenges in anonymizing source code. arXiv preprint
arXiv:2208.12553.

69

https://www.anthropic.com
https://www.anthropic.com

Liao Hu. 2025. Hybrid edge-ai framework for intelli-
gent mobile applications: Leveraging large language
models for on-device contextual assistance and code-
aware automation. Journal of Industrial Engineering
and Applied Science, 3(3):10–22.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen
Bu, Yuhao Qing, and Heming Cui. 2023. Agent-
coder: Multi-agent-based code generation with it-
erative testing and optimisation. arXiv preprint
arXiv:2312.13010.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024.
Self-planning code generation with large language
models. ACM Transactions on Software Engineering
and Methodology, 33(7):1–30.

Hongpeng Jin and Yanzhao Wu. 2024. Ce-collm:
Efficient and adaptive large language models
through cloud-edge collaboration. arXiv preprint
arXiv:2411.02829.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2025. Struc-
tured chain-of-thought prompting for code genera-
tion. ACM Transactions on Software Engineering
and Methodology, 34(2):1–23.

Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis
Kocetkov, Chenghao Mou, Marc Marone, Christo-
pher Akiki, Jia LI, Jenny Chim, Qian Liu, and 1
others. 2023. Starcoder: may the source be with you!
Transactions on Machine Learning Research.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, and
1 others. 2022. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2023.
Awq: Activation-aware weight quantization for on-
device llms. In Proceedings of MLSys.

Yalan Lin, Chengcheng Wan, Yixiong Fang, and Xi-
aodong Gu. 2024a. Codecipher: Learning to ob-
fuscate source code against llms. arXiv preprint
arXiv:2410.05797.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang,
Guangxuan Xiao, Chuang Gan, and Song Han.
2024b. Qserve: W4a8kv4 quantization and system
co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Sajad Mousavi, Ricardo Luna Gutierrez, Desik Ren-
garajan, Vineet Gundecha, Ashwin Ramesh Babu,
Avisek Naug, Antonio Guillen, and Soumyendu

Sarkar. 2023. N-critics: Self-refinement of large
language models with ensemble of critics. arXiv
preprint arXiv:2310.18679.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint arXiv:2203.13474, 30.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, and 1
others. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

Xuan Shen, Peiyan Dong, Lei Lu, Zhenglun Kong,
Zhengang Li, Ming Lin, Chao Wu, and Yanzhi Wang.
2024a. Agile-quant: Activation-guided quantization
for faster inference of llms on the edge. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
pages 18944–18951.

Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang
Han, Lei Lu, Peiyan Dong, Cheng Lyu, Chih-
hsiang Li, Xuehang Guo, Zhihao Shu, and 1 oth-
ers. 2024b. Edgeqat: Entropy and distribution
guided quantization-aware training for the accelera-
tion of lightweight llms on the edge. arXiv preprint
arXiv:2402.10787.

Zhili Shen, Zihang Xi, Ying He, Wei Tong, Jingyu Hua,
and Sheng Zhong. 2024c. The fire thief is also the
keeper: Balancing usability and privacy in prompts.
arXiv preprint arXiv:2406.14318.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634–8652.

Yiping Song, Juhua Zhang, Zhiliang Tian, Yuxin Yang,
Minlie Huang, and Dongsheng Li. 2024. Llm-based
privacy data augmentation guided by knowledge dis-
tillation with a distribution tutor for medical text clas-
sification. arXiv preprint arXiv:2402.16515.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan
Gao, Bing Yin, and Xiang Ren. 2023a. Scott: Self-
consistent chain-of-thought distillation. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5546–5558.

Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH
Hoi. 2023b. Rap-gen: Retrieval-augmented patch
generation with codet5 for automatic program re-
pair. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages
146–158.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances

70

https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978

in neural information processing systems, 35:24824–
24837.

Shouguo Yang, Long Cheng, Yicheng Zeng, Zhe Lang,
Hongsong Zhu, and Zhiqiang Shi. 2021. Asteria:
Deep learning-based ast-encoding for cross-platform
binary code similarity detection. In 2021 51st Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 224–236. IEEE.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023a. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809–11822.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Zhongzhi Yu, Zheng Wang, Yuhan Li, Ruijie Gao, Xi-
aoya Zhou, Sreenidhi Reddy Bommu, Yang Zhao,
and Yingyan Lin. 2024. Edge-llm: Enabling efficient
large language model adaptation on edge devices via
unified compression and adaptive layer voting. In
Proceedings of the 61st ACM/IEEE Design Automa-
tion Conference, pages 1–6.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, and 1 others. 2023. Codegeex: A pre-trained
model for code generation with multilingual bench-
marking on humaneval-x. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 5673–5684.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, and 1 others. 2024. Deepseek-
coder-v2: Breaking the barrier of closed-source
models in code intelligence. arXiv preprint
arXiv:2406.11931.

A Appendix

A.1 Evaluation Prompts

Below is the standardized prompt protocol used to
audit generated code quality, as shown in Table 3.
It incorporates dimensions aligned with both cur-
rent benchmarks and recent academic evaluation
frameworks.

By combining functional accuracy, identifier pri-
vacy, and output hygiene into a unified JSON-based
auditor protocol, our evaluation prompt frame-
work provides a rigorous, reproducible, and
human-aligned standard for comparing ECCC-
generated code against both baseline LLMs and
state-of-the-art agent architectures.

Evaluation Prompt
Role: Evaluation Auditor
Task: Assess code generation quality
across three dimensions

Evaluation Criteria:
1. Functional Correctness (0-10):

- 10: Exact behavioral match to
specification
- 8: Plausible but functionally different
- 0: No valid code produced

2. Privacy Protection (0-10):
- 10: No original identifiers leaked
- 8: The original identifiers can be
inferred.
- 4: The original identifiers can be
easily inferred.
- 2: Any identifier leakage detected
- 0: No Protection. The data has been
maliciously exploited
(by insecure websites or APIs)

3. Output Cleanliness (0-10):
- 10: Code-only output with proper fencing
- 4: Missing code fences
- 3: Excessive prose/excuses
- 0: No code.

Procedure:
1. Analyze each task result independently
2. Score all three dimensions per task
3. Calculate average scores across all tasks

Output Format:
```json
{

"task_id": {
"functional": X,
"privacy": Y,
"cleanliness": Z

},
"averages": {
"functional": A,
"privacy": B,
"cleanliness": C

}
}
```

Table 3: Standardized evaluation protocol for assessing
generated code quality.

71

A.2 System Prompts

Table 4 illustrates the two distinct prompts used in
ECCC’s architecture: one enforcing on-device pri-
vacy verification, and the other guiding the cloud
API model for anonymity-preserving code comple-
tion.

The dual-prompt design ensures that pri-
vacy verification is strictly enforced before any
anonymized code reaches the cloud, effectively
mitigating prompt-injection and identifier leakage
risks. The local PrivacyShield prompt detects
any non-placeholder token and rejects unsafe in-
put, while the cloud prompt strictly operates on
anonymized code without attempting to restore
original names.

A.3 Further Illustration of ECCC

Figure 1 presents the end-to-end flow of Edge
Code Cloak Coder (ECCC), which seamlessly in-
tegrates edge-side anonymisation, privacy verifi-
cation, cloud-assisted reasoning, and local recon-
struction into a unified, privacy-preserving code-
generation pipeline.

Figure 2 further describes the pipeline of Privacy
Shield.

Figure 2: Detailed workflow of Privacy Shield

Initially, the raw source code is loaded on the
edge device and passed through an AST-based
anonymisation module. Here, every user-defined
identifier—variables, function names, type anno-
tations—is replaced with a stable placeholder (e.g.
VAR1, FUNC2, TYPE3), while preserving Python key-

words, built-ins, literals and structural elements.
This transformation produces an anonymised snip-
pet C̃ and a private mapping table M retained only
in volatile memory.

Next, a lightweight on-device LLM (the “Priva-
cyShield”) performs a zero-output sanity check on
C̃. Driven by a strict system prompt, it scans for any
token that deviates from the placeholder schema
or built-in whitelist. If any leakage is detected,
the anonymisation step is repeated automatically;
otherwise, C̃ is deemed safe for transmission.

The anonymised code is then dispatched to a
remote cloud LLM (e.g. DeepSeek-V3) along with
a completion prompt that explicitly forbids any
reconstruction of original names. The cloud model
enhances logic, fixes bugs, or implements missing
functionality on the abstracted code, returning only
anonymised Python within fenced code blocks.

Upon receiving the cloud’s response, the edge
device uses M to deterministically restore all place-
holders to their original identifiers, yielding the
final code C′. A local test harness (e.g. pytest) exe-
cutes predefined unit tests on C′; if any test fails, the
anonymised snippet and error trace are re-sent for
a second or third refinement. This convergent loop
ensures that the delivered solution is both function-
ally correct—within three iterative rounds—and
fully private, as no raw identifiers or runtime traces
ever leave the edge device.

A.4 Extended Experiment

To assess the generality and robustness of ECCC,
we compare it not only against standard zero-shot
LLMs but also against state-of-the-art agent-based
and optimization-enhanced pipelines. Table 5 re-
ports pass@1 results on four public code bench-
marks, grouped into three blocks:

• Zero-shot LLMs: Here we include a range of
open-source and closed-source models from
AlphaCode (1.1 B) up to DS-V3 (671 B).
These results establish a baseline for out-of-
the-box capabilities without any additional
prompting or fine-tuning.

• LLM-based optimization methods: This
block shows frameworks that leverage GPT-
4 with advanced prompting strategies—such
as Reflexion, Self-Debugging and Agent-
Coder—to iteratively improve code genera-
tion. These methods represent the current
state of agent-driven improvement.

72

Local Privacy LLM Prompt Cloud API LLM Prompt
Role: You are EdgeCodeCloak–Cloud, an expert
in reasoning about anonymised Python code.

Task: You are required to anonymize all
variable/function/type names in the given code.

Replace variables as VAR, functions as FUNC,
types as TYPE.
Keep keywords, builtins,
and literal values unchanged.
Return only the anonymized code and prompt.
Do NOT explain.

Role: You are a software programmer.
Task: As a programmer, you are required to
complete the function.
Complete the Python function based on
its anonymized signature and cloaked docstring.
Return ONLY the completed function in a code
fence.
No explanations.

Constraints:
- Receive anonymized code only
- No access to original identifiers

Output Format:
```python
def FUNC1(VAR1: type) -> type:

# Implementation
return VAR2

Table 4: ECCC’s dual-prompt architecture showing the strict separation between privacy enforcement (left) and
cloud-based completion (right) tasks.

• ECCC: Using only a 4-bit quantized DS-
Coder-V2-Lite on-device plus DS-V3 in the
cloud, ECCC achieves 90.0%, 78.5%, 93.5%
and 84.7% on the four benchmarks. No-
tably, ECCC’s mean pass@1 of 86.7% lies
within 4 pp of the best GPT-4-based agent
stack (AgentCoder at 91.5%), despite its
lightweight edge component.

These extended results demonstrate that:

1. Edge-deployable models can rival massive
LLMs: Even with 4-bit quantization, DS-
Coder-V2-Lite in conjunction with cloud rea-
soning closes over 80% of the gap to a 671 B
model.

2. Competitive with advanced agent frameworks:
ECCC outperforms or matches many GPT-4-
powered optimization pipelines (e.g. Reflex-
ion, MetaGPT) on average pass@1, highlight-
ing the efficacy of our anonymisation-plus-
cloud approach.

3. Consistent multi-dataset performance:
Across both standard benchmarks (Hu-
manEval, MBPP) and their extended versions
(HumanEval-ET, MBPP-ET), ECCC main-
tains strong correctness—validating its
general-purpose applicability.

Overall, the extended experiment confirms that
ECCC’s hybrid design delivers near-state-of-the-art
code generation accuracy while preserving privacy
and operating within the compute budget of com-
modity GPUs.

A.5 Related Work

Edge Deployment of Quantized LLMs. Re-
cent work has pushed low-bit quantization to en-
able LLM inference on edge devices. AWQ
identifies and preserves salient weight channels
for 4-bit quantization, achieving strong accu-
racy with hardware-friendly kernels (Lin et al.,
2023). QServe introduces a W4A8KV4 quanti-
zation scheme with system-level optimizations to
accelerate both edge and cloud LLM serving (Lin
et al., 2024b). EdgeQAT applies entropy-guided
quantization-aware training to minimize informa-
tion distortion in attention activations for sub-8-bit
models (Shen et al., 2024b). Agile-Quant further
combines activation-guided quantization with cus-
tom SIMD kernels to deliver up to 2.5× speedups
on commodity edge hardware (Shen et al., 2024a).
However, these approaches focus solely on infer-
ence efficiency and do not provide any privacy
guarantees or integrate with cloud-assisted code
refinement.

Privacy-Preserving Prompt Sanitization.
Prompt sanitization frameworks such as ProSan
dynamically balance usability and anonymity by
replacing sensitive tokens based on importance
and self-information (Shen et al., 2024c). Casper
offers a browser-based extension to detect and
remove PII from user inputs before they reach
LLM APIs (Chong et al., 2024). Prϵϵmpt applies
cryptographic and differential privacy techniques
to formalize prompt sanitization with provable
guarantees. DP-DA leverages differentially private

73



Models HumanEval HumanEval-ET MBPP MBPP-ET Mean

Zero-Shot LLMs

AlphaCode (1.1B) 17.1 – – – 17.1
Incoder (6.7B) 15.2 11.6 17.6 14.3 14.7
CodeGeeX (13B) 18.9 15.2 26.9 20.4 20.4
StarCoder (15.5B) 34.1 25.6 43.6 33.4 34.2
CodeLlama (34B) 51.8 – 69.3 – 60.6
Llama3 (8B) 62.2 – – – –
CodeGen-Mono (16.1B) 32.9 25.0 38.6 31.6 32.0
CodeX (175B) 47.0 31.7 58.1 38.8 43.9
CodeX (175B)+CodeT 65.8 51.7 67.7 45.1 57.6
GPT-3.5-turbo 57.3 42.7 52.2 36.8 47.3
PaLM Coder 43.9 36.6 32.3 27.2 35.0
Claude-instant-1 31.1 28.1 26.9 19.9 26.5
GPT-4-turbo 57.9 48.8 63.4 47.5 54.4
GPT-4 67.6 50.6 68.3 52.2 59.7
DS-Coder-V2-Lite (16B/2.4B act.) 65.2 64.6 70.4 63.2 65.8
DS-Coder-V2-Lite (16B/2.4B act., 4-bit) 40.1 39.5 42.6 45.5 41.9
DS-V3 (671B/37B act.) 86.6 75.1 89.9 81.3 83.2

LLM-based optimisation methods with GPT-4

Reflexion 91.0 (34.6%) – 77.1 (12.9%) – 84.1 (40.9%)
Self-Debugging – – 80.6 (18.0%) – 80.6 (35.0%)
Self-Collaboration 90.2 (33.4%) 70.7 (39.7%) 78.9 (15.5%) 62.1 (19.0%) 75.5 (26.5%)
ChatDev 84.1 (24.4%) – 79.8 (12.9%) – 84.1 (40.9%)
AgentVerse 89.0 (24.4%) – 73.5 (7.6%) – 81.3 (19.6%)
MetaGPT 85.9 (27.1%) – 87.7 (28.4%) – 86.8 (45.4%)
AgentCoder (GPT-4) 96.3 (42.5%) 86.0 (70.0%) 91.8 (34.4%) 91.8 (75.9%) 91.5 (53.3%)

ECCC with local DS-Coder-V2-Lite (4-bit) and DS-V3 API

ECCC 90.0 (4.0%) 78.5 (4.5%) 93.5 (4.0%) 84.7 (4.2%) 86.7 (4.2%)

Table 5: End-to-end results of ECCC and baseline approaches on four datasets with pass@1.

data augmentation to protect private text domains
during LLM-guided generation (Song et al.,
2024). While effective for text, these methods do
not consider code-specific structures or support
iterative cloud-edge validation.

AST-based Code Anonymization. Static code
anonymization techniques operate on the AST
to obfuscate author and domain-specific arti-
facts. Horlboge et al. prove that perfect k-
anonymity is undecidable and introduce relaxed k-
uncertainty measures to evaluate code anonymiza-
tion techniques such as normalization and obfus-
cation (Horlboge et al., 2022). CodeCipher learns
a token-to-token confusion mapping over embed-
ding spaces to obfuscate source code while pre-
serving LLM utility (Lin et al., 2024a). Aste-
ria encodes ASTs into semantic vectors for cross-
platform similarity detection, illustrating rich AST
embeddings but not privacy enforcement (Yang
et al., 2021). AST-based chunking splits code into
syntactic units to improve LLM context handling
but lacks anonymization guarantees (Abdelmalak

et al., 2025). All of these methods miss the inte-
gration of privacy checks and cloud-driven code
correction.

Hybrid Edge–Cloud Collaboration. Hybrid in-
ference frameworks aim to balance edge respon-
siveness and cloud accuracy. Zhang et al. pro-
pose a small-language model (SLM) + LLM split
that dynamically offloads low-confidence tokens
to the cloud (Hao et al., 2024). CE-CoLLM in-
troduces early-exit mechanisms and cloud con-
text management for adaptive edge/cloud infer-
ence, reducing latency and cost (Jin and Wu, 2024).
SolidGPT offers a modular hybrid framework for
mobile AI apps, coordinating on-device and cloud
agents for optimal performance and privacy (Hu,
2025). EDGE-LLM presents unified compression
and adaptive layer tuning for continuous LLM
adaptation on edge devices (Yu et al., 2024). How-
ever, none of these address code-level privacy, AST
anonymization, or multi-round validate-and-refine
loops that our work integrates.

74


