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Abstract

Understanding uncertainty in large language
models remains a fundamental challenge, par-
ticularly in creative tasks where multiple valid
outputs exist. We present a geometric frame-
work using credal sets—convex hulls of prob-
ability distributions—to quantify and decom-
pose uncertainty in neural text generation, cali-
brated against human creative variation. Ana-
lyzing 500 creative writing prompts from the
WRITINGPROMPTS dataset with 10 unique
human continuations each, we evaluate four
language models across five decoding strate-
gies, generating 100,000 stories. Our credal
set analysis reveals substantial gaps in cap-
turing human creative variation, with the best
model-human calibration reaching only 0.434
(Gemma-2B with temperature 0.7). We de-
compose total uncertainty into epistemic and
aleatoric components, finding that the choice
of decoding strategy contributes 39.4% to
72.0% of total epistemic uncertainty. Model
scale shows weak correlation with calibration
quality and no significant difference exists
between base and instruction-tuned models
in calibration quality. Our geometric frame-
work provides actionable insights for improv-
ing generation systems for human-Al creative
alignment. We release our complete experi-
mental framework at https://github.com/
EstebanGarces/uncertainHuman.

1 Introduction

The deployment of large language models in cre-
ative and open-ended applications demands not
merely generating plausible text, but understanding
and calibrating the uncertainty inherent in these
generations. While uncertainty quantification has
been extensively studied in discriminative tasks
(Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2017; Ovadia et al., 2019), the challenge be-
comes substantially more complex in generative
settings where no single ground truth exists and
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Prompt: “The last person on Earth sits alone. There is
a knock on the door”

Human continuations:

e “My heart stopped. After three years of silence...”
e “I laughed. The universe’s final joke...”

e “Pizza delivery,” a voice called out...”

Model continuations (Instruct):
“The survivor cautiously approached the door...”
“They slowly walked to the door, heart pounding...
“With trembling hands, the survivor reached...”
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Figure 1: Examples of human versus model creative
variation. Top: Continuations show diverse human
interpretations versus convergent model responses. Bot-
tom: Credal sets (dashed ellipses) represent convex
hulls of diversity distributions in semantic, lexical, and
syntactic space.

quality itself becomes a multidimensional construct
(Garces Arias et al., 2025b,¢). This complexity is
particularly acute in creative writing, where the
same prompt can inspire substantially different nar-
ratives, styles, and interpretations (cf. Figure 1).

Current approaches to uncertainty quantification
in language models predominantly focus on token-
level probabilities or computationally expensive
ensemble methods (Ling et al., 2024; Zhang et al.,
2025). These methods, while valuable, fail to cap-
ture the semantic, lexical, and syntactic-level uncer-
tainty that determines whether a model appropri-
ately captures the breadth of human creative expres-
sion. More fundamentally, existing frameworks
lack principled methods for distinguishing between
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aleatoric uncertainty—the irreducible variation in-
herent in creative tasks—and epistemic uncertainty
arising from model limitations. This distinction
proves crucial for both improving model design
and establishing appropriate deployment bound-
aries. In this work, we address these limitations
through a novel framework that leverages human
variation as a natural calibration target for model
uncertainty. Our key insight is that multiple human
responses to the same creative prompt provide a
direct empirical measure of aleatoric uncertainty.
By representing both human and model variation
as credal sets—convex hulls of probability distribu-
tions over textual characteristics—we can geomet-
rically analyze whether models exhibit appropriate
uncertainty: high variation when humans disagree,
and convergent outputs when humans reach consen-
sus. This credal set approach offers several theoret-
ical and practical advantages over existing methods.
Theoretically, it provides a rigorous framework
for uncertainty decomposition that respects the in-
herently distributional nature of creative variation.
Each prompt induces its own distribution over pos-
sible continuations, and the collection of these dis-
tributions across many prompts forms a credal set
that fully characterizes the uncertainty landscape.
Practically, this framework enables direct compar-
ison between human and the model’s uncertainty
through geometric measures such as overlap co-
efficients, Hausdorff distance (Huttenlocher et al.,
1993), and volume ratios. Our empirical investiga-
tion analyzes 500 carefully selected prompts from
the WRITINGPROMPTS dataset, each accompanied
by 10 verified unique human continuations totaling
5,000 human-written stories. We evaluate four lan-
guage models—GPT2-XL (Radford et al., 2019),
Gemma-2B (Gemma-Team et al., 2024), Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023), and Llama-
3.1-8B-Instruct (Dubey et al., 2024)—generating
10 samples per configuration across five decoding
strategies, yielding 100,000 model-generated sto-
ries. Through comprehensive analysis of semantic,
lexical, and syntactic diversity, we construct and
compare credal sets that reveal systematic patterns
in how models capture or fail to capture human-like
variation.

Contributions

* We introduce credal sets—convex hulls of di-
versity distributions—as a geometric frame-
work for quantifying uncertainty in open-
ended text generation.
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* We analyze 100,000 generated stories, finding
that the best model-human calibration reaches
only 0.434 (Gemma-2B with temperature 0.7),
revealing substantial gaps in creative varia-
tion.

* We show weak correlation between model
scale and calibration (Spearman’s p = 0.400,
P 0.600) and no significant difference
between base and instruction-tuned models
(t = —-0.712, p = 0.486).

* We decompose uncertainty to reveal that de-
coding strategy choice contributes 39.4-72.0%
of total epistemic uncertainty, with base mod-
els showing higher sensitivity.

* We release our complete experimental frame-
work and datasets for reproducible research.!

2 Related Work

Uncertainty quantification in language models has
emerged as a critical research area, particularly as
these models are deployed in high-stakes applica-
tions. We organize our discussion around three
main themes: theoretical frameworks for uncer-
tainty decomposition, practical estimation methods,
and uncertainty-aware generation strategies.

2.1 Theoretical Frameworks for Uncertainty
Decomposition

The foundational challenge lies in decomposing
total predictive uncertainty into meaningful compo-
nents. Ling et al. (2024) address this for in-context
learning scenarios: They derive total predictive un-
certainty through the classical additive information-
theoretic decomposition, where the first term cap-
tures aleatoric uncertainty (inherent randomness in
the task) and the second represents epistemic uncer-
tainty (model uncertainty). They propose entropy
estimators based on variational bounds on mutual
information for practical approximation. However,
Wimmer et al. (2023) note that this distinction can
become ambiguous in pre-trained models where
the training distribution itself is uncertain.

The use of credal sets for uncertainty representa-
tion has been common in classification tasks (Zaf-
falon and Fagiuoli, 2003), but, to the best of our
knowledge, our work is the first to apply this frame-
work to open-ended generation. Credal sets provide

1https: //github.com/EstebanGarces/
uncertainHuman
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a natural representation for situations where a sin-
gle probability distribution is insufficient to capture
uncertainty, instead maintaining a set of plausible
distributions (Levi, 1980).

2.2 Practical Methods for Uncertainty
Estimation

Various practical approaches for uncertainty estima-
tion have been recently proposed: Lin et al. (2022);
Xiong et al. (2024) explore methods to verbalize un-
certainty, Kadavath et al. (2022); Liu et al. (2024);
Ulmer et al. (2024) focus on probes for LLM cali-
bration, while Pitis et al. (2023); Hou et al. (2024)
have focused on self-consistency approaches.

Recent work has developed various approaches to
estimate uncertainty without expensive ensemble
methods. Zhang et al. (2025) introduce a training-
free method injecting low-rank random weight per-
turbations during decoding to estimate token-level
uncertainties. These are aggregated into sequence-
level measures that correlate strongly with correct-
ness on mathematical reasoning benchmarks, with
epistemic uncertainty effectively identifying incor-
rect reasoning paths. While this perturbation ap-
proach elegantly estimates model uncertainty, it
focuses on uncertainty from a single fixed model.
Our work examines uncertainty arising from dif-
ferent decoding strategies and model architectures,
providing a complementary perspective on varia-
tion sources in language model outputs. Yadkori
et al. (2024) propose an information-theoretic met-
ric based on mutual information over iteratively
prompted responses, interpreting heavy dependen-
cies between subsequent responses as indicators of
high epistemic uncertainty and potential hallucina-
tion, though requiring computationally expensive
multiple inference passes. Aichberger et al. (2024)
pursue efficiency with a single-pass approximation
using negative log-likelihood of greedy outputs,
proving that high NLL correlates with high epis-
temic uncertainty under certain assumptions.

2.3 Uncertainty-Aware Generation and
Human Baselines

Garces Arias et al. (2024); Ding et al. (2025) pro-
pose uncertainty-aware decoding that dynamically
adjusts generation parameters based on local uncer-
tainty. They compute entropy H (p;) of the token
probability distribution p; at each generation step
t and adjust the truncation threshold dynamically,
demonstrating that uncertainty signals can improve
generation quality in real-time. Most directly re-
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lated to our work, Giulianelli et al. (2023) evaluate
uncertainty in neural text generators against human
production variability, arguing that well-calibrated
models should exhibit similar variation to humans.
They analyze GPT-2 on story generation with lim-
ited prompts, finding that it under-produces diver-
sity relative to human baselines. Our work sub-
stantially extends this research by: (1) scaling to
500 prompts with 10 unique continuations each, (2)
including contemporary instruction-tuned models,
(3) evaluating five decoding strategies systemati-
cally, (4) explicitly decomposing uncertainty into
aleatoric and epistemic components, and (5) provid-
ing quantitative calibration metrics based on credal
set overlap coefficients.

3 Methodology

3.1 Dataset Construction and Human
Baselines

The WRITINGPROMPTS dataset (Fan et al., 2018)
provides naturalistic creative writing data from
Reddit’s r/WritingPrompts community. We im-
plement rigorous selection criteria to ensure data
quality:

1. Uniqueness verification: We compute MD5
hashes for all stories and select only prompts
with exactly 10 unique continuations, elimi-
nating duplicates that could bias diversity mea-
surements.

Length filtering: We retain prompts between
20-500 characters and stories between 52-987
tokens (mean: 312.4, std: 148.2), ensuring suf-
ficient content for meaningful analysis while
avoiding outliers.

. Quality scoring: We prioritize prompts by the
diversity of story lengths they elicit (measured
by standard deviation), selecting those that
inspire varied responses rather than formulaic
continuations.

This process yields 500 high-quality prompts with
5,000 unique human stories, providing a robust
baseline for calibration analysis.

3.2 Model Selection and Configuration

Our model selection explores the calibration land-
scape across different architectures and training
paradigms:



Base models: GPT2-XL (1.5B) (Radford et al.,
2019) serves as a canonical autoregressive base-
line, while Gemma-2B (Gemma-Team et al., 2024)
represents modern architectural improvements at
comparable scale. These models, trained on diverse
internet text without explicit instruction following,
potentially preserve more natural variation patterns.

Instruction-tuned models: Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) and Llama-3.1-8B-Instruct
(Dubey et al., 2024) represent strong open-source
models with instruction tuning and alignment.
While offering improved controllability, we investi-
gate whether alignment training constrains creative

exploration”.

3.3 Decoding Strategy Design

We systematically evaluate five decoding strate-
gies that control output diversity through different
mechanisms:

» Temperature scaling (r € {0.7,1.2}): Di-
rectly modulates the entropy of the output dis-
tribution (Ackley et al., 1985)

Nucleus sampling (p = 0.9): Dynamically
adjusts the token consideration set based on
cumulative probability (Holtzman et al., 2020)

* Top-k sampling (k = 40): Maintains a fixed-
size token pool (Fan et al., 2018)

* Typical sampling (p = 0.95): Selects tokens
based on expected information content (Meis-
ter et al., 2023)

Each configuration generates 10 independent sam-
ples with different random seeds, totaling 100,000
model-generated stories for analysis.

3.4 Diversity Metrics

Our metric suite captures multiple dimensions of
textual variation through pairwise distance-based
measures following Giulianelli et al. (2023):

3.4.1 Semantic Diversity

We compute semantic diversity as the mean pair-
wise cosine distance between Sentence-BERT em-
beddings (Reimers and Gurevych, 2019):

2
Dem(S) = IS ;(1 — cos(e;, €5)),

2All models use appropriate prompt formatting with care-
ful post-processing to remove prompt artifacts from genera-
tions, ensuring fair comparison across architectures.
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where e; represents the embedding of story ¢ using
the all-MiniLM-L6-v2 model (Wang et al., 2020).
This captures high-level narrative and thematic vari-
ation.

3.4.2 Lexical Diversity

We measure lexical diversity using Jaccard distance
between word unigrams:
<1 ) ’

where V; represents the vocabulary set of story .
This captures variation in word choice and vocabu-
lary richness.
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3.4.3 Syntactic Diversity

We measure syntactic variation through Jaccard
distance of part-of-speech (POS) bigrams:

where P; represents the set of POS bigrams ex-
tracted using spaCy’s en_core_web_sm model
(Honnibal and Montani, 2017). This captures stylis-
tic and structural variation in the generated text.
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3.5 Theoretical Framework: Credal Sets

Our methodology rests on the principle that uncer-
tainty in creative text generation should be under-
stood relative to the natural variation exhibited by
humans facing the same creative task. We formal-
ize this through a credal set framework that cap-
tures uncertainty as a set of plausible probability
distributions rather than a single distribution.

For a given prompt p, let #,, = {h1, ..., h1o} de-
note the set of human continuations and M, ,,, ¢ =
{s1, ..., 810} denote the set of model continuations
for model m using decoding strategy d. For any set
of continuations S, we compute a diversity vector
Vp = [Dsem(s), DICX(S)7 Dsyn(S)]-

The human credal set for a collection of prompts
P is then defined as:

Cr = ConvexHull ({V{,—I :p € P}),

where each vf is the diversity vector computed
from human continuations for prompt p.
Similarly, the model credal set for a specific con-
figuration (m, d) is:

Cwm,a = ConvexHull ({véw’d :p € P}) )



The convex hull is computed using the Quickhull al-
gorithm (Barber et al., 1996) after standardizing the
diversity vectors. This representation enables geo-
metric analysis of uncertainty relationships through
set operations and distance metrics.

3.6 Calibration Analysis

Calibration quality is assessed through the overlap
coefficient of credal sets:

Calibration(M, d) = Overlap(Crx,Car.d),

where overlap is computed using nearest-neighbor
distances between credal set vertices. The overlap
coefficient is calculated as:

1 .
Overlap = 2(’{1} € Vu \Elf(vivm < 0}
M
[{v € Vig : d(v, Vi) < 9}|>
V| '

where V;; and V are the vertex sets of the model
and human credal sets respectively, d(v, V) is the
minimum distance from point v to set V', and 6
is an adaptive threshold set to half the mean vari-
ance scale. Values range from O (disjoint sets) to 1
(perfect overlap).

3.7 Uncertainty Decomposition

To decompose uncertainty, we leverage variation
across decoding strategies. For a given model
M, we collect all diversity vectors across differ-
ent strategies and compute:

Strategy centroids
cqg = mean({vi)w’d : p € P}) for each strategy d

Between-strategy variance
2 = Var({cy : d € D})

Obetween

Within-strategy variance

M.,d
O inin = meang[Var({v,"" : p € P})]

The epistemic ratio is then:

2
Obetween

+ o2 '

within

Epistemic), = —
Obetween

This quantifies the proportion of uncertainty arising
from configuration choices rather than inherent task
ambiguity.

4 Results

4.1 Human Variation as Calibration Baseline

Analysis of 5,000 human-written stories reveals
structured patterns of creative variation that estab-
lish our calibration baseline (Table 1).

40

Diversity Type Mean Std Dev
Semantic 0.645 0.066
Lexical 0.328 0.035
Syntactic 0.315 0.044

Table 1: Human diversity baselines across 500 prompts
with 10 unique continuations each, computed using pair-
wise distance metrics.

The distribution of semantic diversity across
prompts shows moderate variation with most
prompts (62%) eliciting medium diversity (0.6-
0.7), while 19% show high diversity (>0.7) and
19% show low diversity (<0.6). This suggests fun-
damental differences in prompt interpretability that
models must capture.

4.2 Credal Set Geometry and Calibration

The human credal set Cz; occupies a volume of
2.25 in the PCA-transformed diversity space, serv-
ing as the baseline for model comparison. Analy-
sis reveals a clear distinction between model types:
base models (GPT2-XL, Gemma-2B) produce com-
pact credal sets with mean volume 1.10 £ 0.56,
representing 48.9% of the human volume. In
contrast, instruction-tuned models (Mistral-7B-
Instruct, Llama-3.1-8B-Instruct) generate signif-
icantly larger credal sets with mean volume 3.87 &
1.78, corresponding to 172.1% of the human base-
line. The difference in credal set volumes between
base and instruction-tuned models is statistically
significant (Mann-Whitney U = 2.00, p < 0.001).

Principal component analysis of the diversity vec-
tors reveals strong coupling between diversity di-
mensions. PC1 explains 85.8% of variance with
nearly equal positive loadings across semantic
(0.569), lexical (0.565), and syntactic (0.597) di-
mensions, indicating that these diversity types co-
vary systematically. The dominance of PC1 sug-
gests that models exhibiting high diversity in one
dimension tend to show proportionally high diver-
sity in all dimensions, as illustrated in Figure 3.

The expanded credal sets of instruction-tuned mod-
els indicate broader exploration of the diversity
space compared to base models. However, larger
volume does not directly correspond to better cal-
ibration, as shown in Table 2 and Figure 6, in the
Appendix. This suggests that alignment with hu-
man diversity patterns depends more on the loca-
tion and shape of the credal set than its absolute
size.



Best vs Worst Calibrated Configurations in PC1-PC2 Space

Best Aligned Configurations

20 GPT2_temperature=07

Gemma_temperature=0.7
Mistral_top_k=40

Uama_temperature=1.2
ruman

15

10

PC2 (9.9% variance)

-0.5

PC1 (85.8% variance)

PC2 (9.9% variance)

Worst Aligned Configurations

|
N

-2

-2
PC1 (85.8% variance)

Figure 2: Credal sets visualization in principal component space. Human creative variation (blue) and model-
generated variation exhibit different geometric patterns and a high sensitivity with respect to the decoding configura-
tion. Points represent diversity vectors from individual prompts; convex hulls indicate credal set boundaries. PC1
explains 85.8% of the variance, suggesting a strong correlation between diversity dimensions. Best (left) and worst
aligned configurations (right), measured by the overlap of the credal sets, are presented.
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Figure 3: Overview of PCA loadings, displaying a bal-
anced contribution of semantic, lexical, and syntactic
patterns on the first principal component, which explains
a large proportion of the total variance.

4.3 Distributional Analysis via Wasserstein
Distance

Complementary analysis using Wasserstein dis-
tance at the prompt level corroborates the credal
set findings. The Wasserstein distance measures
the average distributional difference between hu-
man and model-generated diversity patterns across
all prompts. The best configuration by Wasser-
stein distance (Gemma-2B with temperature=0.7,
distance=0.065) coincides with the best-calibrated
credal set, providing independent validation of the
geometric approach. The moderate negative cor-
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relation between Wasserstein distance and calibra-
tion score (p = —0.411, p = 0.072) indicates
that while both methods capture aspects of human-
model alignment, they emphasize different charac-
teristics: Wasserstein distance weights all prompts
equally in measuring average distributional differ-
ences, while credal sets capture the geometric en-
velope of diversity behaviors. A visualization of
this comparison is presented in Figure 7.

4.4 Model Calibration Patterns

Calibration analysis reveals that no model effec-
tively reproduces human variation patterns, with
best overlap coefficients reaching only 0.434 (Table
2). Figure 5 illustrates these key findings:

Model architecture effects: Gemma-2B
achieves the best single configuration calibration
(0.434 with temperature 0.7), though Mistral-7B-
Instruct shows the highest average calibration
across all strategies (0.371). Statistical analysis
reveals weak positive correlation between model
size and calibration (Spearman’s p 0.400,
p = 0.600), suggesting model scale has limited
influence on calibration quality. Further, base
models (mean calibration: 0.274 + 0.095) show
no significant difference from instruction-tuned
models (mean: 0.305 + 0.093) in calibration quality
(t = —0.712, p = 0.486, Cohen’s d = —0.336).
Despite similar calibration scores, base and



Model Performance Summary with Decoding Strategies
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Figure 4: Overview of model performance across varying decoding strategies. Here, performance is to be understood
in terms of calibration scores with respect to human credal sets. Top-k sampling provides the highest mean
calibration, while Gemma-2B with temperature set to 0.7 achieves the best overall calibration.

Model Strategy Value Overall Cal. Overlap Centroid Dist. Volume Ratio
Gemma-2B temperature 0.7 0.434 0.033 1.096 0.924
Llama-3.1-8B-Instruct temperature 1.2 0.409 0.032 1.488 0.918
Mistral-7B-Instruct top_k 40 0.403 0.000 1.502 1.060
Mistral-7B-Instruct temperature 1.2 0.399 0.000 0.956 0.820
Mistral-7B-Instruct top_p 0.9 0.391 0.000 1.721 1.070
Gemma-2B top_k 40 0.386 0.033 1.189 0.785
Mistral-7B-Instruct typical 0.95 0.354 0.000 1.604 1.258
GPT2-XL temperature 0.7 0.333 0.000 1.386 0.692
Mistral-7B-Instruct temperature 0.7 0.309 0.000 1.945 1.450
GPT2-XL top_k 40 0.300 0.033 1.244 0.509

Table 2: Calibration metrics for top configurations. Higher values indicate better alignment with human variation.
Gemma-2B with temperature 0.7 achieves best overall calibration (0.434).

instruction-tuned models differ significantly in
their exploration of the diversity space, with
instruction-tuned models producing credal sets
3.5x larger on average (p < 0.001).

Strategy effectiveness: Top-k sampling achieves
the highest mean performance (0.323 + 0.092),
followed by temperature scaling (0.289 + 0.129).
Analysis of variance across all 20 model-strategy
combinations reveals no significant main effect of
strategy type (F'(3,16) = 0.200, p = 0.895), sug-
gesting that strategy effectiveness depends on the
specific model architecture.

4.5 Uncertainty Decomposition

Decomposition analysis reveals the relative con-
tributions of epistemic and aleatoric uncertainty
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(Table 3). Base models (GPT2-XL, Gemma-2B)
exhibit higher epistemic ratios (64.9-72.0%), in-
dicating that decoding strategy choice contributes
more than half of their total uncertainty. Instruction-
tuned models show lower epistemic ratios (39.4-
50.5%), suggesting more stable behavior across
decoding strategies but potentially at the cost of
reduced overall variation.

The within-strategy variance (aleatoric compo-
nent) remains substantial across all models (0.091-
0.224), confirming that models can generate di-
verse outputs for individual prompts. However, the
between-strategy variance (epistemic component)
highlights that generation configuration remains a
critical factor in uncertainty quantification, particu-
larly for base models.



Model-Level Uncertainty Analysis
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Figure 5: Uncertainty analysis and model performance overview. Top Left: Uncertainty decomposition showing
epistemic and aleatoric components. Top Right: Epistemic ratio by model. Bottom Left: Aleatoric uncertainty vs.
human baseline. Bottom Right: Estimated total uncertainty per model, measured over five decoding strategies.

Model Epistemic Aleatoric Total Ratio
Gemma-2B 0.233 0.091 0.324  72.0%
GPT2-XL 0.137 0.074 0211 64.9%
Llama-3.1-8B-Instruct 0.229 0.224 0.453  50.5%
Mistral-7B-Instruct 0.081 0.124 0.205 39.4%

Table 3: Uncertainty decomposition showing absolute
values and epistemic ratios. All models show substantial
epistemic uncertainty, indicating sensitivity to decoding
strategies.

5 Discussion

5.1 Theoretical Implications

Our credal set framework advances uncertainty
quantification theory for generative models in sev-
eral ways. By treating uncertainty as inherently
distributional and prompt-dependent, we move be-
yond scalar measures that collapse rich variation
patterns. The geometric interpretation through
credal set operations provides intuitive understand-
ing of miscalibration modes: models can fail
through incorrect positioning (wrong variation
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type), volume (over/under-exploration), or shape
(wrong dimensions).

The finding that best calibration reaches only
0.434 reveals fundamental gaps in how current
models capture human creative variation. The no-
tably low overlap coefficients (maximum 0.033)
indicate that model and human credal sets occupy
largely disjoint regions in diversity space, suggest-
ing that current models operate in fundamentally
different creative regimes than humans. The high
PC1 dominance (85.8% variance) with syntactic
diversity as the primary driver indicates that cur-
rent models treat diversity dimensions as tightly
coupled, potentially missing independent variation
patterns that humans explore.

5.2 Implications for Model Development

The weak positive correlation between model scale
and calibration quality (p = 0.400, p = 0.600)
suggests that while larger models may have slight
advantages, scale alone is not a determining fac-
tor for calibration quality. Our results indicate that



training objectives and data distributions likely mat-
ter more than parameter count for uncertainty cali-
bration. The lack of significant difference between
base and instruction-tuned models (t = —0.712,
p = 0.486, Cohen’s d = —0.336) with a small ef-
fect size indicates that alignment training has mini-
mal impact on creative diversity calibration. Inter-
estingly, instruction-tuned models showed slightly
higher mean calibration (0.305 vs 0.274), though
this difference was not statistically significant. The
substantial epistemic uncertainty across all mod-
els (39.4-72.0%) highlights that decoding strategy
choice remains a dominant source of variation. No-
tably, Gemma-2B shows the highest epistemic ratio
(72.0%), suggesting extreme sensitivity to decod-
ing configuration despite achieving the best single-
configuration performance. This paradox suggests
that optimal calibration may require careful strat-
egy selection rather than robust performance across
strategies.

5.3 Practical Deployment Considerations

For practitioners deploying language models in cre-
ative applications, our findings offer concrete guid-
ance:

* Model selection: Mistral-7B-Instruct offers
the most consistent performance across strate-
gies (mean calibration: 0.371), while Gemma-
2B with temperature 0.7 provides the best sin-
gle configuration (0.434).

Strategy optimization: Top-k sampling pro-
vides the highest mean calibration (0.323),
though all models show substantial epistemic
uncertainty (39-72%), making careful tuning
essential.

Baseline expectations: With maximum cal-
ibration at 0.434 and overlap coefficients of
at most 0.033, expect substantial divergence
from human creative patterns.

Multi-strategy ensemble: Given high epis-
temic ratios, combining outputs from multiple
decoding strategies is crucial for approximat-
ing human creative diversity.

Model-specific tuning: In terms of calibra-
tion, base models (especially Gemma-2B at
72% epistemic) require more careful strategy
selection than instruction-tuned models like
Mistral-7B-Instruct (39.4% epistemic).
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* Calibration vs. quality: Calibration along
semantic, lexical, and syntactic dimensions
does not necessarily indicate qualitative align-
ment between model-generated and human-
produced text. Future work will investi-
gate this relationship comprehensively using
both human evaluations and LLM-as-a-Judge
scores.

Generalizatbility: Our findings are specific
to storytelling—an open-ended task priori-
tizing communicative goals such as creativ-
ity, fluency, and engagement. To extend this
analysis to other Natural Language Genera-
tion (NLG) research areas, we suggest task-
specific calibration analyses, as different tasks
involve distinct communicative objectives and
varying degrees of human production variabil-
ity that serve as calibration benchmarks.

6 Conclusion

This work establishes credal sets as a rigorous
framework for uncertainty quantification in open-
ended text generation, enabling principled geomet-
ric comparison between human and model varia-
tion patterns. Through comprehensive analysis of
100,000 generated stories calibrated against 5,000
human-written stories, we demonstrate substantial
gaps in how current language models capture hu-
man creative variation, with the best calibration
reaching only 0.434 (Gemma-2B with temperature
0.7) and overlap coefficients at most 0.033.

Our decomposition reveals that epistemic uncer-
tainty from decoding strategy choice contributes
39.4-72.0% of total uncertainty across models, with
base models showing higher sensitivity to config-
uration choices. The weak correlation between
model scale and calibration (p 0.400, p
0.600) and lack of significant difference between
base and instruction-tuned models (p = 0.486)
challenge common assumptions about model devel-
opment priorities. The credal set framework pro-
vides actionable insights for deploying language
models in creative contexts and establishes quanti-
tative benchmarks for evaluating progress toward
human-Al creative alignment. As language mod-
els increasingly engage in open-ended generation
tasks, our findings highlight the critical importance
of decoding strategy selection and the need for
architectural or training innovations specifically
targeting uncertainty calibration.



Limitations

Several limitations warrant consideration:

* Our analysis uses convex hulls which may
not capture non-convex uncertainty regions or
multimodal distributions within credal sets.

* The 500-prompt sample from a single domain
may not generalize to other creative writing
contexts or languages.

Decoding strategies evaluated prioritize high-
probability tokens, whereas humans often se-
lect surprising, low-probability tokens for cre-
ative effect—a mismatch that may constrain
achievable calibration.

Human baselines include natural skill varia-
tion beyond pure creativity, potentially inflat-
ing aleatoric uncertainty estimates.

Computational constraints limited us to 10
samples per configuration; larger samples
might reveal finer-grained patterns.

Statistical variance alone cannot distin-
guish creative quality from random varia-
tion—validating the relationship between our
metrics and perceived creative quality is es-
sential future work.
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A Extended Results
A.1 Credal Volume Analysis

Credal Set Volume Analysis

Mean Credal Set Volumes by Model Valume vs Calibration Performance
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Figure 6: Analysis of credal set volumes for human and language models. Left: Mean credal set volumes by model
(in PCA space). Right: Relationship between calibration score and credal set volume. A positive trend for base
models (GPT2-XL and Gemma) is observed, while a negative trend is observed for instruct models (Mistral and
Llama).

A.2 Wasserstein Distance Analysis

Wasserstein Distance Analysis: Distributional Differences from Human
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Figure 7: Distributional differences between model and human productions measured by Wasserstein distances.
Left: Mean Wasserstein distances across semantic, lexical, and syntactic dimensions. Semantic features show the
largest divergence from human distributions, followed by syntactic and lexical features. Middle: Model-specific
distributional similarity. Gemma-2B achieves the lowest Wasserstein distances (closest to human distributions),
while Llama models exhibit the highest distances. Right: Inverse relationship between calibration scores and
Wasserstein distances (moderate negative correlation). Gemma-2B and Mistral appear in the upper-left section (high
calibration, low distance), while Llama appears in the lower-right quadrant (low calibration, high distance).
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A.3 Complete Calibration Results

Table 4 presents calibration coefficients for all 20 model-strategy combinations evaluated in our experi-
ments.

Model Strategy Calibration
Gemma-2B temperature_0.7 0.434
Llama-3.1-8B-Instruct  temperature_1.2 0.409
Mistral-7B-Instruct top_k_40 0.403
Mistral-7B-Instruct temperature_1.2 0.399
Mistral-7B-Instruct top_p_0.9 0.391
Gemma-2B top_k_40 0.386
Mistral-7B-Instruct typical_0.95 0.354
GPT2-XL temperature_0.7 0.333
Mistral-7B-Instruct temperature_0.7 0.309
GPT2-XL top_k_40 0.300
Gemma-2B top_p_0.9 0.286
Gemma-2B typical_0.95 0.279
GPT2-XL top_p_0.9 0.240
GPT2-XL typical_0.95 0.231
Llama-3.1-8B-Instruct  typical_0.95 0.215
Gemma-2B temperature_1.2 0.212
Llama-3.1-8B-Instruct  top_k_40 0.199
Llama-3.1-8B-Instruct  temperature_0.7 0.196
GPT2-XL temperature_1.2 0.188
Llama-3.1-8B-Instruct  top_p_0.9 0.175

Table 4: Complete calibration results for all model-strategy combinations, sorted by calibration coefficient.

A.4 Statistical Tests

We conducted comprehensive statistical analyses to validate our findings:

* Model size vs calibration: Spearman’s p = 0.400 (p = 0.600), indicating weak positive correlation
without statistical significance.

* Base vs instruction-tuned: Two-sample t-test: ¢ = —0.712 (p = 0.486), no significant difference.
Cohen’s d = —0.336 (small effect size).

* Strategy comparison: ANOVA across strategies: F'(3,16) = 0.200 (p = 0.895), no significant
differences between strategies.

* Best performing model: Mistral-7B-Instruct showed highest mean calibration (0.371) across all
strategies.

* Best performing strategy: Top-k sampling achieved highest mean calibration (0.323 + 0.092) across
all models.

B Implementation Details

B.1 Computational Resources

All experiments were conducted on Google Colab with the following specifications:
* GPU: NVIDIA A100 (40GB) or V100 (16GB)
* RAM: 25-50GB depending on instance
 Storage: Google Drive for persistent storage

* Total compute time: Approximately 8 hours for generation, 1 hour for analysis
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B.2 Model Configurations

Models were loaded with the following optimizations:
* 4-bit quantization for models >3B parameters using BitsAndBytes
* Flash Attention 2 where supported
* Batch sizes optimized per model (8-25 samples)
* Automatic mixed precision (AMP) with fp16

B.3 Diversity Metric Computation

Semantic embeddings were computed using Sentence-BERT (all-MiniLM-L6-v2) with the following
parameters:

* Maximum sequence length: 512 tokens
* Batch size: 64 for encoding
* Pooling: Mean pooling over token embeddings

POS tagging was performed using spaCy’s en_core_web_sm model with a maximum text length of
5000 characters for efficiency.
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