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Abstract

Uncertainty awareness is essential for large lan-
guage models (LLMs), particularly in safety-
critical domains such as medicine where erro-
neous or hallucinatory outputs can cause harm.
Yet most evaluations remain centered on accu-
racy, offering limited insight into model con-
fidence and its relation to abstention. In this
work, we present preliminary experiments that
combine conformal prediction with abstention-
augmented and perturbed variants of medical
QA datasets. Our early results suggest a pos-
itive link between uncertainty estimates and
abstention decisions, with this effect amplified
under higher difficulty and adversarial pertur-
bations. These findings highlight abstention as
a practical handle for probing model reliability
in medical QA. Our codes will be released.

1 Introduction

Uncertainty is a defining feature of human lan-
guage: ambiguity, underspecification, and incom-
plete information are the rule rather than the ex-
ception. Nevertheless, most NLP evaluation con-
tinues to assume that such ambiguities must be
resolved, with accuracy as the dominant metric.
This assumption becomes especially problematic
in high-stakes domains such as medicine, law, and
finance (Thirunavukarasu et al., 2023; Guha et al.,
2023; Wu et al., 2023; Achiam et al., 2023; Chang
et al., 2024), where overconfident but incorrect an-
swers can cause harm.

Recent advances show that large language mod-
els (LLMs) can achieve near-expert performance
on many tasks (Achiam et al., 2023), but their
reliability hinges not only on being right when
confident, but also on knowing when not to an-
swer. In medical QA, for instance, users fre-
quently pose ambiguous or even unanswerable
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queries (Thirunavukarasu et al., 2023), where cali-
brated abstention could prevent hallucinations and
unsafe recommendations (Kirichenko et al., 2025).
Existing benchmarks such as MedQA, MedQA-CS,
and MedMCQA (Jin et al., 2021; Yao et al., 2024;
Pal et al., 2022) mainly measure accuracy, leaving
open the question of whether models can represent
and act on their own uncertainty.

At the same time, broader efforts in uncer-
tainty quantification (UQ) for LLMs, such as LM-
Polygraph (Fadeeva et al., 2023; Vashurin et al.,
2025), have begun to systematize estimation meth-
ods and provide unified implementations, while
work in medical text analysis (Vazhentsev et al.,
2025) highlights selective prediction as a practical
approach to safety in diagnosis. These directions
reinforce the importance of studying abstention-
aware evaluation in medical QA, where ambiguity
and incomplete context are unavoidable. We use
medical multiple-choice QA as a controlled proxy
for clinical decision making: its finite option space
yields precise uncertainty sets and abstention rules,
and the resulting signals about when to answer or
defer carry over to broader medical NLP tasks.

In this work, we present ongoing work on absten-
tion and uncertainty in medical multiple-choice QA.
We combine conformal prediction (Angelopoulos
et al., 2020) with adversarial perturbations and
abstention-augmented questions to probe how mod-
els behave under ambiguity. Our preliminary find-
ings suggest a consistent positive association be-
tween uncertainty and abstention: when given the
explicit option to abstain, models tend to signal
higher uncertainty, with effects amplified on more
difficult and perturbed questions. We take these re-
sults as tentative evidence that abstention can serve
as a conservative and responsible mechanism for
handling uncertainty in medical QA with LLMs.
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2 Related Work

Uncertainty Quantification and Conformal Pre-
diction Estimating uncertainty is critical for trust-
worthy AI, yet common tools such as entropy, cal-
ibration, Bayesian inference, and ensembling of-
ten miscalibrate or are impractical for black-box
LLMs (Fomicheva et al., 2020; Gawlikowski et al.,
2023; Abdar et al., 2021; Hu et al., 2023; Wimmer
et al., 2023; Kwon et al., 2020; Rahaman et al.,
2021). Conformal prediction (CP) offers model-
agnostic, statistically grounded guarantees and has
shown strong results in NLP and MCQA (An-
gelopoulos and Bates, 2021; Kumar et al., 2023;
Kapoor et al., 2024; Deutschmann et al., 2024;
Ye et al., 2024). We extend CP-based evaluation
to both open and closed models, linking uncer-
tainty to abstention in real-world MCQA, and situ-
ating verbalized confidence and aggregation base-
lines for black-box LLMs (Tian et al., 2023; Xiong
et al., 2023). Beyond CP, frameworks such as LM-
Polygraph (Fadeeva et al., 2023; Vashurin et al.,
2025) systematize estimation methods and provide
extensible evaluation environments, underscoring
the growing demand for unified UQ infrastructure.

Abstention, Refusal, and Calibration in LLMs
Abstention, understood as deferring under uncer-
tainty, spans from classic classification to mod-
ern LLMs (Yin et al., 2023; Wimmer et al., 2023;
Amayuelas et al., 2023). Although some bench-
marks add explicit abstain or “cannot answer” op-
tions, standardized MCQA evaluation, especially
for proprietary models, remains scarce (Brahman
et al., 2024; Madhusudhan et al., 2024). Existing
approaches such as verbalized uncertainty, prompt-
ing, finetuning, and post-hoc rejection often show
limited calibration or generalization (Lin et al.,
2022; Xiong et al., 2023; Chen et al., 2024; Varsh-
ney and Baral, 2023; Vashurin et al., 2025). In
medicine, selective prediction has been studied as
a practical strategy for low-confidence cases, with
recent work introducing HUQ-2, a hybrid method
that combines aleatoric and epistemic uncertainty
across tasks like mortality prediction, ICD cod-
ing, and mental health detection (Vazhentsev et al.,
2025; Ashfaq et al., 2023; Peluso et al., 2024).
These studies show abstention reduces overconfi-
dent errors and even supports label-level abstention
in multi-label settings. Yet applications to medical
QA remain limited, motivating our study. Our QA
focus complements classification-centric selective
prediction by converting uncertainty into explicit

answer-or-abstain decisions that generalize to defer
or retrieve policies in clinical NLP.

Reasoning, Prompting, and Hallucination in
LLMs Reasoning-tuned models and chain-of-
thought (CoT) prompting improve accuracy in
math, science, and clinical QA (Zelikman et al.,
2022; Luo et al., 2023; Muennighoff et al., 2025;
Guo et al., 2025; Cobbe et al., 2021). Yet accuracy-
centric evaluation neglects overconfidence and
answer-at-all-costs behavior, compounding hallu-
cination risks (Kadavath et al., 2022; Yin et al.,
2024; Wen et al., 2025; Huang et al., 2025). Cur-
rent benchmarks such as AbstentionBench, CO-
CONOT, and Abstain-QA mainly emphasize open-
domain settings, seldom probing abstention un-
der adversarial or perturbed MCQA or scaling ef-
fects (Kirichenko et al., 2025; Brahman et al., 2024;
Madhusudhan et al., 2024; Ma et al., 2024; Rah-
man et al., 2024; Shi et al., 2023). We analyze
how prompting and scale interact with abstention
reliability in clinical MCQA.

3 Methodology

Our approach focuses on medical multiple-choice
question answering (MCQA) tasks, consistent with
the evaluation structure of the Open Medical-LLM
Leaderboard.1 The MCQ format is especially suit-
able for uncertainty analysis via conformal predic-
tion, which requires a well-defined output label
space Y (for more details, see Appendix A).

3.1 Datasets

We select the following medical MCQA datasets
for evaluation: MedQA (USMLE) (Jin et al.,
2021): The MedQA dataset is a large-scale,
multiple-choice QA benchmark derived from pro-
fessional medical licensing exams, typically 4–5
answer options per question. AMBOSS (Gilson
et al., 2023) 2: The AMBOSS dataset consists
of clinical reasoning items for assessing medical
decision-making and—through stratified difficulty
annotations—supports systematic study of absten-
tion strategies across difficulty levels; the dataset is
private and used for research on medical QA and
reasoning.
Dataset variants To evaluate the model’s confi-
dence, abstention behavior, and the correlation be-
tween the two, we construct multiple dataset vari-

1https://huggingface.co/blog/
leaderboard-medicalllm

2https://www.amboss.com/us
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ants. These variants are designed to probe how dif-
ferent conditions—such as missing information or
the presence of an abstention option—affect model
predictions, combined with the difficulty stratifica-
tion of the questions.
Abstention This variant, also henceforth referred
to as A (Abstention Variant), introduces an explicit
abstention option to each question, allowing the
model to refrain from answering when uncertain.
Perturbing This variant, also henceforth referred
to as NAP (No-Abstention + Perturbed Variant),
aims to assess the model’s confidence when essen-
tial information is missing.
Abstention + Perturbing This variant, also hence-
forth referred to as AP, combines both abstention
and perturbation. The model is presented with ques-
tions where some necessary information has been
removed, along with the option to abstain from
answering.

3.2 Evaluation Metrics

The models are evaluated on the following metrics
for each of the datasets and their variants. More
details in Appendix A. Accuracy: Accuracy mea-
sures how often the model’s top prediction matches
the correct label. Conformal Prediction: We com-
pute conformal scores using both the Least Am-
biguous Classifier (LAC) and Adaptive Prediction
Set (APS) scoring functions. Abstention Rate:
Abstention rate is the percentage of test instances
where the model outputs the abstention option. We
report this value for the Abstention and Perturbed
Abstention dataset variants.

4 Experiments

We evaluate a broad set of both open-source and
closed-source LLMs, spanning multiple architec-
tural families and model scales. This diverse selec-
tion allows us to assess the generality of abstention
and uncertainty behaviors across different LLM
paradigms. Section B provides a comprehensive
list of the models used for the study.

Under each experimental condition, models are
prompted to output a single answer token (the se-
lected option), and accuracy is computed by com-
paring this token with the gold label. The logit cor-
responding to the emitted token, together with the
logits for the remaining candidate choices, is then
extracted to compute conformal-prediction scores.
For closed-source GPT-family models, these scores
are derived from the API-exposed top-logprobs.

5 Results and Discussion

Comparison of APS and LAC Distributions As
shown in Fig.2(a), APS produces tighter, lower-
variance set-size distributions than LAC across
both datasets, suggesting more stable threshold-
ing. Under AP conditions, APS distributions also
crowd near the upper limit, indicating that predic-
tion sets frequently expand to include most options.
This compactness carries over when conditioning
on correctness (Fig.2(b)), where APS remains less
variable, though still skewed toward larger sets for
incorrect answers. Together, these patterns suggest
that APS offers more consistency in how uncer-
tainty maps to abstention. By contrast, LAC pro-
duces broader set-size distributions (Fig.2(a)), with
a wider gap between correct and incorrect cases
and heavier right tails (Fig.2(b)). This separation is
particularly visible in MedQA, where LAC more
distinctly highlights error-prone instances. While
less stable for thresholding, LAC may therefore
be more useful in contexts where surfacing likely
mistakes – for example, for human review or triage.

Effect of difficulty across different settings
Across settings (Fig. 1), APS behaves like an un-
certainty signal: APS–abstention is consistently
positive and APS–accuracy consistently negative.
Across difficulty levels, the trend is modestly up-
ward but non-uniform, see appendix: C. With diffi-
culty, APS–abstention strengthens in NoCoT, weak-
ens under CoT, is roughly flat in few-shot, and ticks
up under perturbations (and mildly in zero-shot/not-
perturbed). APS–accuracy grows more negative
with difficulty for NoCoT/zero-shot/perturbed runs,
but becomes less negative under CoT and is flatter
when not perturbed.

LAC exhibits a nuanced profile: LAC–accuracy
is consistently negative, whereas LAC–abstention
is prompt-dependent—positive under NoCoT but
declining with difficulty; under CoT it is slightly
negative at d1–d2, 0 at d3, and only mildly pos-
itive by d4–d5. Few-shot mainly increases error
risk (more negative APS–/LAC–accuracy) and has
small, non-monotonic effects on APS–abstention;
for LAC–abstention it remains positive in No-
CoT but 0/negative on easy CoT. Overall, CoT
weakens the set-size–abstention link, though both
metrics still flag accuracy risk. Perturbations
heighten uncertainty:they raise APS–abstention,
make APS–accuracy more negative, and shift LAC
similarly.
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Figure 1: Grouped-bar correlations (Spearman ρ) across difficulty (d1–d5) and settings. Panels: (TL) APS -
abstention, (TR) APS - accuracy, (BL) LAC - abstention, (BR) LAC - accuracy. Desired pattern: (TL,BL) positive
and (TR,BR) negative.

6 Conclusion

In this study, we asked how item difficulty shapes
model uncertainty and abstention, and how two
set-size signals: LAC and APS, serving as uncer-
tainty proxies across prompting style (CoT vs. No-
CoT), demonstration count (zero- vs. few-shot),
and input perturbations. We find a strong, positive
uncertainty–abstention relationship and a consis-
tently negative association between both APS/LAC

and accuracy. Averaged over datasets, increasing
difficulty does not materially change aggregate un-
certainty or abstention. Practically, APS is a reli-
able gate for abstention across conditions, while
LAC is a robust indicator of accuracy risk whose
coupling to abstention weakens with CoT: espe-
cially on easier items. APS produces tighter, more
stable distributions, whereas LAC yields clearer
separation between correct and incorrect answers,
suggesting complementary strengths in threshold-

Figure 2: Distribution of conformal-prediction set sizes: (a) across variants NA, A, NAP, and AP, (b) by correctness
for both datasets; mean shown as dashed line
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ing versus error triage.

7 Limitations

First, the study is confined to English-language
datasets, limiting its applicability to multilingual
or non-English medical contexts. Expanding the
benchmark to additional languages and healthcare
systems is essential for broader relevance.

Second, while both open- and closed-source
LLMs across diverse architectures and scales are in-
cluded, the coverage is inherently finite. Given the
rapid evolution of model capabilities and training
paradigms, the reported findings may not general-
ize to future or unreleased models.

Finally, the evaluation centers on multiple-
choice QA, whose structured label space facili-
tates conformal prediction and abstention analy-
sis. However, this focus overlooks the complexity
of real-world clinical reasoning and open-ended
tasks, where uncertainty manifests differently. Ex-
tending abstention-aware evaluation to generative,
free-form, and multi-modal settings remains a key
direction for future work.

8 Ethics Statement

In this study, we examine large language models
for medical question answering with a particular
focus on abstention and uncertainty. Evaluation is
carried out on two datasets: the publicly available
MedQA benchmark and a proprietary clinical QA
set provided by AMBOSS. MedQA is openly dis-
tributed for research, whereas access to AMBOSS
is restricted by license and the dataset is used ex-
clusively for internal evaluation under the terms of
a research agreement.

The experiments rely solely on de-identified
or synthetic exam-style material; no patient-
identifiable data are involved. All procedures fol-
low established ethical standards for research using
such resources. Our goal is to advance the safe
and reliable use of LLMs in high-stakes medical
contexts, emphasizing mechanisms to counter over-
confidence and hallucination. The datasets, bench-
mark variants, and analyses are intended strictly for
research purposes and are not designed for direct
integration into clinical workflows.

Although abstention mechanisms can reduce the
risk of severe errors, they do not eliminate bias or
inaccuracy, as models may still reproduce artifacts
from their training data or benchmarks. Accord-
ingly, abstention should be seen as a supplement

to—not a replacement for—clinical validation and
human oversight.

All models and APIs are employed in their orig-
inal, unmodified form, and any subsequent use
of the benchmark must respect the corresponding
licenses and terms of service. To support trans-
parency and reproducibility, we release the bench-
mark and code under a CC-BY-NC 4.0 license. The
AMBOSS dataset itself is not part of this release.
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A Evaluation Metrics

Conformal Prediction Conformal Prediction
(CP) provides a statistically rigorous way to quan-
tify uncertainty (Angelopoulos and Bates, 2021).
Given a model f and a test instance xt, we compute
a prediction set C(xt) ⊆ Y of plausible answers
such that:

P (yt ∈ C(xt)) ≥ 1− α

where α is a user-set error rate. The size of the
prediction set, or Set Size (SS), reflects the model’s
confidence: |C(xt)| = 1 implies highest confi-
dence, and larger sets reflect higher uncertainty.

We compute conformal scores using both the
Least Ambiguous Classifier (LAC) and Adaptive
Prediction Set (APS) scoring functions:
1) Adaptive Prediction Set (APS)

APS: s(x, y) =
∑

y′:f(x)y′≥f(x)y

f(x)y′

2) Least Ambiguous Classifier (LAC)

LAC: s(x, y) = 1− f(x)y

where f(x)y is the probability assigned to label
y. Using a calibration set, we compute a quantile
threshold q̂α and define the conformal prediction
set for each test instance x as:

C(x) = {y ∈ Y | s(x, y) ≤ q̂α}

where q̂α is the (1 − α) quantile of calibration
scores.

B Experiment Models

To evaluate performance across varying model
scales and architectural families, we benchmark
a diverse set of both open-source and closed-source
models, listed below:

Open-source Models:

• LLaMA Family: 3 4 Llama3.2-1B-Instruct,
Llama3.2-3B-Instruct, Llama3.1-8B-Instruct

• Phi Family: Phi-4-mini5, phi-46

3https://huggingface.co/collections/
meta-llama/llama-32-66f448ffc8c32f949b04c8cf

4https://huggingface.co/meta-llama/Llama-3.
1-8B

5https://huggingface.co/microsoft/
Phi-4-mini-instruct

6https://huggingface.co/microsoft/phi-4

• Qwen Family: 7 8 Qwen2.5-0.5B-
Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-
3B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-
14B-Instruct, Qwen2.5-32B-Instruct, Qwen3-
0.6B, Qwen3-1.7B, Qwen3-4B, Qwen3-8B,
Qwen3-14B, Qwen3-32B

• Gemma Family: gemma-3-4b9, medgemma-
4b-it10

Closed-source Models:

• GPT Family: gpt-4.1-nano-2025-04-14, gpt-
4.1-mini-2025-04-14, gpt-4o-mini-2024-07-
18, gpt-4o-2024-08-06, gpt-4.1-2025-04-14

C Additional Results Discussion

Across all comparisons, abstention has a slight up-
trend with difficulty but not a consistent increase,
and variance grows under perturbation and at the
highest difficulty levels, consistent with greater het-
erogeneity or fewer items per stratum. Effects dif-
fer in magnitude across conditions: CoT exerts
limited influence on abstention relative to pertur-
bation (↑ abstention) and few-shot prompting (↓
abstention), but it meaningfully alters how set size
relates to the decision to abstain—especially on
easier items. For completeness, it is useful to pair
these correlation patterns with risk–coverage or
selective-accuracy summaries by stratum, to ver-
ify that improved error signaling from APS/LAC
translates into better risk control at comparable
coverage.

C.0.1 Zero-shot vs Few-shot
As can be seen from 3, Providing demonstrations
amplifies error signaling more than abstention sig-
naling. Few-shot runs systematically make both
APS–accuracy and LAC–accuracy more negative
across difficulty strata, indicating that larger pre-
diction sets track error risk more faithfully when
demonstrations are present. By contrast, the ef-
fect on APS–abstention is small and irregular
with difficulty, suggesting that demonstrations pri-
marily reshape confidence within the commit re-
gion rather than pushing the model to defer. For
LAC–abstention, the NoCoT condition preserves
a positive association across strata, whereas under

7https://huggingface.co/collections/Qwen/
qwen25-66e81a666513e518adb90d9e

8https://huggingface.co/collections/Qwen/
qwen3-67dd247413f0e2e4f653967f

9https://huggingface.co/google/gemma-3-4b-it
10https://huggingface.co/google/medgemma-4b-it
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Figure 3: Amboss zero v few shot performance across
difficulty settings d1-d5

CoT the easy-difficulty caveat persists (near-zero or
slightly negative at d1–d2) before turning weakly
positive by d4–d5. Together, these patterns im-
ply that demonstrations improve the calibration of
which answers are risky without uniformly increas-
ing the tendency to abstain.

C.0.2 Cot vs No Cot

Figure 4: Amboss cot v nocot performance across diffi-
culty settings d1-d5

Fig 4 demonstrates reasoning changes how
prediction-set size maps to the abstain decision.
APS remains positively associated with abstention
with or without CoT, but its strength diminishes
with difficulty under CoT while increasing in No-
CoT. This indicates that generating rationales en-
courages commitment on harder items even when
the prediction set is larger, possibly because inter-
mediate reasoning consolidates probability mass
on a preferred candidate. For LAC, CoT partially
decouples set size from abstention at easy levels:
the model may explore more candidates yet still
commit, so larger LAC does not reliably imply
greater deferral at d1–d2; only by d4–d5 does the

LAC–abstention link re-emerge as mildly positive.
Importantly, APS–accuracy and LAC–accuracy re-
main negative in all cases, so both set sizes continue
to flag accuracy risk even when CoT reduces their
influence on abstention behavior.

C.0.3 Perturbed vs Not Perturbed

Figure 5: Amboss pert v nopert performance across
difficulty settings d1-d5

Noise generally sharpens uncertainty signals
and increases deferral as observed in 5. Pertur-
bations raise APS–abstention at every difficulty
level and make APS–accuracy more negative, with
the largest shifts at higher difficulties. For LAC,
perturbations push correlations in the same direc-
tions—more positive with abstention (especially
in NoCoT) and more negative with accuracy over-
all—consistent with broader or less concentrated
prediction sets under input shift. The CoT inter-
action holds: under CoT, LAC remains a weak
abstention trigger at easier difficulties even as its
negative relation to accuracy persists, indicating
that reasoning can sustain commitment under mild
noise while still reflecting error risk in set size.
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