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Abstract

Large Language Models (LLMs) are increas-
ingly being used in real-world applications.
However, concerns about the reliability of the
content they generate persist, as it frequently
deviates from factual correctness or exhibits
deficiencies in logical reasoning. This paper
proposes a novel decoding strategy aimed at
enhancing both factual accuracy and inferential
reasoning without requiring any modifications
to the architecture or pre-trained parameters of
LLMs. Our approach adjusts next-token prob-
abilities by analyzing the trajectory of logits
from lower to higher layers in Transformers
and applying linear regression. We find that
this Decoding by Logit Trajectory-based ap-
proach (DeLTa) effectively reinforces factuality
and reasoning while mitigating incorrect gener-
ation. Experiments on TruthfulQA demonstrate
that DeLTa attains up to a 4.9% improvement
over the baseline. Furthermore, it enhances
performance by up to 8.1% on StrategyQA and
7.3% on GSMB8K, both of which demand strong
reasoning capabilities. !

1 Introduction

Natural language processing has advanced sig-
nificantly with the rise of large language mod-
els (LLMs) (OpenAl, 2024; Dubey et al., 2024).
However, ensuring the factual accuracy of LLM-
generated text remains challenging. A notable issue
is hallucination, where models produce factually
incorrect content, posing risks in fields like infor-
mation retrieval, medicine, and law (Huang et al.,
2024). Calculation errors in the logical reason-
ing further contribute to inaccuracies, stemming
from incorrect token predictions during decoding.
Mitigation strategies for these issues include the
selection of dataset, modifications to loss func-
tions (Ouyang et al., 2022), and the incorporation
“Work done while at Kyoto University.
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Figure 1: Overview of DeLTa. When input tokens are
fed into the LLM, the logits from each layer (e.g., layers
30, 31, and 32) are computed and shown as bar graphs
to illustrate changes between tokens (e.g., "Seattle" vs.
"Olympia"). A linear regression (red line) approximates
the logit trajectory (blue dots). Using this regression, we
extrapolate the logits for a virtual 33rd layer (red dot)
and improve prediction beyond the original outputs.

of external knowledge (Wan et al., 2024). However,
implementing these methods requires refining mod-
els or acquiring additional data, which can incur
substantial costs.

To overcome these limitations, we propose a de-
coding strategy, that boosts generation accuracy
without extra training or data. Inspired by Chuang
et al. (2024), who observed that correct token prob-
abilities tend to rise in higher Transformer layers,
we introduce Decoding by Logit Trajectory-based
approach (DeLTa), which treats each layer’s logits
as a time-series and use linear regression to predict
upper-layer logits (Figure 1).

Experiments demonstrate that DeLL'Ta enhances
factuality by up to 4.9% on TruthfulQA, 5.0%
on TriviaQA, and 2.4% on Natural Questions,
while also improving reasoning on StrategyQA and
GSMBS8K by up to 8.1%. These findings confirm
that DeLTa refines token prediction, leading to im-
proved factuality and reasoning capabilities.
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2 Related Work

Previous research on guiding LLMs to generate fac-
tually accurate text can be broadly categorized into
training-based (Lin et al., 2024; Liang et al., 2024)
and non-training-based approaches. DeLTa falls
into the latter category. Among non-training-based
methods, Chang et al. (2024) introduced Asymp-
totic Probability Decoding, which extrapolates out-
put probabilities from LLMs of different sizes un-
der Contrastive Decoding (CD) (Li et al., 2023).
Another method, Sharma et al. (2024) showed that
certain capabilities of Transformers are concen-
trated in the latter layers and achieved improve-
ments in sentiment classification by applying linear
extrapolation to a text classifier based on CD. These
approaches estimate probabilities using linear re-
gression or extrapolation, relying on only two data
points (e.g., the outputs of two models or an in-
termediate layer and the final layer). In contrast,
DeLTa predicts logits instead of probabilities and
performs regression across the entire sequence of
logits from intermediate layers to the final layer,
then recalculates the probability values. Another
non-training-based approach, DoLa (Chuang et al.,
2024), uses the difference in log probabilities be-
tween a lower and higher layer of the model within
CD to encourage factually based text generation.

3 Method

DeLTa aims to improve the probability of generat-
ing the correct token during decoding by focusing
on changes in the logits across the Transformer’s
layers. Specifically, when decoding the next token
in an N-layer Transformer, we regard the logits
produced by each layer as a time series (§ 3.1).
Based on the observation that higher layers gener-
ally assign higher probabilities to the correct token
(Chuang et al., 2024), we employ a simple linear
regression model (§3.2) to predict the logits of the
higher layers. By leveraging the upward trend from
lower to higher layers, this approach enhances the
final prediction performance.

3.1 Token Probability at Arbitrary Layers

Let z; denote the token at position ¢, and let the pre-
ceding token sequence be z«; = {z1,...,2-1}.
The application of the Logit Lens (nostalgebraist,
2020), enables the computation of the hypothetical
probability distribution at any arbitrary layer de-
noted by the set of all possible values of the layer,

ie, /(1< <N).

Py(xy | £<4) = softmax (logit(e)> € X.

x4
Here, softmax represents the softmax function,
and X denotes the vocabulary set.

3.2 Decoding by Logit Trajectory

We employ a linear regression to model changes in
logits across Transformer layers, thereby enabling
the estimation of logits at virtual layers. Because
the probability of the correct token generally in-
creases in higher layers, we explicitly learn this
upward trend to produce more reliable token proba-
bilities. Concretely, we select an intermediate layer
Npig (1 < Nppig < N — 1) and use its logit vec-
tors up to the final layer IV to estimate logits. We
then compute token probability Pr,(z; | <) for a
virtual layer L (L € R)

Linear Regression. We define the explanatory
variable X ¢, as the Transformer layer indices and
the response variable Y., as the logit vectors:
Xreg — [Nmid7Nmid + 17 Y N}v

Yiee = [logitMmid) logitVmiatl) .. ogitV)]

Based on the least squares method, the estimated
logit at a virtual layer L is computed as follows:

/\.(L) ~ ~
logit =By + B1L,

where Bo is the intercept and Bl is the regression
coefficient. These parameters are determined by:

) ) ~ C Xre 7)/;6

Here, E, V, and C represent the mean, variance,
and covariance, respectively.

Token Probability Computation. The final to-

_— (L
ken probability is computed from logit logit( ),
filtered by the candidate token set Vyeaq:

R —— (L)
Pr(xy | 2ey) = softmax(logltvhead)mt.

Here, the candidate set WV} caq 1S determined follow-
ing Chuang et al. (2024) as:

Vhead = {2 € X 1 Py | m<4) >

amua}XPN(w | x4)}. (1)

Tokens that are not included in the candidate set
are assigned a probability of 0.
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Factuality

CoT
Model TruthfulQA (Open QA) Closed QA Reasoning
%Truet  %Infot  %True*Infot | TriviaQA NQ | StrQA  GSMSK

Qwen2.5-7B 68.9 92.4 64.1 39.1 11.5 76.9 78.7
+ filter 67.4 93.3 60.7 44.1 13.0 78.1 81.6
+ DolLa (early-layer) 71.2 91.6 62.9 41.9 12.8 73.8 76.3
+ DoLa (late-layer) 79.6 75.0 55.0 33.6 10.2 67.7 67.9
+ DeLTa 66.8 98.0 65.4 44.1 13.0 81.2 81.6
Mistral-7B-v0.1 56.3 95.3 53.8 51.3 16.0 65.3 31.0
+ filter 59.4 81.1 40.9 54.5 18.2 69.7 35.8
+ DolLa (early-layer) 50.5 91.7 429 53.2 17.2 69.3 334
+ Dol a (late-layer) 51.2 91.2 429 53.3 17.0 71.3 33.7
+ DeLTa 54.3 92.1 47.0 54.1 17.9 72.5 38.2
Llama-3.1-8B 50.8 90.1 44.0 50.0 14.0 64.0 42.8
+ filter 50.7 95.2 46.9 53.8 16.4 66.0 47.8
+ DolLa (early-layer) 48.9 99.0 48.2 53.2 15.6 66.4 46.1
+ DolLa (late-layer) 49.2 99.3 48.5 53.1 15.3 64.9 459
+ DeLTa 51.5 97.1 48.9 53.8 16.4 721 50.1

Table 1: Experimental results on (1) factuality tasks, including Truthful QA, TriviaQA, and Natural Questions (NQ)
and (2) reasoning tasks involving Chain-of-Thought (CoT), including StrategyQA (StrQA) and GSMS8K. Bold
values represent the highest scores. DeL.Ta achieves a strong performance on the %True*Info metric for Truthful QA
and shows substantial improvements across multiple benchmarks, including TriviaQA and GSMS8K. Importantly, in
GSMSK, which requires not only factual knowledge but also arithmetic reasoning, DeLTa outperforms the baseline
by more than 7 points. These results indicate that DeLTa enhances both knowledge-intensive tasks and complex

reasoning capabilities.

4 Experiments

4.1 Setup

Models and Baselines. We use Qwen2.5-
7B (Qwen Team, 2024), Mistral-7B-v0.1 (Jiang
et al., 2023), and Llama-3.1-8B (Dubey et al.,
2024), comparing them with four baselines. The
first baseline is the raw model output. The second
baseline (filter) applies Vyeaq (Equation (1)) to the
raw model output. This baseline is specifically in-
troduced to determine whether the performance im-
provement of our method primarily results from the
filtering mechanism rather than from DeLTa. The
third and fourth baselines, DoLa (early-layer) and
DoLa (late-layer), are derived from DoLa (Chuang
et al., 2024), a state-of-the-art decoding method
that significantly enhances generation quality by
leveraging the difference in log probabilities be-
tween an intermediate layer and the final layer.
DoLa dynamically selects the intermediate layer
from predefined layer buckets, which are primarily
partitioned into two groups: early layers (lower
half of the model) and late layers (upper half of
the model). We denote these two configurations as
DoLa (early-layer) and Dol a (late-layer), respec-
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tively. Originally, DoLa determines the optimal
bucket using a validation set. However, by compar-
ing DeLTa with both DoLa (early-layer) and DoLa
(late-layer), we assess whether DelLTa remains ef-
fective regardless of the specific intermediate layer
bucket selection. This evaluation highlights the ro-
bustness and general applicability of DeL.Ta beyond
DoLa’s predefined selection strategy. We exclude
methods such as Chang et al. (2024) and Sharma
et al. (2024) as baselines. The former requires
fine-tuning for optimal results despite being a non-
training method, making fair comparison with our
training-free approach difficult. The latter is de-
signed for classification, not generation, and is thus
unsuitable for our evaluation.

Tasks and Datasets. Following DolLa (Chuang
et al., 2024), we evaluate open-ended generation
tasks: Truthful QA (Lin et al., 2022) (factual accu-
racy in open QA), StrategyQA (StrQA)(Geva et al.,
2021), and GSM8K(Cobbe et al., 2021) (reason-
ing). To assess token-level accuracy across diverse
tasks, we evaluate knowledge retrieval via closed
QA tasks: TriviaQA (Joshi et al., 2017) and Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019).



Evaluation metrics are in Appendix A, and Ap-
pendix B details the prompt structure and genera-
tion hyperparameters. These settings follow DoLa
for fair comparation. Additionally, Appendix D
explains the selection of N,,;4 and virtual layer L
for DeLTa.

4.2 Results

Factuality. Table 1 summarizes the model perfor-
mance across factuality benchmarks, demonstrat-
ing the effectiveness of DeL'Ta compared to strong
baselines, including filtering and DolLa variants.
On TruthfulQA, we focus on the %True*%Info
metric, which better reflects factual and informa-
tive responses than %True or %Info alone. This
metric avoids rewarding trivial but technically cor-
rect answers. Under this measure, DeL.Ta improves
Llama-3.1-8B from 44.0% to 48.9%, surpassing the
best baseline (46.9%) by 2 points. In contrast, ex-
isting methods like filtering and DoLa (early-layer)
show limited and inconsistent gains. For Closed
QA tasks such as TriviaQA and NQ, generated an-
swers typically consist of just few tokens, limiting
opportunities for adjustment based on logit trajecto-
ries. Additionally, during validation, DeLTa often
selects the middle layer Npjg = N —1, causing log-
its from Del Ta and +Filter to coincide, thus lead-
ing to identical scores (e.g. Qwen2.5-7B achieves
44.1% on TriviaQA and 13.0% on NQ). Even in
this constrained scenario, DeL.Ta consistently main-
tains or slightly exceeds baseline accuracy.

CoT Reasoning. DeLTa also substantially im-
proves CoT reasoning accuracy, achieving up to
a 7.3-point gain on GSMS8K (e.g., Llama-3.1-8B:
42.8% to 50.1%), with similar improvements ob-
served across other models. DoLa (early-layer)
sometimes introduces minor improvements, while
DolLa (late-layer) frequently fails to generalize, par-
ticularly on GSM8K. These results suggest that
DeLTa enhances the accuracy of generated text,
thereby leading to significant improvements in rea-
soning.

5 Analysis

In this section, we conduct a series of analyses
to empirically validate the core hypotheses under-
pinning DelTa. We first verify that deeper layers
contribute more to task performance, then investi-
gate the linearity of logit evolution across layers,
and finally justify our choice of a linear regression
model through an ablation study.

t
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Figure 2: Direct decoding performance from intermedi-
ate layers on Truthful QA (%Truth*Infot). Performance
consistently improves in deeper layers. The x-axis repre-
sents the layer depth from N — 8 (left) to NV — 1 (right).

5.1 Information Salience in Deeper Layers

DeLTa builds upon the hypothesis, inspired by
Chuang et al. (2024), that task-relevant informa-
tion for generating the correct token becomes more
salient in the upper (deeper) layers of a Transformer
model. To empirically validate this hypothesis in
our setting, we performed direct decoding from the
hidden states of the final eight intermediate layers
(from layer N —8 to N — 1) of three language mod-
els: Qwen2.5-7B, Mistral-7B-v0.1, and Llama-3.1-
8B. We then evaluated performance on the Truth-
ful QA dataset using the %Truth*Info score.

Figure 2 shows a clear trend across all models
where performance improves as layers get deeper.
This provides a strong empirical support for our
foundational hypothesis.

5.2 Linearity of Logit Evolution Across
Layers

Given the increasing importance of upper layers,
we now investigate the nature of their internal dy-
namics. Specifically, we evaluate the extent to
which the logits retain a linear structure across lay-
ers using the coefficient of determination (R2).

Experimental Procedure. First, a text is input
into the LLM, and the top 50 tokens with the high-
est logits in the final layer are extracted. Next,
following the procedure described in § 3.2, the pre-
dicted and original logits of these tokens from layer
Npig to N are used to compute the R? for each
token. This value is then averaged across all tokens
and multiple input sentences from datasets in §4.1.

Results on Mean Linearity. As shown in Fig-
ure 3, all three LLMs exhibit a substantial increase
in mean R? at higher layers, with Llama-3.1-8B
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Figure 3: Mean coefficient of determination (mean R?)
and its standard deviation across input samples. The
vertical axis represents the mean R?, and the horizontal
axis represents the ratio of layer indices (N,,54/N).
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Figure 4: Violin plots of R? for Top-K tokens, grouped
by model and layer difference (N — Ny,iq)-

reaching approximately 0.9 near the final layer.
These results indicate that a simple linear model
can effectively capture logit relationships in higher
layers. This finding is consistent with recent studies
(Razzhigaev et al., 2024), which also demonstrate
approximately linear behavior in later Transformer
layers.

Distributional Analysis. To provide a more gran-
ular view, we also visualize the full distribution of
R? for the Top-50 tokens using violin plots. As
depicted in Figure 4, the R? distributions for all
models shift toward higher values and become nar-
rower as N,,;q approaches the final layer. This
trend reveals not only an increase in the average lin-
earity but also a reduction in its variance, indicating
more stable linear behavior. Mistral-7B-v0.1 con-
sistently shows the highest median and the tightest
distribution, while Llama-3.1-8B exhibits broader
distributions, suggesting greater variability. These
results reveal the stability and model-dependence
of logit linearity across layers.

Model %Truth?  %InfoT  %Truth*Infot

Qwen2.5-7B (+ DeLTa) 66.8 98.0 65.4
Qwen2.5-7B (+ DeLTa2) 64.7 94.3 45.2
Mistral-7B-v0.1 (+ DeLTa) 54.3 92.1 47.0
Mistral-7B-v0.1 (+ DeLTa2) 43.5 90.3 35.7
Llama-3.1-8B (+ DeLTa) 51.5 97.1 48.9
Llama-3.1-8B (+ DeLTa2) 39.4 98.4 38.1

Table 2: Performance comparison on Truthful QA be-
tween linear regression (DeLTa) and quadratic regres-
sion (DeLTa2).

5.3 Ablation on Regression Model Choice

The observed linearity in upper layers motivates
our choice of a linear regression model. To jus-
tify this design decision, we conducted an abla-
tion study comparing DeLTa with a version using a
more complex quadratic regression model, which
we call DeLTa2.

The results in Table 2 show that the linear regres-
sion model (DeLTa) significantly outperforms the
quadratic version (DeLTa2) across all models. This
suggests that unnecessarily increasing the model’s
expressiveness harms generalization performance.
We conclude that a simple and robust linear re-
gression, which aligns with the observed linear
dynamics of the upper layers, is a more effective
and efficient approach.

6 Conclusion

This study aimed to enhance the factual accuracy
and reasoning of text generated by LLMs. The pro-
posed method, DeLTa, operates without additional
training or data. By leveraging token probability
distributions across Transformer layers and employ-
ing linear regression, we developed a framework
that is both computationally efficient and easily
integrable. Empirical evaluations across multiple
benchmarks demonstrate that DeLTa significantly
improves factual accuracy and exhibits effective-
ness in reasoning tasks.

7 Limitation

The proposed method (DeLTa) in this study has
limitation, as outlined below:

* Due to computational resource constraints,
we could not conduct experiments on large-
scale language models. Whether our approach
maintains its effectiveness in larger models
needs to be investigated in future studies.
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Future research should focus on overcoming this
limitation to establish a more generalizable and
highly accurate factuality correction method appli-
cable to a broader range of language models.
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A Evaluation Metrics

The evaluation metrics used for the datasets in our
experiments are as follows:

* TruthfulQA: Following Lin et al. (2022), We
use a fine-tuned GPT-4 model to compute
the scores of truthfulness (%Truth) and infor-
mativeness (%Info) for responses generated
by LLMs. %Truth measures the degree to
which a response is factually accurate, while
%Info quantifies the amount of useful infor-
mation contained in the response. Addition-
ally, %Truth*Info is the product of %Truth
and %Info, representing the degree to which
a response maintains truthfulness while be-
ing informative. Higher values indicate better
performance.

Input Length DoLa DeLTa
128 tokens 0.0205  0.0013
256 token 0.0358 0.0014
512 token 0.0453  0.0015

Table 3: Comparison of inference time (seconds per
sample) between DoLa and DeLTa across varying input
lengths.

* TriviaQA and NQ: The accuracy is calcu-
lated based on the exact match between the
responses generated by the LLM and the gold
answers.

* StrQA and GSMS8K: The accuracy is com-
puted based on the exact match between
the extracted final answer from the LLM-
generated response and the gold answer.

B Generation Hyper-parameters

The hyper-parameters employed for generation
were standardized across all experiments, with the
temperature parameter fixed at 0.9 and the top-k
and top-p sampling parameters set to 50 and 0.95,
respectively. The repetition penalty was set to 1.0
for the raw model output and to 1.2 for other meth-
ods. Furthermore, the maximum token length was
set to 50 for the TruthfulQA, TriviaQA, and Natu-
ral Questions datasets, and 256 for the StrategyQA
and GSMSK datasets. About « in Equation (1), we
set « = 0.1. The above parameters are all derived
from DoLa (Chuang et al., 2024).

For each task, the LLM was provided with
prompts and questions, and the generated responses
were evaluated. The prompt structure and their
selection followed Chuang et al. (2024). Specifi-
cally, we adopted the same few-shot examples as
in Chuang et al. (2024) to ensure a fair compari-
son. However, due to computational resource con-
straints, we set the number of few-shot examples
to 6.

C Computational Cost

To evaluate the computational cost of the algorithm
itself, we measured the inference time on a syn-
thetic model with 32 layers, hidden size of 4096,
and vocabulary size of 32,000. For each input
length—128, 256, and 512 tokens—we used 100
randomly generated samples and reported the aver-
age inference time in Table 3. The reason DeL.Ta
demonstrates superior algorithmic efficiency lies

315


http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/v1/2024.acl-long.293
https://doi.org/10.18653/v1/2024.acl-long.293
https://doi.org/10.18653/v1/2024.emnlp-main.1161
https://doi.org/10.18653/v1/2024.emnlp-main.1161
https://aclanthology.org/2024.emnlp-main.152
https://aclanthology.org/2024.emnlp-main.152
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

in the fundamental differences between the under-
lying algorithms. DoLa requires sequential exe-
cution of multiple intermediate layers to dynami-
cally determine the optimal layer using divergence-
based criteria, including KL divergence and Jensen-
Shannon divergence. This introduces significant
computational overhead due to repeated forward
passes and divergence evaluations.

In contrast, DeL.Ta employs a direct linear regres-
sion approach over precomputed hidden states, fol-
lowed by normalization steps. Since it eliminates
the need for iterative divergence computations and
dynamic routing, DeLTa drastically reduces the
overall computational cost.

D Configuration of DeL.Ta

DeLTa includes adjustable hyperparameters, N,,;q
and L. To select the optimal intermediate layer
Npiq and the target virtual layer for estimation L
for each model, we constructed validation and test
datasets from each dataset. First, we determined
the values of N,,,;4 and L that maximize the accu-
racy of DeLTa for each model using the validation
dataset. Then, using the selected IV,,;q and L, we
conducted a comparison with the baseline on the
test dataset.

For datasets without a validation set (Truth-
fulQA, StrQA), 10% of the test data was used as the
validation data. On the other hand, for datasets with
an existing validation set (TriviaQA, NQ, GSM8K),
we extracted 10% of the existing validation dataset
for use in our experiments.

In the experiments, we selected N,,;4 from { N —
6,N—5,...,N—1} and L from {N, N + 0.5}.
The selected values of V,,;4 and L are presented
in Table 4.

After experiments, as shown in Table 4, the val-
ues of NV,,,;4 and L selected based on validation ex-
hibit different tendencies depending on the dataset.
Notably, in TruthfulQA, selecting an outer layer
contributed to performance improvement, whereas
in other datasets, optimization through smoothing
was found to be the most effective.

In conclusion, the range of selected N,,;q and
L values remains largely consistent across mod-
els, with no extreme differences observed between
models. This suggests that DeLTa can be generally
applied without dependence on specific datasets or
models.

E Additional Experiments on Logit
Linearity

E.1 Logit Linearity with Different Datasets

In this section, we examine the logit linearity across
the intermediate layers of models for each dataset
(TruthfulQA, TriviaQA, Natural Questions, Strate-
gyQA, GSMS8K), following the experimental pro-
cedure described in §5.2. The results are presented
in Figure 5. The horizontal axis, N,,;q/N, repre-
sents the starting point of the explanatory variables,
while the vertical axis, mean R2, denotes the mean
coefficient of determination.

When comparing the results across datasets, a
general trend is observed: in the higher layers of
the model (the last 4-5 layers), the meanR? val-
ues increase to around 0.8, indicating relatively
high logit linearity. Notably, Mistral-v0.1-7B and
Qwen2.5-7B consistently exhibit higher mean R?
values than Llama-3.1-8B, suggesting that logit
linearity is more pronounced in these models.

Conversely, in the lower layers, the mean R? val-
ues are relatively low, with significant variability
across datasets and models. In particular, Llama-
3.1-8B tends to have determination coefficients
below 0.6 in the lower layers, suggesting lower
linearity compared to other models.

Additionally, in the middle layers around
N,.qa = 20, a decline in mean R? is observed in
some models. This phenomenon suggests that log-
its undergo nonlinear transformations in the inter-
mediate layers. However, as the model approaches
the final layers, mean R? increases again, indicat-
ing that logit representations become more linear.

Overall, consistent with the experimental results
described in §5.2, these findings suggest that while
logit linearity across layers is dataset-dependent,
it generally stabilizes and improves as the model
approaches the final layers.

E.2 Distributional Analysis of Logit Linearity
with Different Datasets

Following §5.2, we analyze the distribution of logit
linearity for the Top-K (= 50) tokens across inter-
mediate layers, separately for each dataset (Truth-
fulQA, TriviaQA, Natural Questions, StrategyQA,
GSMBS8K), following the experimental procedure
described in § 5.2. The results are presented in
Figure 6.

Comparing the distributions across datasets in
Figure 6, several consistent trends and dataset-
specific differences can be observed. In the upper
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Dataset | Qwen2.5-7B  Mistral-7B-v0.1 Llama-3.1-8B
Truthful QA | 26,285 31,325 30, 32
TriviaQA ‘ 27,28 28,32 31,32
Natural Questions \ 27,28 27,32 31, 32
Strategy QA ‘ 25,28 29, 32 28,32
GSMSK ‘ 27,28 26, 32 28,32

Table 4: Results of the selected M and L. The left and right numbers in each cell represent M and L, respectively.
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Figure 5: Logit linearity of different models (Qwen2.5-7B, Mistral-v0.1-7B, Llama-3.1-8B) on various datasets
(TruthfulQA, TriviaQA, Natural Questions, StrategyQA, GSMS8K), as calculated in §5.2. The horizontal axis
represents the layer ratio, while the vertical axis shows the mean R?, which denotes the average coefficient of

determination.

layers (small N — N,,;q), the R? distributions for
the Top-K tokens shift towards higher values and
become significantly narrower, indicating that the
linearity between predicted and original logits be-
comes both stronger and more stable as the model
approaches the final layers.

In contrast, Llama-3.1-8B shows markedly lower
median R? values and broader distributions across
all datasets and layers, suggesting that its logit lin-
earity is both weaker and less stable, especially for
high-probability tokens. This model-dependent dif-
ference is especially notable in more challenging
datasets such as Natural Questions and GSMS8K,
where the separation between models becomes
even more apparent in the upper layers.

Across all models and datasets, the lower lay-
ers (large N — N,,;q) display lower R? values and
broader distributions, indicating that the predic-
tive power of the linear model is limited in the
earlier stages of computation. In several datasets,

such as TriviaQA and StrategyQA, a gradual and
monotonic improvement in R? is observed as the
model moves toward the output layer, while for oth-
ers, such as TruthfulQA, some non-monotonicity
and broadening of distributions in the intermediate
layers can be seen, reflecting possible nonlinear
transformations at these stages.

Overall, these results demonstrate that the distri-
butional characteristics of logit linearity for Top-K
tokens are jointly influenced by both model archi-
tecture and dataset properties. Nevertheless, the
general tendency across all settings is that logit
linearity is strengthened and stabilized in the up-
per layers, consistent with findings in § 5.2 and
previous sections.

E.3 Qualitative Evaluation of DeLTa

In this section, we qualitatively evaluate DeLTa
using yes/no question datasets. Specifically, we
input particular questions into Qwen2.5-7B and
constrain their outputs to either yes or no, allowing
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Figure 6: Distribution of logit linearity (R2) for different models (Qwen2.5-7B, Mistral-v0.1-7B, Llama-3.1-8B)
across various datasets (TruthfulQA, TriviaQA, Natural Questions, StrategyQA, GSM8K), as calculated in §E.2.
The horizontal axis denotes the difference between the final layer and the intermediate layer (N — N,,;4), while
the vertical axis shows the coefficient of determination (R2) for Top-50 tokens. Each violin plot visualizes the
distribution of 2 values across input samples, allowing for a comparison of both the central tendency and variability

of logit linearity among models, layers, and datasets.

for a detailed analysis of changes in logit scores.

First, in E.3.1, we investigate the impact of dif-
ferent settings of M and L on logit scores, and
clarify under what conditions incorrect answers are
corrected. Next, in E.3.1, we compare the logit
scores with and without the application of DeLTa,
verifying the effectiveness of the correction. In par-
ticular, we focus on cases where the correct answer
is no but the model originally outputs the incorrect
answer yes, and analyze how the logit score of no
changes after applying DeLTa.

Through this analysis, we qualitatively evaluate
how the appropriate selection of M and L influ-
ences the correction of incorrect answers, thereby
demonstrating the effectiveness of DeLTa.

E.3.1 Logit Changes for Different M/ and L

As an example using Qwen2.5-7B, we consider
the input question: What is the population of
the country?\nA: The population is about
320 million.\nTrue:. In this case, the correct
answer is no; however, the model’s original output
is yes, resulting in an incorrect answer. The results
of applying DeLTa under different values of M and
L are shown in Figure 7.

Figure 7a and Figure 7b display the changes in
the logits for "yes" and "no" over M € {0,...,27}
for L = 28 and L = 29, respectively. In the case

of L = 28 (Figure 7a), the logit for the incorrect
answer yes remains higher than that for the correct
answer no across different M.

On the other hand, for L = 29 (Figure 7b), the
logit for no begins to exceed that of yes around
M = 23, indicating that DeLTa has successfully
corrected the model’s error. These results demon-
strate that selecting an appropriate L is crucial for
effective correction of incorrect answers.

E.3.2 Detailed Analysis of the Effect of
Regression-Based Correction

The effect of regression-based correction using
Qwen2.5-7B is shown in Figure 8. Figure 8a
(M = 24) and Figure 8b (M = 27) indicate the
original logit scores with dashed lines and the cor-
rected logit scores after applying DeLTa with solid
lines.

For M = 24 (Figure 8a), the logit for yes signifi-
cantly exceeds that for no in the original scores, but
after regression-based correction, the score for no
increases and the gap between yes and no narrows.
However, this correction is not complete, and yes
still remains dominant.

Conversely, for M = 27 (Figure 8b), the cor-
rected logit for no surpasses that for yes, leading to
the correct answer. These results indicate that as M
increases, the correction effect becomes more pro-
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Figure 7: Results of applying DeLTa to the Qwen2.5-7B model. The plots show the trajectories of the logit scores
for tokens yes and no as M varies under different values of L (L = 28, 29). The proposed method tends to reduce
the gap between the logit scores of yes and no for certain M.
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Figure 8: Examples of DeLTa applied to Qwen2.5-7B. The dashed lines show the original logit scores, while
the solid lines show the logit scores after regression-based correction by DeLTa (e.g. label “regr yes” stands for

regression line for logit “yes”.)

nounced. Thus, by appropriately setting M, DeL.Ta
can suppress incorrect answers and induce correct
ones.

F Cross-Lingual Evaluation on Japanese

To examine whether the proposed decoding
strategy generalizes beyond English, we evalu-
ate its performance on a Japanese benchmark,
JTruthful QA (Nakamura and Kawahara, 2024),
a Japanese counterpart of the Truthful QA dataset.
The factual accuracy of generated responses is auto-
matically assessed using DeepSeek-V3 (DeepSeek-
Al 2024), which assigns a score between 0 (incor-
rect) and 1 (correct) to each prediction, with the
final accuracy computed as the average across all
instances.

DeLTa achieves consistent performance gains
across all three models. On Qwen2.5-7B-Instruct,
it improves accuracy to 68.6, outperforming both
the base model (61.9) and the filter baseline (63.7).
On Mistral-7B-Instruct-v0.1, it yields the highest
improvement of 7.7 points over the base model.
Similarly, on Llama-3.1-8B-Instruct, it attains 64.1,

Model Accuracy  Gain
Qwen2.5-7B-Instruct 61.9 -
+filter 63.7 (+1.8)
+DoLa (early-layer) 63.2 (+1.3)
+DoLa (late-layer) 62.7 (+0.8)
+DeLTa 68.6 (+6.7)
Mistral-7B-Instruct-v0.1 28.2 -
+filter 347 (+6.5)
+DoLa (early-layer) 27.9 (-0.3)
+DoLa (late-layer) 28.0 (-0.2)
+DeLTa 359 (+7.7)
Llama-3.1-8B-Instruct 60.7 -
+filter 62.7 (+2.0)
+DoLa (early-layer) 56.2 (-4.5)
+DoLa (late-layer) 56.5 (-4.2)
+DeLTa 64.1 (+3.4)

Table 5: Factual accuracy on JTruthful QA (Japanese).
Evaluation is based on DeepSeek-V3.

surpassing all other variants. These results demon-
strate that the benefits of DeLTa extend to Japanese,
highlighting its cross-lingual effectiveness in en-
hancing factuality.
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G Implementation library

We used Pytorch (Paszke et al., 2019) and hug-
gingface transformers (Wolf et al., 2020) for all
experiments.

H Computational Resources

In all experiments in this study, the GPUs used
were NVIDIA RTX 6000 Ada Generation or
NVIDIA RTX A6000. All experiments were per-
formed using torch.float16, and the VRAM used
was approximately 15GB to 40GB.

I Generated Examples

In this section, we present response examples
from Qwen2.5-7B and DeLTa for questions in the
GSMBSK dataset. The example sentences included
in the few-shot prompt are omitted, and only the
pure model responses are compared. These ex-
amples illustrate cases where DeLTa functioned
effectively. Among the responses to each question
shown in Table 6, the output of DeLTa is listed in
the right column.
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Method | Qwen2.5-7B | Qwen2.5-7B + DeLTa
Cecilia just bought a new puppy. According to her veterinarian, she has to feed the puppy 1 cup of dog food
Question every day for the first 180 days. Then she has to feed the puppy 2 cups of dog food every day for the rest of
its life. If one bag of dog food contains 110 cups, how many bags of dog food will Cecilia use in the first
year?
The puppy needs to be fed 1 cup of dog food per day in_ﬁies(l)i st lfBszi(iay s,fthedp ubP }}1/ Wﬁlll consurr;le 180
for 180 days, so the total amount of food needed . cups of cog 100c. In the first year, there are
for the first 180 days is I cup/day x 180 days = 180 | 50> days. So after the first 180 days, there are 365 -
y p/day Y -
cups of dog food. If one bag of dog food contains 180 = 185 days remaining. In those remaining days,
Answer N the puppy will consume 185 * 2 = 370 cups of dog
110 cups, then Cecilia will need 180 cups / 110 f ) . ] >
. s ood. In total, the puppy will consume 180 + 370 =
cups/bag = 1.64 bags of dog food. Since she can’t 550 cups of dog food in the first year. Since one bag
buy a fraction of a bag, she will need to buy 2 bags o e .
of dog food for the first year. The answer is 2. contains 110 cups, Cecilia will need 550/1 lQ =3
bags of dog food in the first year. The answer is 5.
Sadie slept 8 hours on Monday. For the next two days, she slept 2 hours less, each, because she had to
Question complete some assignments. If the rest of the week she slept 1 hour more than those two days, how many
hours did she sleep in total throughout the week?
Sadie slept 8 hours on Monday. On the next two Sadie slept 8 hours on Monday. On Tuesday and
days, she slept 2 hours less each day, so 8 -2 =06 ‘Wednesday, she slept 2 hours less than on Monday,
hours each day. For those two days, she slept 6 * so she slept 8 - 2 = 6 hours on each of those days.
2 =12 hours in total. For the rest of the week, she In total for those three days, she slept 8 + 6 + 6 =
Answer slept 1 hour more than those two days, so 6 + 1 = 20 hours. For the rest of the week, she slept 1 hour
7 hours each day. There are 5 days in the week, so more than on those two days, so she slept 6 + 1 =
for the rest of the week, she slept 7 * 5 = 35 hours. 7 hours on each of those days. She has four more
In total, she slept 8 (Monday) + 12 (next two days) days in the week, so she slept 7 * 4 = 28 hours on
+ 35 (rest of the week) = 55 hours throughout the those days. In total, she slept 20 + 28 = 48 hours
week. The answer is 55. throughout the week. The answer is 48.
. There are 700 bees in a hive. There are twice as many worker bees as baby bees, and there are twice as many
Question babies as . H Ker b there?
abies as queens. How many worker bees are there?
Let’s represent the number of worker bees as W, the
number of baby bees as B, and the number of queens
as Q. We know that there are 700 bees in total, so W
+ B + Q =700. We also know that there are twice
as many worker bees as baby bees, so W = 2B, and
there are twice as many babies as queens, so B =
The total ratio is 2 (workers) + 1 (baby) + 1 (queen) 2Q. We can substitute these equations into the first
Answer = 4 parts. Each part has 700 / 4 = 175 bees. There- equation to get 2B + B + Q = 700. Combining like
fore, there are 2 x 175 = 350 worker bees. The terms, we get 3B + Q = 700. Now we can substitute
answer is 350. B = 2Q into this equation to get 3(2Q) + Q = 700.
Simplifying, we get 6Q + Q = 700. Combining like
terms, we get 7Q = 700. Dividing both sides by 7,
we get Q = 100. Now we can substitute Q = 100
back into B =2Q to get B =2(100) = 200. Finally,
we can substitute B = 200 back into W = 2B to get
W =2(200) = 400. The answer is 400.
Billy is peeling and cutting potatoes in preparation for making potato salad for his big family reunion
Question barbecue. It’s a big event, so he has 60 potatoes to get through. The potatoes are roughly the same size, so it
takes about the same amount of time to peel and cut each one. It takes Billy about a minute and a half to peel
a potato, but only about 5 seconds to cut it up. How long will it take Billy to finish prepping the potatoes?
It takes 1.5 minutes to peel each potato, so for 60
It takes Billy about 1.5 minutes to peel a potato, potatoes, it will take 1.5 * 60 = 90 minutes to peel
which is 1.5 x 60 = 90 seconds. It takes him about them all. It takes 5 seconds to cut each potato, so
5 seconds to cut each potato. So it takes him about for 60 potatoes, it will take 5 * 60 = 300 seconds
Answer 90 + 5 x 60 =90 + 300 = 390 seconds. To convert to cut them all. To convert seconds to minutes, we
this into minutes, we divide by 60, so it takes Billy divide by 60, so it will take 300 / 60 = 5 minutes to
about 390 / 60 = 6.5 minutes to finish prepping the cut the potatoes. In total, it will take 90 minutes +
potatoes. The answer is 6.5. 5 minutes = 95 minutes to prep the potatoes. The
answer is 95.
Juan and his brother Carlos are selling lemonade. For each gallon they make it costs $3 for lemons and $2
Question for sugar. They sell each glass for $0.50 and get 20 glasses per gallon. If they made $25 in profit, how much
did they spend on lemons?
They spent $3 per gallon on lemons and $2 per
gallon on sugar, so a total of $3 + $2 = $5 per gallon.
They spent $5 per gallon because 3 + 2 = 5. They They sell 20 glasses per gallon at $0.50 each, so they
Answer sold 8 gallons because 25/ 3.125 = 8. They spent make 20 * $0.50 = $10 per gallon. They made $25
$40 on lemons because 8 x 5 = 40. The answer is in profit, so they must have made $25 + $5 = $30
40 in total. Since they make $10 per gallon, they must
have made $30/ $10 = 3 gallons. So they spent 3 *
$5 = $15 on lemons. The answer is 15.

Table 6: Examples of responses to the GSM8K dataset by Qwen2.5-7B and DeLTa. The baseline exhibits numerical
calculation errors and reasoning mistakes, whereas DeLTa yields more accurate computation results.
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