ERGO: Entropy-guided Resetting for Generation Optimization in
Multi-turn Language Models

Haziq Mohammad Khalid*

Yicheng Fu Sean O’Brien

Athikash Jeyaganthan

Timothy Do

Vasu Sharma Kevin Zhu

Algoverse Al Research

hazigkhalid@4@gmail.com , psyaj9@nottingham.ac.uk , timothy.k.do@sjsu.edu

Abstract

Large Language Models (LLMs) suffer signif-
icant performance degradation in multi-turn
conversations when information is presented
incrementally. Given that multi-turn conversa-
tions characterize everyday interactions with
LLMs, this degradation poses a severe chal-
lenge to real world usability. We hypothesize
that abrupt increases in model uncertainty sig-
nal misalignment in multi-turn LLM interac-
tions, and we exploit this insight to dynami-
cally realign conversational context. We in-
troduce ERGO (Entropy-guided Resetting for
Generation Optimization), which continuously
quantifies internal uncertainty via Shannon en-
tropy over next token distributions and triggers
adaptive prompt consolidation when a sharp
spike in entropy is detected. By treating un-
certainty as a first class signal rather than a
nuisance to eliminate, ERGO embraces vari-
ability in language and modeling, representing
and responding to uncertainty. In multi-turn
tasks with incrementally revealed instructions,
ERGO yields a 56.6% average performance
gain over standard baselines, increases apti-
tude (peak performance capability) by 24.7%,
and decreases unreliability (variability in per-
formance) by 35.3%, demonstrating that un-
certainty aware interventions can improve both
accuracy and reliability in conversational Al

1 Introduction

Large Language Models (LLMs) have become the
primary interface for conversational Al systems,
enabling users to interact through multi-turn ex-
changes. However, recent research has documented
a critical limitation: LLMs often get ’lost’ in con-
versation and experience substantial performance
degradation in multi-turn conversations compared
to single-turn interactions (Laban et al., 2025;
Gupta et al., 2024). This degradation manifests as

*Lead Author

reduced accuracy, lower confidence, and a 112% in-
crease in unreliability, posing significant challenges
for real-world deployment (Laban et al., 2025).

While prior work has measured this degrada-
tion, existing mitigation strategies remain limited.
Approaches based on task classification, retrieval,
or context compression lack generality or require
fine-tuning (Wu et al., 2023).

We hypothesize that spikes in model uncertainty
signal moments of conversational drift and by
explicitly representing this uncertainty and mon-
itoring its fluctuations, we can detect when an
LLM begins getting ’lost’ in conversation. We
introduce ERGO (Entropy-guided Resetting for
Generation Optimization), the first practical inter-
vention framework that dynamically monitors in-
ternal uncertainty signals and resets context when
needed. ERGO computes Shannon entropy over
next-token probability distributions (Malinin and
Gales, 2018; Xiao and Wang, 2022) as an inter-
nal behavioral signal to detect spikes in uncer-
tainty that indicate breakdown in comprehension.
When such spikes occur, ERGO triggers entropy-
guided prompt reconstruction, mitigating accumu-
lated ambiguity and restoring coherence. Unlike
static prompt engineering, ERGO’s reconstruction
is dynamically triggered by entropy thresholds and
systematically preserves only those contextual el-
ements that sustain both internal coherence and
external task performance, discarding accumulated
noise. A visual representation of this can be seen
in Figure 1.

Empirical results demonstrate that targeted in-
terventions based on uncertainty peaks not only
recover task accuracy but also improve consistency
across turns. In extensive simulations with incre-
mentally revealed instructions, ERGO improves
average performance by 56.6% compared to stan-
dard multi-turn baselines, increases aptitude levels
by 24.7% (best-case performance capability), and

273

Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025), pages 273-286
November 9, 2025 ©2025 Association for Computational Linguistics

ﬁulti—tu rn Conversation
How many points did Jack score} R
in his first basketball game? -

Sorry, I do not have enough
information to answer.

Jack averaged 2.4 points
every minute.

Suppose Jack played for 30

@)
minutes, to calculate . . .

[
[___APredictive Entropy <a |

[Jack played for a total of 15 }

...Jack scored 32

points. x

A Predictive Entropy > a

|a

T/

ERGO

-

How many points did

Jack score in his first

basketball game? Jack
averaged 2.4 points
every minute. Jack

played for a total of 15
minutes.

. ...Jack scored
m' 36 points.

/

Figure 1: Illustrative comparison of a standard multi-turn conversational Al and the ERGO system

reduces the increased unreliability (variability in re-
sponse consistency) observed in multi-turn settings
by 35.3%. Furthermore, ERGO outperforms exist-
ing alternative strategies, and triggers resets with
greater precision and timing compared to alternate
baselines illustrating the potential of uncertainty-
aware methods for robust conversational Al To ver-
ify our findings and reproduce the results, please
refer to the code repository found at the following
link: https://github.com/haziq-exe/ERGO

2 Background and Related Works

Recent work has documented significant perfor-
mance degradation in multi-turn LLM conversa-
tions. Laban et al. (2025) demonstrated that model
performance dropped by 39% on average in multi-
turn settings across six domains. Gupta et al. (2024)
formalized task-switch sensitivity using probabil-
ity ratios, showing how conversation history com-
pounds model confusion. While Laban et al. (2025)
managed to mitigate average performance losses
by 15-20%, their approaches faced substantial ver-
bosity and practicality constraints (Sec 5.4). Agent-
based frameworks (Wu et al., 2023) explore system-
level solutions but do not target fundamental model
limitations during generation.

2.1 Entropy Based Uncertainty Estimation

Entropy-based uncertainty estimation provides
the theoretical basis for our method, grounding
ERGO’s use of internal model signals. Prior work
has used predictive entropy to quantify model con-
fidence in classification and generation tasks (Ma-
linin and Gales, 2018; Xiao and Wang, 2022),
implicitly linking internal uncertainty to exter-

nal behavior. More recent approaches extend
this to semantic-level uncertainty using semantic-
aware entropy measures (Kuhn et al., 2023) or
trainable proxies derived from hidden representa-
tions (Kossen et al., 2024). While these methods
improve semantic fidelity, they often rely on sam-
pling or auxiliary models. In contrast, we use token-
level entropy, computed directly from the model’s
next-token distribution, as a low-cost proxy for real-
time monitoring. Unlike prior work that applies
entropy primarily for evaluation or filtering, we use
it as a temporal signal to detect context degradation
and trigger prompt restructuring.

2.2 Inference-Time Interventions

Inference-time control methods intervene on frozen
models by manipulating internal activations, modi-
fying output logits, or reranking candidate outputs.
For example, Li et al. (2024) introduced activation-
level interventions to elicit truthful answers without
fine-tuning, shifting hidden states toward truthful
completions. Similarly, Turner et al. (2024) devel-
oped activation engineering techniques that steer
the behavior of the model by editing intermediate
representations during decoding. These methods
act directly on the output path of the model and
often rely on internal signal manipulation.

In contrast, our approach introduces a policy
layer outside of the model that monitors uncertainty
and intervenes by restructuring the user’s input. We
do not modify the internal computation or sampling
process of the model.

2.3 Backtracking and Prompt Restructuring

Several recent approaches have explored controlled
backtracking during generation. Cundy and Er-

274

https://github.com/haziq-exe/ERGO

mon (2024) augmented the decoding space with a
"backspace’ action to revert low-probability genera-
tions, while Zhang et al. (2024) uses a special [RE-
SET] token to discard unsafe prefixes. Other strate-
gies such as Self-Refine (Madaan et al., 2023) al-
lowed iterative refinement by prompting the model
to critique and revise its own output. These meth-
ods operate on generated content and typically re-
quire multi-step decoding or auxiliary supervision.

Our intervention departs from this paradigm by
focusing on upstream correction. Instead of rewrit-
ing the model’s response, we update the user’s
prompt to recover task coherence, using rising en-
tropy as the intervention trigger. This shifts the op-
timization target from output correction to input re-
specification, which is more lightweight and avoids
cumulative reasoning errors. To our knowledge,
this is the first method that uses entropy-based
signals to restructure user input mid-conversation,
rather than adjusting the model’s internal behavior
or downstream output.

3 Entropy-Guided Context Resetting
3.1 Rise in Average Token Level Entropy

At each turn of the conversation, the average token-
level entropy is calculated by measuring the uncer-
tainty of the model’s token probability distribution
when generating each token in its output.

Suppose the model produces a sequence of to-
kensty,ta,...,t, atagiven turn. For each token ¢;,
the model assigns a probability distribution P; over
the vocabulary V', where P;(v) is the probability
assigned to token v € V at position i.

The entropy at position ¢ is computed as:

H;=- Z P;i(v)log P;(v)
veV
The average token-level entropy H for the turn
(covering n generated tokens) is then:

1 &
H=—- H;

This metric quantifies the model’s overall uncer-
tainty when generating the turn. Higher H indi-
cates greater uncertainty and a more diffuse token
distribution, while the lower H indicates more con-
fident and peaked predictions (Malinin and Gales,
2018; Xiao and Wang, 2022).

For each subsequent turn ¢ in the conversation,
the change in average token-level entropy is calcu-
lated to monitor fluctuations in model uncertainty.

Let H® denote the average token-level entropy at
turn ¢, as defined previously.

The change in predictive entropy between con-
secutive turns is defined as:

AF® — Fg® _ g1

A positive AH® indicates that the uncertainty
of the model has risen relative to the previous turn.

3.2 Threshold-Based Trigger for Context
Reset

A predefined, calibrated entropy change threshold
T is established. When the change in predictive
entropy satisfies the following condition:

AH® > 7

The system deems that the uncertainty of the
model is rising beyond an acceptable margin. This
is interpreted as a signal that the evolving conversa-
tion context may be inducing compounding uncer-
tainty or drift. A detailed analysis of the threshold
selection process is provided in Appendix A, while
an analysis of ERGO’s sensitivity to entropy thresh-
olds is provided in Appendix B.

3.3 Context Reset Protocol

Upon detection of AH®) > 7, an automated con-
text reset protocol is initiated. This protocol pro-
ceeds in the following steps:

I. Prompt Rewriting:
The user’s inputs up to turn ¢ are provided to
the model. The model is asked to rewrite these
inputs into a single-turn, optimized prompt
that preserves relevant task information while
reducing ambiguity and redundancy.

II. Isolated Generation (Simulate New Chat):
The rewritten prompt is passed into a new
instance of the model, simulating a stateless
chat environment with no memory of prior
turns. The model then generates a response
R to this rewritten prompt.

III. Branch Continuation:
A new dialogue branch is created that begins
from the rewritten prompt and response. This
maintains continuity from the optimized state
rather than the potentially degraded original
context.

275

FULL

s SHARDED

CERGO

Solve the following problem using all the
information given to you:

- How old was Bill when he first saw Comet
Halley?

- Comet Halley takes 75 years to complete one
orbit around the sun

- Bill's dad was 3@ years old when he saw the
comet

- Bill saw Comet Halley for the second time
when he was three times as old as his dad was

How old was Bill when he first saw Comet
Halley?

How old was Bill when he first saw Comet
Halley?

Comet Halley takes 75 years to complete one
orbit around the sun

Comet Halley takes 75 years to complete one
orbit around the sun

Bill's dad was 30 years old when he saw the
comet

Bill's dad was 3@ years old when he saw the
comet

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

MODEL ANSWER: 75

\ 4
RESET OCCURS AFTER ROW

when his dad saw it

MODEL ANSWER: 15

Bill's dad was 3@ years old when he saw Comet
Halley. The comet takes 75 years to complete
one orbit around the sun. Bill saw Comet
Halley for a second time when he was three
times as old as his dad was when his dad saw
it. How old was Bill when he first saw Comet
Halley?

MODEL ANSWER: 15

Figure 2: Example Llama3.1-8B run on a GSM8K question with (=) FULL, dls SHARDED and C ERGO settings.
Each row represents a separate prompt given to the model while each table represents a context window.

4 Experimentation Background

4.1 Simulation Scale & Parameters

Our simulation follows the protocol of Laban et al.
(2025) with the only change being the implemen-
tation of ERGO. We evaluate a suite of five lead-
ing instruction-tuned LLMs: Phi-4 (Abdin et al.,
2024), LLaMA 3.1-8B Instruct (Grattafiori et al.,
2024), GPT-40 (Hurst et al., 2024), GPT-4.1 (Ope-
nAl, 2025), and GPT-40-mini (OpenAl, 2024). All
models are used in their publicly released variants
without additional fine-tuning.

Generation settings are standardized across mod-
els with temperature set to 1.0. For entropy cal-
culations, we note an important methodological
constraint: OpenAl models provide access to only
the top-20 logprobs through their API. This lim-
itation affects the precision of entropy estimates,
particularly for tasks with shorter responses such
as Actions and Data-to-text (Sec 4.2), where the
restricted probability space may not capture the full
uncertainty of the model’s predictions.

We conduct 3 independent simulation runs for
each dataset using 100-question samples, with the
exception of the Data-to-text dataset (Sec 4.2), for
which evaluations were performed on a 50-question
subset over 3 runs. All other experimental settings
and baseline figures are adopted directly from La-
ban et al. (2025).

We compare three settings:

B FULL: Simulates a single-turn, fully-
specified conversation using the sharded instruc-
tion. The shards are combined into a single bullet-
point list (one shard per line), prefaced by a direc-

tive to complete the task using all listed points. This
setting serves as an upper bound for performance,
providing a target for evaluating how closely multi-
turn intervention methods can approximate single-
turn optimality.

% SHARDED: Sequential shard presentation
as in the original (Laban et al., 2025) LLMs-lost-
in-conversation experiment.

G ERGO: Our entropy-guided reset mechanism
applied upon exceeding the entropy threshold.

Figure 2 provides an example of a run on each
setting. This evaluation isolates the effect of ERGO
relative to both single-pass and original multi-turn
baselines.

4.2 Tasks

We evaluated models on five representative genera-
tion tasks, each framed as a multi-turn interaction
over sharded instructions and augmented them with
our entropy-guided context resetting method (Sec-
tion 3). For each task, we used 220-325 constructed
prompts from the datasets created by Laban et al.
(2025). We simulate a multi-turn conversation,
feeding the model one shard at a time. At each
assistant turn, we compute the average token-level
entropy and track its change AH®). Whenever
AH® exceeds the calibrated threshold T, We In-
voke our reset protocol - prompt rewriting, isolated
regeneration, branch continuation - before continu-
ing.

Below we briefly summarize what the assistant
must do in each task:

© CODE: Convert natural-language problem
description into a correct Python function. Outputs

276

are validated by executing against the reference test
suite (Chen et al., 2021; Jain et al., 2024).

& DATABASE: Given a database schema and a
user request, generate an SQL query that returns the
requested data. Correctness is checked by running
the query on the Spider-derived database (Yu et al.,
2018).

ACTIONS: Given API schemas plus high-
level user instruction, emit valid code-style API
calls that fulfill the intent. This is verified against
the Berkeley Function Calling Leaderboard defini-
tions (Yan et al., 2024).

() DATA-TO-TEXT: Take a structured data table
and metadata and write a single caption that high-
lights its key insight. Adapted from ToTTo and
evaluated using BLEU (scaled 0-100) (Parikh et al.,
2020; Papineni et al., 2002).

MATH: Solve an elementary math story prob-
lem by carrying out each arithmetic step and return-
ing the numeric result. Simulates day-to-day prob-
lems LLMs may be tasked with by users. GSM8K
problems were used and scored by exact match
(Cobbe et al., 2021).

4.3 Metric Selection

We assess LLM performance in multi-turn tasks
by repeating simulations for each instruction and
collecting success scores from multiple runs, fol-
lowing Laban et al. (2025). Each score, ranging
from O to 100, reflects task success.

4.4 Per-Run Scoring

I. Binary-Correctness Tasks (Code,
Database, API, Math): A correct re-
sponse at any turn yields a score of 100, and
the run ends. Otherwise, the score is 0.

II. Refinement Task (Data-to-Text): The final
output is evaluated using BLEU, rescaled to
0-100.

4.5 Aggregate Metrics
From the scores collected across the 3 runs, we

compute three metrics:

* Average Performance (P): Average perfor-
mance per instruction for a given task.

* Aptitude (A%9): 90th-percentile score, mea-
sures a model’s peak capability, indicating
its potential to deliver high-quality results in
critical multi-turn tasks. Averaged across all
tasks.

« Unreliability (U{)): Difference between 90th
and 10th percentiles, quantifies response vari-
ability, where lower values reflect greater con-
sistency, essential for user trust and system
reliability in long-horizon interactions. Aver-
aged across all tasks.

Formulae and more information on metrics is
available in Appendix D.

5 Results & Discussion

5.1 Aptitude and Unreliability Improvements

Figure 3 shows that ERGO demonstrates excep-
tional gains in aptitude, often exceeding single-turn
performance levels, while substantially reducing
unreliability compared to multi-turn baselines, two
metrics introduced by (Laban et al., 2025) to cap-
ture model consistency across conversations.

[] ® SHARDED

o085] ° ® ERGO

|®
4.1 |7 PHI-4
.

| €
1 6 éﬁto Ny
z-mini I . hd .
L ~ i

o
©
)

Aptitude (A)
3

e
N
°
[]

. |
‘o |
| LLAMA3.1-8B

I

o
@
o

0.2 0.3 0.4 0.5 0.6

Unreliability (U)

Figure 3: Effect of SHARDED and ERGO on Apti-
tude and Unreliability. Icons represent models B FULL
performance. Green dots represent performance with
C ERGO while red dots represent d%s SHARDED per-
formance

These results indicate that our intervention not
only fully recovers the aptitude lost in the tran-
sition from single-turn to multi-turn settings and
achieves aptitude levels exceeding single-turn base-
lines, but also makes behavior significantly more

277

Model @ Code € Database Actions £ Data-to-Text Math

B & C B & C B &L C B H C B H O
™ Llama3.1-8b 212 21.7 5207 477 259 6437 83.0 455 600" 157 133 123* 626 374 657"
@ 40-mini 66.7 503 6677 90.7 402 9337 922 524 9207 312 198 220" 88.0 587 85.0'
B Phi-4 484 39.1 5507 79.6 33.1 620" 76.0 341 6577 286 232 280" 904 525 8537
B4.1 88.7 726 81.7° 865 460 9607 985 629 847" 544 286 310" 897 70.7 917
S 40 829 613 763" 91.7 423 9577 97.1 650 8207 322 205 27.00 919 679 89.3"

Table 1: Average Performance P comparison across three settings: B FULL (single-turn), & SHARDED
(multi-turn baseline), and C ERGO (multi-turn with entropy-guided resetting). Arrow represents change in
performance for C relative to @, with arrow size representing magnitude of change.

stable compared to multi-turn settings across re-
peated trials. When comparing to standard sharded
conversations, the average aptitude across models
rose by 24.7%, achieving performance levels that
surpass single-turn baselines, while unreliability
declined by 35.3% compared to multi-turn settings.

5.2 Average Performance Gains

In addition to aptitude and unreliability improve-
ments, Table 1 shows that ERGO delivers substan-
tial performance improvements across all models
compared to baseline multi-turn setups. By detect-
ing moments of confusion and restarting interac-
tions, models avoid becoming "lost" in conversa-
tional flow. Nearly every dataset and model combi-
nation shows increased average success rates, with
performance improving by 56.6% on average and
several model-task combinations achieving over
100% gains compared to original multi-turn base-
lines.

Models frequently exceeded single-turn base-
line performance in both average performance and
aptitude as our method only corrects derailment
when calculated confusion rises significantly. This
preserves the model’s ability to iteratively reason
and refine responses across shards while preventing
the compounding errors typical in prolonged multi-
turn contexts. This approach effectively merges
both paradigms’ strengths: single-turn stability and
clarity when needed, and iterative decompositional
reasoning when the model remains on track.

Moreover, performance on the &) Data-to-Text
task improves over the multi-turn baseline, though
less substantially than in other datasets. This is
partly due to model-specific constraints. LLaMA

3.1-8B struggles to rewrite large, structured
prompts effectively (e.g., full tables), limiting the
benefit of consolidation. GPT models face diffi-
culties in triggering resets, as entropy estimates
are less reliable, only top-20 log-probabilities are
available, and outputs are typically short, reducing
entropy sensitivity. Phi-4 performs best, nearing
single-turn levels, likely because it supports accu-
rate entropy tracking and handles prompt rewrit-
ing more effectively. These results indicate model-
dependent limitations in applying our method to
high-input-structure tasks.

5.3 Evaluating Entropy-Guided Resets vs.
Random Resets and Fixed Resets

We compared entropy-based context resets
against random and fixed-interval baselines using
Llama3.1-8B across three tasks: & Database,
Actions, and EE Math. In these ablations, we
retained all experimental settings from the main
condition, with the only change being that each
metric was tested on 50 question samples instead
of 100. The random baseline used uniformly ran-
dom triggers with unconstrained reset frequency.
The fixed baseline triggered resets every five
shards (quintet reset), matching the average reset
frequency of L1ama3.1-8B observed in our ERGO
system. For more information on computation and
average reset frequency across models, please refer
to Appendix C.

The results, visualized in Figure 4, demonstrate
a clear advantage for ERGO over baseline ap-
proaches. Entropy-guided resets consistently out-
performed both random and fixed reset strategies
while demonstrating adaptive scaling behavior. In

278

140 A

120

100

80

Number of Resets

60

401

(12.5, 41)

(22

(22.6, 153)

Method
[Entropy-guided

) =1 Random
[Quintet Reset

=

(40.0, 96)

(<[=]
[§] (30.6, 5) ‘
= [+]-]
(26.1, 44) 1=
; (32.6, 38) :

15

20

25 30 35 40

Performance Points Gained vs SHARDED

Figure 4: Comparison of performance point gains (percentage-point increase in accuracy relative to €% SHARDED)
and number of resets across entropy-guided, random, and quintet reset methods on % Database, £ Actions, and
Math tasks. Icons represent their respective task with their color determining method used.

the Database task, ERGO achieved a performance
gain of 0.400 using 96 resets, compared to the quin-
tet baseline’s 0.261 gain with only 44 resets. This
demonstrates the system’s ability to increase in-
tervention frequency when encountering greater
model uncertainty. Conversely, in the Actions
task, ERGO required only 41 resets, fewer than
both baselines, while still achieving superior per-
formance (0.125 gain versus 0.045 and 0.085 for
random and fixed approaches, respectively). This
adaptive behavior indicates that entropy guided re-
sets effectively allocate computational resources
by intervening only when necessary, scaling both
up and down based on task complexity and model
confusion levels.

The primary risk posed by resets is semantic
drift. Poorly timed or excessive context rewriting
can lose critical details through increased abstrac-
tion, compromising semantic faithfulness to the
original input (Dreyer et al., 2023). This degra-
dation in semantic faithfulness can offset or even
negate the benefits of resetting. Furthermore, resets
incur computational overhead; each reset involves
having two additional forward passes through the
model. Together, these considerations underscore
why the frequency and timing of resets must be
carefully controlled. Not only to avoid wasted com-

putation, but, more critically, to prevent semantic
degradation.

5.4 Comparison to Existing Intervention
Strategies

To contextualize the effectiveness of ERGO, we
compare its performance against two alterna-
tive strategies introduced by Laban et al. (2025):
SNOWBALL and RECAP. Both methods attempt
to mitigate information loss in multi-turn settings
by explicitly reintroducing previously seen content.

O SNOWBALL: Reiterates all prior shards
at each new turn, effectively growing the prompt
cumulatively. This ensures full task visibility at
each step but leads to increasing context length and
potential repetition issues.

M RECAP: Reiterates all prior shards only at
the final turn. While more efficient, the authors
note that this strategy is impractical in real-world
deployments, since the system would not know
prior when the final user input will occur.

Our method significantly outperforms both
SNOWBALL and RECAP across both model vari-
ants. For GPT-40-mini, ERGO nearly closes the
gap between SHARDED and FULL baselines en-
tirely, while for GPT-40, ERGO performs well
above competing approaches and within 3.2 points

279

Model | FULL | SHARDED | SNOWBALL | RECAP | ERGO
GPT-40-mini | 73.8 443 54.0 57.7 71.8
GPT-40 79.2 51.4 574 66.3 75.6

Table 2: Comparison of average performance across @ Code, 8 Database, ¥Z Actions, (%) Data-to-Text and EE Math

tasks.

of the full information upper bound, as shown in
Table 2. ERGO’s advantages over static repetition-
based strategies are twofold: it prevents input bloat-
ing at each iteration unlike SNOWBALL, and oper-
ates without requiring prior knowledge of the final
input unlike RECAP.

5.5 Evaluating Length Bias in Entropy-Based
Reset Triggers

One potential concern regarding ERGO’s entropy-
based reset mechanism is whether it inadvertently
functions as a proxy for response length. Specifi-
cally, since entropy is calculated over token prob-
ability distributions, it is plausible that longer out-
puts, which involve more tokens and potentially
more diffuse distributions, may naturally exhibit
higher entropy. If true, this would raise the possi-
bility that ERGO’s resets are effectively triggered
by length increases rather than genuine uncertainty
spikes, undermining the validity of entropy as an
internal behavioral signal.

We analyze response behavior from the Phi-4
model across all tasks and questions used in the
main evaluation suite. For each turn ¢ in a given
multi-turn conversation, we compute two quantities
relative to the previous turn: the change in aver-
age token-level entropy, AH (), and the change in
response length, AL(t), measured in tokens.

We evaluate the relationship between these us-
ing two standard correlation metrics: Spearman’s
rank correlation coefficient (p), which captures
monotonic associations without assuming linearity
(Spearman, 1904), and Pearson’s correlation coef-
ficient (), which quantifies the strength of linear
correlation (Pearson, 1895). The results for the
Phi-4 model are summarized in Table 3.

The Spearman result indicates no meaningful
monotonic relationship between changes in entropy
and length. The Pearson coefficient, while statisti-
cally significant due to the large sample size, has

negligible magnitude and a negative sign, indicat-
ing no positive linear correlation.

These findings demonstrate that entropy fluctu-
ations are not systematically associated with out-
put length changes in the Phi-4 model. This sup-
ports the claim that ERGO’s reset mechanism is not
driven by verbosity or token count, but rather by in-
ternal signals of model uncertainty. Entropy-based
resets therefore retain validity as an independent
control signal rather than acting as a surrogate for
response length.

Coefficient p-value
Spearman’s p —0.0143 0.4525
Pearson’s r —0.0796 2.7 x 107

Table 3: Correlation between changes in entropy and
response length for the Phi-4 model.

6 Conclusion

Our results show that ERGO effectively mitigates
multi-turn LLM performance degradation by using
Shannon entropy to detect model confusion and
trigger prompt restructuring. Despite its simplic-
ity, Shannon entropy serves as a reliable signal for
targeted context consolidation, minimizing unnec-
essary resets. ERGO consistently outperformed
existing methods, achieving 56.6% performance
gains over standard baselines, improving aptitude
by 24.7%, and reducing unreliability by 36.3%.
Correlation analysis confirmed that entropy-based
resets reflect genuine model uncertainty rather than
response length. As a practical, model-agnostic
framework, ERGO enhances conversational coher-
ence in real-world deployments, with future work
focused on advanced context consolidation strate-
gies such as multi-stage summarization and adap-
tive techniques for long-form conversations.

280

Limitations

While ERGO achieves significant improvements in
multi-turn performance via entropy-guided resets,
certain avenues for future work remain.

Context Simplification: ERGO’s resets cur-
rently consolidate only user inputs, omitting as-
sistant responses. This design enables lightweight,
stateless resets but limits fidelity in open-ended
dialogues where assistant turns introduce key enti-
ties or reasoning steps. Without full dialogue trace
consolidation, resets may discard critical context.

Threshold Adaptation: ERGO uses model-
specific entropy thresholds calibrated on GSMS8K,
that are then fixed across datasets. While this
methodology has shown to have inherit sensitiv-
ity and adapt to model capabilities (Appendix A
& B). More dynamic or task-aware thresholding
could improve precision.

These limitations represent natural progressions
for ERGO toward broader, more general-purpose
deployment. They do not challenge the core mech-
anism but point to extensions that scale the system
into richer, more adaptable dialogue settings.

References

M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan, S. Gu-
nasekar, M. Harrison, R. J. Hewett, M. Javaheripi,
P. Kauffmann, and 1 others. 2024. Phi-4 Technical
Report. In arXiv preprint.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Girish Hernandez, Chelsea Edwards, Yuri Burda,
Nicholas Joseph, and 1 others. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Chris Cundy and Stefano Ermon. 2024. Sequence-
match: Imitation learning for autoregressive se-
quence modelling with backtracking. Preprint,
arXiv:2306.05426.

Markus Dreyer, Mengwen Liu, Feng Nan, Sandeep
Atluri, and Sujith Ravi. 2023. Evaluating the tradeoff
between abstractiveness and factuality in abstractive

281

summarization. In Findings of the Association for
Computational Linguistics: EACL 2023, pages 2089—
2105, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Ka-
dian, A. Al-Dahle, A. Letman, A. Mathur, A. Schel-
ten, A. Vaughan, and 1 others. 2024. The LLaMA 3
Herd of Models. In arXiv preprint.

Akash Gupta, Ivaxi Sheth, Vyas Raina, Mark Gales,
and Mario Fritz. 2024. LLM Task Interference: An
Initial Study on the Impact of Task-Switch in Con-
versational History. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

A. Hurst, A. Lerer, A. P. Goucher, A. Perelman,
A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,
A. Hayes, A. Radford, and 1 others. 2024. GPT-40
System Card. In arXiv preprint.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa
Schut, Shreshth Malik, and Yarin Gal. 2024. Seman-
tic entropy probes: Robust and cheap hallucination
detection in llms. arXiv preprint arXiv:2406.15927.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
arXiv preprint arXiv:2302.09664.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and
Jennifer Neville. 2025. LLMs Get Lost In Multi-Turn
Conversation. In Proceedings of the 2025 Conference
on Language Modeling (COLM).

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2024. Inference-time
intervention: Eliciting truthful answers from a lan-
guage model. Preprint, arXiv:2306.03341.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Andrey Malinin and Mark Gales. 2018. Predictive un-
certainty estimation via prior networks. Advances in
neural information processing systems, 31.

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2306.05426
https://arxiv.org/abs/2306.05426
https://arxiv.org/abs/2306.05426
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.18216
https://arxiv.org/abs/2402.18216
https://arxiv.org/abs/2402.18216
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2505.06120
https://arxiv.org/abs/2505.06120
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651

OpenAl. 2024. OpenAl 03 and 04-mini System Card.
OpenAl. 2025. Introducing gpt-4.1 in the api.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A controlled table-
to-text generation dataset. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1173-1186.

Karl Pearson. 1895. Note on regression and inheritance
in the case of two parents. Proceedings of the Royal
Society of London, 58:240-242.

Charles Spearman. 1904. The proof and measurement
of association between two things. The American
Journal of Psychology, 15(1):72—-101.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech,
David Udell, Juan J. Vazquez, Ulisse Mini, and
Monte MacDiarmid. 2024. Steering language
models with activation engineering. Preprint,
arXiv:2308.10248.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, and 1 others. 2023. Au-
toGen: Enabling Next-Gen LLM Applications via
Multi-Agent Conversation. In Proceedings of the
2023 Conference on Language Modeling (COLM).

Yuxia Xiao and William Yang Wang. 2022. Uncertainty
quantification with pre-trained language models: A
large-scale empirical analysis. Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pages 7608-7621.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function-
calling leaderboard. https://gorilla.cs.berkeley.
edu/leaderboard.html.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, and 1 others. 2018. Spider:
A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of EMNLP, pages 811-820.

Yiming Zhang, Jianfeng Chi, Hailey Nguyen, Kar-
tikeya Upasani, Daniel M. Bikel, Jason Weston, and
Eric Michael Smith. 2024. Backtracking improves
generation safety. Preprint, arXiv:2409.14586.

282

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4-1/
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.2307/1412159
https://doi.org/10.2307/1412159
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://arxiv.org/abs/2409.14586
https://arxiv.org/abs/2409.14586

A Threshold Selection Procedure

Model Name Version 7 Percentile Provider

=" Phi-4 A N/A 0. 90th HuggingFace
0 Llama3.1-8b N/A 0.03 65th HuggingFace
®GrT-4.1 gpt-4.1-2025-04-14 02 90th OpenAl API
® GPT-40-mini gpt-40-mini-2024-07-18 0.2 85th OpenAl API
©® GPT-40 gpt-40-2024-08-06 03 90th OpenAl API

Table 4: Model versions, thresholds, and calibration percentiles used in our experiments. (Versions included where

applicable.)

To determine appropriate entropy thresholds (7)
for triggering context resets, we conducted a cali-
bration procedure specific to each model. The goal
was to identify a rise in entropy that reliably signals
when a model is ’lost’ in the conversation, that is,
when its internal uncertainty increases sharply, sug-
gesting that it is struggling to integrate or reason
over the accumulated context.

For each model, we selected a held-out subset
of approximately ~ 80 shard-level examples from
the GSM8K dataset. These examples were drawn
from outside the final evaluation set to avoid con-
tamination, with GSMS8K being chosen due to its
hybrid structure, requiring both reasoning and nat-
ural language generation. We then ran each model
in a standard multi-turn setting over these shards
and computed the change in average token-level
predictive entropy at each turn.

From the resulting distribution of entropy rises,
we selected a threshold based on a percentile
aligned with the model’s baseline aptitude on
GSMBSK. For instance, since GPT-4.1 achieves a
baseline aptitude of ~ 90% on GSMS8K in single-
turn settings, we selected the 90th percentile of the
entropy rise distribution as its reset threshold. The
underlying rationale was to calibrate the thresh-
old so that only the most atypical (high-entropy)

turns, those statistically associated with likely fail-
ure, would trigger an intervention. Details of the
models used, including their version identifiers,
selected entropy thresholds, and corresponding cal-
ibration percentiles, are summarized in Table 4.

Once determined, this threshold was fixed across
all datasets for a given model. We made this de-
cision intentionally, as our goal was to evaluate
the feasibility of a general-purpose, model-specific
threshold rather than tuning thresholds for each
dataset individually. This “one-size-fits-all” ap-
proach allows for a more robust and realistic as-
sessment of whether entropy-based context resets
can generalize across tasks without requiring per-
task adjustment.

Interestingly, while both GPT-4.1 and Phi-4
shared the same 90th percentile threshold, Phi-4
triggered significantly more resets during evalua-
tion. This was due to Phi-4’s strong performance
on GSMB8K but much weaker performance on the
broader set of tasks. This divergence illustrates that
the system remains sensitive to task-specific con-
fusion, with the number of resets scaling appropri-
ately even under a fixed, model-specific threshold,
highlighting the adaptive behavior of the method
across domains. More information on number of
resets incurred available in Appendix C.

283

B Sensitivity to Entropy Threshold (7)

(4.5, 79)
80 1

60 -

Number of Resets

(12.5, 41)

40

20 A

+]-]
(x[=]

(16.6, 9)

(40.0, 102
=
[g] (40.0, 96)
==
=]
(32.0, 73)
=
(30.6, 63)
= 30.0, 60)
EEEE
=
] i (32.6, 38)
[+]-]
(24.6, 31) xI=)
[=] Thresholds
1 0.03
—1 0.00
1 0.05
=1 0.08

20

30 40

Performance Gained vs SHARDED

Figure 5: Comparison of maximum performance points gains (highest increase in accuracy when compared to &)
and number of resets between different thresholds across Database, Actions, and Math tasks.

To evaluate the sensitivity of our method to the
entropy threshold parameter 7, we conducted an
ablation study using the same controlled setup
described in Section 5.3 with the Llama3.1-8B
model on the Database, Actions, and Math tasks.
The only variable changed in this study was the
value of 7, the threshold used to trigger entropy-
guided resets. We tested four settings: 7 €
{0.00,0.03,0.05,0.08}, where 0.03 corresponds
to the threshold selected for the main experiments.

The results, visualized in Figure 5 showed a clear
performance peak at 7 = 0.03, which consistently
achieved the highest gains across all tasks. This
setting struck a balance between reactivity and re-
straint, triggering resets selectively at moments of
genuine confusion without introducing excessive
rewrites that risk semantic drift. In contrast, the
lowest threshold 7 = 0.00 resulted in the highest

number of resets and either matched or under-
performed the 0.03 setting, suggesting that overly
aggressive resetting is not beneficial and may lead
to instability due to frequent context rewrites.

At the other extreme, the highest threshold 7 =
0.08 yielded the fewest resets and consistently un-
derperformed, likely due to failing to intervene
even when the model was demonstrably confused.
The intermediate value 7 = 0.05 behaved as ex-
pected, yielding results that were approximately
midpoint between 0.03 and 0.08 in both perfor-
mance and reset count.

Taken together, these findings support the robust-
ness of our selected threshold and highlight the
importance of calibrating reset triggers to maintain
a balance between informativeness and interven-
tion overhead.

284

C Computational Cost and Reset Overhead Analysis

Model Average Performance ~ Shards per Reset Threshold Percentile
GPT-4o 75.6 51 92nd
GPT-4.1 77.2 38 90th
GPT-40-mini 71.8 29 85th
Phi-4 59.2 7 90th
Llama3.1-8B 50.9 5 63rd

Table 5: Average Performance with ERGO along with the number of shards before reset occurs for each model and
its threshold percentile, measured as an average across all datasets.

A key consideration in deploying entropy-guided
context resets is the computational overhead they
introduce. In our system, two sources of compu-
tational cost must be considered: (1) the cost of
computing predictive entropy at each turn, and (2)
the cost incurred when a context reset is triggered.

Entropy Computation Cost: While more ad-
vanced measures of model uncertainty such as
semantic entropy require sampling multiple out-
puts over the same input (Kuhn et al., 2023), our
method uses token-level Shannon entropy, which
is extracted directly from the next-token probabil-
ity distribution during generation. This choice im-
poses negligible additional cost beyond standard
decoding and was selected for its practicality and
compatibility with real-time systems.

Reset Overhead: Each reset introduces two ad-
ditional forward passes through the model: one to
rewrite the accumulated user context into a con-
solidated prompt, and a second to respond to that
prompt. This introduces latency and compute pro-
portional to the number of resets triggered per run.
Table 5 showcases the average performance of mod-
els with ERGO along with the approximate num-
ber of shards per reset and the selected threshold
percentile for each model. Averaged across all
datasets, one question equates to ~ 6 shards.
These results reflect the adaptive nature of the
system: more capable models (e.g., GPT-4.1, GPT-

40) experience fewer high-entropy turns and thus
require fewer resets, minimizing overhead. Con-
versely, less capable models like Phi-4 trigger re-
sets more frequently, aligning with their observed
confusion.

Prompt Length Reduction: An additional con-
sequence of context resets is that they tend to trun-
cate the context window, potentially removing stale
or redundant information. Across all runs, the av-
erage token length of model prompts for questions
where resets occurred was 260 tokens, compared
to 309 tokens in questions where no resets were
triggered. While this reduction does not eliminate
the cost of the reset itself, it may partially offset it
by reducing input size in subsequent turns.

Retrieval-Augmented Consolidation (Future
Work): More advanced consolidation techniques,
such as retrieval-augmented synthesis, could fur-
ther improve the quality of resets but would intro-
duce additional retrieval and ranking costs. We
leave the exploration of such hybrid architectures
to future work.

Taken together, these results indicate that while
entropy-guided resets do introduce compute over-
head via additional forward passes, the system re-
mains adaptive. Reset frequency scales with model
confusion, and thresholds derived from a single rea-
soning heavy dataset generalize effectively across
diverse tasks.

285

D Metrics

D.1 Metric Selection

LLMs employ a stochastic decoding process, yield-
ing different outputs even under fixed prompts and
sampling parameters. We leverage this by repeating
our multi-turn simulation on each sharded instruc-
tion and observing the resulting success scores. Let

S = {Si}zj'vzl

be the set of scores from /N independent runs on a
single instruction, where each S; € [0, 100] mea-
sures task success at the end of that simulation.

D.1.1 Per-run scoring:

I. Binary-correctness tasks (Code, Database,
API, Math): At each turn, we evaluate the
model’s response; if it produces a correct so-
lution at any turn, we immediately assign
S; = 100 and terminate that run. If no turn
yields a correct answer, S; = 0.

II. Refinement task (Data-to-Text): We com-
pute the native metric (BLEU for data-to-text;
joint coverage/attribution score for summa-
rization) on the final generated output and
rescale it to [0, 100].

D.1.2 Aggregate metrics

From the per-run scores S, we define three sum-
mary statistics, following the methodology from
Laban et al. (2025):

1 X
i=1
A% = percentileg(S))

Uil = percentilegy(S) — percentile;o(S) (3)

-P (Average Performance): An unbiased esti-
mate of the model’s mean score on an instruction.

-A% (Aptitude): Estimates the 90th-percentile
performance, reflecting what one can achieve in
the top decile of runs.

- U (Unreliability): Measures the gap between
the 90th and 10th percentiles, capturing the degree
of stochastic variability in outputs.

Aptitude and Unreliability are computed per in-
struction and then averaged over the full set of
tasks. Binary-correctness accuracy is mapped onto
the 0—100 scale to ensure every task’s score aligns.

286

