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Abstract

In recent years, we have seen an increased us-
age of neural ranking models in the information
retrieval domain. Although language model-
based rankers have shown significant progress
in performing ranking tasks, little to no work
has addressed the issue of fine-tuning them in
the presence of label noise in the training data.
In a general learning setting, training models
in the presence of noisy labeled data is studied
extensively. To this end, confidence calibration
approaches have shown significant promise;
however, their usage in training neural ranking
models is relatively less studied. In this work,
we address this gap by adapting and analyzing
regularization-based calibration approaches to
reduce the effect of label noise in ranking tasks.
Specifically, we study label relaxation in neural
ranking models. We demonstrate the effective-
ness of this approach by performing extensive
evaluations comparing the label relaxation ap-
proach to standard loss functions. Addition-
ally, we analyze the calibration error associated
with the loss functions. After evaluating on
five different noise levels, two different rank-
ing models, and four diverse ranking datasets,
the results suggest that label relaxation can im-
prove the performance of the ranking models
under noisy labels. Furthermore, we find that
label relaxation reduces calibration error, al-
though it suggests a better metric to be used for
neural ranking models.

1 Introduction

The advancements of language models have en-
abled their rapid usage in various application do-
mains. One of such prominent application ar-
eas is neural ranking wherein the task is to esti-
mate the relevance of several candidate documents
or entities based on their relevance to the given
query (Reimers and Gurevych, 2019; Nogueira
and Cho, 2019), which is typically a question pre-
sented in a natural language form. With the recent

progress in NLP domains, models like BERT (De-
vlin et al., 2019) have achieved significant progress
in capturing the semantic contextual information
for a given query. Existing works focus on improv-
ing the ranking tasks considering several aspects of
the learning framework (Sil et al., 2018; Yamada
et al., 2020; Ganea and Hofmann, 2017; Fang et al.,
2019; Zhang et al., 2020). However, to the best
of our knowledge, only a few works considered
approaches to develop robust ranking models when
noisy labels are prevalent in the training data.

Label noise in the training data for ranking tasks
can be caused due to several reasons. For instance,
in a question answering dataset, noise can stem
from distant supervision, weakly supervised data
generation, bad annotations, among other reasons.
Such noise can essentially lead to the generation of
models with degraded generalization and unstable
predictions (Liu and Tao, 2016; Natarajan et al.,
2013; Patrini et al., 2017). This issue becomes par-
ticularly critical in ranking tasks, where the quality
of predictions directly impacts the rank order of
documents or entities, thereby affecting the overall
effectiveness of the system. Furthermore, studying
the risks associated with label noise in ranking mod-
els is also important, as improper handling of noise
can lead to misleading rankings and reduced model
reliability. One of the few works in the NLP do-
main by Zhu et al. (2022) studied the robustness of
the BERT model and showed that in sentence classi-
fication tasks, weakly supervised noise can severely
degrade the performance of the model. In classifica-
tion and general learning settings, this problem has
been tackled often by using several types of model
calibration approaches by Zhu et al. (2021); Wei
and Liu (2021); Ding et al. (2021); Cheng and Vas-
concelos (2022); Ghosh et al. (2022); Moon et al.
(2020); Ma and Blaschko (2021); Liu et al. (2022);
Lienen and Hüllermeier (2021, 2024). These ap-
proaches typically work by ensuring that the con-
fidence of the underlying model in predicting an
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input instance should also reflect the true likeli-
hood of the prediction. In other words, the model
should not confidently predict wrong labels, and
in contrast, when predicting the correct labels, it
should exhibit sufficient confidence. The idea is to
calibrate the overconfident models, which are vul-
nerable to memorizing incorrect labels (Guo et al.,
2017). Label smoothing (Szegedy et al., 2016) is
considered a standard approach, wherein the idea
is to distribute a specific amount (decided based
on a hyperparameter) of probability mass taken
from the actual label to all the other labels. Al-
though label smoothing can be quite effective, it
still relies on precise probabilistic labels, which
might degrade the generalization performance (Li
et al., 2020). Therefore, Lienen and Hüllermeier
(2021) proposed label relaxation, which considered
a set of candidate distributions, instead of a single
smoothed distribution. Label relaxation essentially
replaces fixed (and possibly incorrect) label distri-
butions with sets of plausible distributions, thereby
allowing the learner to learn a bounded range of
acceptable target labels.

In this paper, we tackle label noise in order to de-
velop robust ranking models in the fine-tuning step.
We consider two different directions, considering
model calibration techniques. Firstly, we intro-
duce label relaxation into the ranking paradigm as
a principled approach to fine-tune models under
noisy conditions. More specifically, considering
the pairwise ranking loss, we integrate relaxation in
several widely used neural ranking models. Then
we compare the performance of two different cali-
bration approaches, i.e., smoothing with relaxation,
to gain some initial insights into which approach
performs better. Secondly, by analyzing the cali-
bration error, we aim to understand how well the
models’ confidence reflects their true performance
under noisy conditions. Thus, we assess the associ-
ated risks of poor confidence calibration, which can
lead to suboptimal ranking decisions. We model
the label noise in the ranking tasks by consider-
ing a proximity-aware approach. Experimental re-
sults considering these two different calibration ap-
proaches, 5 different noise levels, 4 diverse datasets,
and two ranking models suggest the potential of
relaxation under label noise in fine-tuning ranking
models. Our contributions can be summarized as,

• We introduce label relaxation to perform cali-
bration for ranking models under the presence
of label noise.

• We formally define the relaxation considering
the pairwise ranking loss.

• We evaluate the performance of label relax-
ation considering 5 different noise levels.

• We give a comparative analysis comparing
label relaxation to the standard calibration ap-
proach, label smoothing.

• We analyze the calibration error to understand
the risks associated with two calibration ap-
proaches in the presence of label noise.

• We make the code publicly available 1.

2 Related Work

Ranking models As mentioned beforehand,
with the advancement of language models, we
have seen significant progress in the domain of
neural ranking (Reimers and Gurevych, 2019;
Nogueira and Cho, 2019; Déjean et al., 2024;
Zhang et al., 2022; Wu et al., 2020a). One of
the first works was Sentence-BERT (Reimers and
Gurevych, 2019), which adapted the BERT archi-
tecture into a Siamese network to produce sentence-
level embeddings. Nogueira and Cho (2019) ex-
tended this idea by further showing that BERT-
based models could be fine-tuned specifically for
passage re-ranking. This has shown substantial
improvements in retrieval performance. Subse-
quent work has continued to explore more scal-
able and generalizable ranking solutions. For ex-
ample, Wang et al. (2022) introduced a family of
embedding models trained with contrastive learn-
ing on massive collections of text pairs. Cross
encoders (Déjean et al., 2024) are shown to outper-
form the previous approaches in re-ranking tasks
at the cost of a high training time.

Calibrated Loss Calibration refers to the align-
ment between the model’s predicted confidence
and the actual likelihood of correctness. A per-
fectly calibrated model assigns a probability of 0.7
to a prediction if, on average, 70% of such pre-
dictions are correct. There exist two categories
of approaches that perform model calibration, (i)
post-hoc and (ii) regularization-based. In order
to perform calibration, post hoc approaches ad-
just the output predictions (Cheng and Vasconce-
los, 2022; Wei et al., 2022; Hebbalaguppe et al.,

1https://github.com/dice-group/RobustRanking/
tree/label-relaxed-ranking
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2022). However, this requires additional validation
on held-out datasets. Furthermore, this approach
assumes the training and test distributions to be the
same, which often is not. Regularization-based ap-
proaches do not require any extra data and perform
calibration during the training step while comput-
ing the loss (Cheng and Vasconcelos, 2022; Wei
et al., 2022; Hebbalaguppe et al., 2022). Label
smoothing is often used as a standard technique
to soften the hard target labels by redistributing
the probability mass to non-target labels (Szegedy
et al., 2016; Müller et al., 2019). However, typi-
cal smoothing distributes the probability mass uni-
formly. There exist approaches that essentially
follow more advanced approaches, such as boot-
strapping techniques (Reed et al., 2015), wherein
a self-supervised approach is used to distribute the
probability mass. Self-distillation and model dis-
tillation approaches also follow a similar approach
by replacing the hard labels with the soft ones from
the teacher model (Yun et al., 2020; Zhang et al.,
2019). Although in typical classification settings
such approaches have been extensively studied, in
the NLP domain, this is relatively less explored.
Huang et al. (2024) introduced confidence-aware
label smoothing for alignment tasks considering
language models and have shown the potential of
the calibration approaches. Kobyzev et al. (2023)
also showed the potential of several calibrated ap-
proaches in fine-tuning language models.

Note that we consider the idea of label relax-
ation introduced by Lienen and Hüllermeier (2021)
wherein a single fixed target distribution is replaced
with a set of candidate probability distributions.
Another work by Kim et al. (2021) proposed re-
laxed labels in metric learning, which relaxes bi-
nary pairwise relation labels by replacing them
with continuous similarity weights from a source
embedding space. Alike our work, Purpura et al.
(2022) also study learning to rank from relevance
judgment distributions. They use KL divergence
to align model predictions with empirical distri-
butions, thereby directly capturing inter-annotator
disagreement. Note that we assume that such distri-
butions are not consistently available across rank-
ing datasets. Instead, we propose label relaxation,
which defines a credal set of admissible label dis-
tributions. This approach allows us to model epis-
temic uncertainty and mitigate label noise without
requiring multiple annotations per query. To the
best of our knowledge, this is the first work that
studies calibration in this context.

3 Calibration in Ranking Model

In our work, we consider two different ranking
approaches, both of which fall under the category
of bi-encoder models. More specifically, we use
the pre-trained BERT (Wu et al., 2020a) and the
E5 (Wang et al., 2022) models.

E5 model (Wang et al., 2022) encodes both
the query and candidate entities using a language
model, producing dense vector embeddings. These
token-level embeddings are then averaged via a
pooling layer to obtain fixed-size vectors. Finally,
a scoring function computes a probability score
ŷ ∈ [0, 1], reflecting the likelihood that the candi-
date entity is the correct match for the query.

BERT model follows a similar approach to E5
model in performing ranking tasks. However, the
only difference is that BERT is pre-trained to per-
form binary relevance classification tasks between
a query and a document (Devlin et al., 2019),
whereas in contrast, E5, is additionally pre-trained
on several ranking tasks. Next, we formalize the
ranking task and subsequently define the term label
relaxation in this context.

Note that the document ranking step often con-
sists of two different steps, namely retrieval and
ranking. In this work, we only consider the rank-
ing stage. In a typical supervised ranking setup,
each training sample consists of a query q and
a set of candidate documents defined as Dq =
{d1, d2, . . . , dK}, with only one document labeled
as relevant (Wang et al., 2022; Zhang and Braun,
2024; Tran et al., 2024). Herein, we assume the
set of candidate documents is already correctly re-
trieved by a retrieval model. Typically, within a
training step, a batch of queries and correspond-
ing documents are presented, wherein the size of
the batch is determined by the training configura-
tion. For a batch consisting of N queries and K
candidates per query, we define the label matrix
Y ∈ {0, 1}N×K as follows.

Yi,j =

{
1 if dj ∈ Rqi

0 otherwise.

Herein Rqi ⊆ Dqi is the set of relevant docu-
ments for query qi, typically of cardinality 1. Let
us assume the ranking model as f , then it produces
a score f(qi, dj) for candidate dj to query qi. In the
ranking tasks, the goal is to ensure that relevant doc-
uments are scored higher than non-relevant ones.
To achieve this, the pairwise ranking loss is often
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used herein. Let (qi, dj+ , dj−) denote a training
triplet, where dj+ is a document relevant to query
qi, and dj− is a non-relevant (or less relevant) doc-
ument, i.e., dj− ∈ Dqi \ Rqi . Since we adopt
an in-batch negative sampling strategy, we have
a training batch containing N queries, each asso-
ciated with K candidate documents (one relevant
and K − 1 non-relevant). For every query qi, the
model compares the relevant document dj+ against
all K−1 non-relevant candidates in the batch. The
pairwise ranking loss scores a relevant document so
that it exceeds that of a non-relevant one by γ > 0,
a defined margin. This can be defined as,

LPR =

N∑

i=1

K∑

j=1
j ̸=j+

max
{
0, γ − f(qi, dj+)

+f(qi, dj−)
}

(1)

Here, j+ denotes the index of the relevant doc-
ument among the K candidates for qi. This loss
penalizes cases where a non-relevant document
scores too closely or higher than the relevant one.

Label Smoothing is a regularization technique
that softens target labels to mitigate overconfi-
dence (Szegedy et al., 2016; Müller et al., 2019).
Rather than encoding the correct document as a
one-hot vector, label smoothing redistributes a
small fraction of the probability mass across all
other candidates. Formally, the smoothed label dis-
tribution Ỹ ∈ [0, 1]N×K can be defined as follows.

Ỹi,j =

{
1− ε if j = j+

ε
K−1 otherwise

As mentioned previously, we consider in-batch
pairwise training; therefore, we use the smoothed
score Ỹi,j in place of a hard label of 1 in the margin-
based loss, resulting in the label-smoothed pairwise
ranking loss as follows.

Lpair
LS =

N∑

i=1

K∑

j=1
j ̸=j+

Ỹi,j+ max
(
0, γ − f(qi, dj+)

(2)

+ f(qi, dj−)
)

Label Relaxation in Pairwise Ranking unlike
label smoothing, which redistributes the probability
mass of the target label uniformly, label relaxation

replaces the target with a set of plausible distri-
butions that reflect epistemic uncertainty (Lienen
and Hüllermeier, 2021). This can help to reduce
the uncertainty regarding the correct label. Label
relaxation introduces a relaxed set of acceptable
target distributions parameterized by α ∈ [0, 1].
We define Qα as the set of all relevance proba-
bility distributions p satisfying p(+) ≥ 1 − α
and p(−) ≤ α. While Qα is a set, in our im-
plementation, we instantiate it via a canonical rep-
resentative distribution pr for loss computation as
Qα =

{
p ∈ ∆2 : p(+) ≥ 1− α, p(−) ≤ α

}
.

This set essentially defines that the relevant doc-
ument should be preferred with high probability;
this does not pertain to a specific numeric value;
rather, we allow the model to match any distribu-
tion within Qα. The model can then generate any
label that falls inside this plausible region, without
penalizing it for deviations that are within the ac-
ceptable uncertainty bounds. The relaxation param-
eter α ∈ [0, 1] controls the degree of permissible
deviation from the one-hot target. We select α via
validation set performance for each dataset.

Next, we apply the KL divergence on the pre-
dicted scores and the distribution Qα. Note that,
since f(qi, dj) is a relevance score, for KL diver-
gence we need to first convert it into a probability
distribution over candidates using a softmax nor-
malization, let us call this p̂i(j). Afterwards, the
label relaxation loss compares the predicted dis-
tribution p̂i(j) with the distribution Qα, denoted
as pr. Since we have two different distributions,
instead of using any margin-based loss, it is com-
puted using KL divergence as follows.

Lpair
LR =

N∑

i=1

K∑

j=1
j ̸=j+

KL(pr∥p̂i(j)) (3)

Herein pr can be defined as follows.

pr(y) =

{
1− α if y = +

α if y = −

Since the prediction is probabilistic, KL diver-
gence penalizes differences in a way that reflects
confidence mismatches, i.e., confident, however,
when predictions are wrong, are more penalized
than uncertain ones. Below we give an example to
explain this clearly.

Example Consider (qi, dj+ , dj−) that has been
judged by multiple annotators. Suppose 80%
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of them preferred d+i,j , while 20% preferred dj− .
This uncertainty would be difficult to capture
with one-hot labels or a uniform label smooth-
ing approach. Rather than forcing the model to
match a hard label [1, 0], or smoothing it arbi-
trarily to something like [0.9, 0.1], label relax-
ation allows us to model more concisely. Let us
choose the relaxation parameter as α = 0.2, with
which we can define the relaxed set as Q0.2 ={
p ∈ ∆2 : p(+) ≥ 0.8, p(−) ≤ 0.2

}
.

Therefore, pr(+) = 0.8, pr(−) = 0.2. This
implies that if the model predicts any values be-
tween 0.8 and 1.0, the associated loss would be con-
sidered as 0. Otherwise, using the KL-divergence
loss, the model is then trained to minimize the diver-
gence. This formulation respects the ambiguity in
the supervision and allows the model to output cal-
ibrated probabilities that reflect uncertainty, rather
than overconfident or artificially smoothed predic-
tions. As a result, label relaxation not only im-
proves robustness to label noise but also enhances
the model’s ability to represent uncertainty, which
is critical in real-world applications such as QA,
recommendation, and information retrieval.

Calibration Error in Ranking is typically mea-
sured using expected calibration error (ECE) to
evaluate the calibration of the model’s probabil-
ity outputs (Naeini et al., 2015; Guo et al., 2017).
Calibration in this context refers to the agreement
between predicted probabilities and the actual like-
lihood of correctness. More specifically, consider-
ing document ranking tasks, the goal is to ensure
that the probability assigned to a document reflects
its actual relevance to the query. A well-calibrated
ranking model would assign a probability close to
1 to relevant documents and a probability close to 0
to non-relevant ones. To define it more formally, let
us assume Rqi be the set of relevant documents for
query qi, and Dqi = {d1, d2, . . . , dK} the full set
of candidate documents, ECE for neural ranking
models is,

ECE =

N∑

i=1

K∑

j=1

|p̂i(j)− I(dj ∈ Rqi)|·I(ŷi,j ∈ B).

(4)
Where I(dj ∈ Rqi) is the indicator function that

is 1 if dj is relevant to qi, and 0 otherwise, and
I(ŷi,j ∈ B) is an indicator function that checks
whether p̂i(j) falls into a bin B of predicted prob-
ability values. Specifically, |p̂i(j)− I(dj ∈ Rqi)|
represents the absolute error between the predicted

probability and the ground truth label. The sum-
mation is carried out over all candidate documents
within each bin.

4 Evaluation

Datasets and Models For evaluation, we used
four datasets, namely, (i) AIDA (Hoffart et al.,
2011), (ii) Mintaka (Sen et al., 2022), (iii) LC-
QuAD 2.0 (Dubey et al., 2019), and (iv) MS
MARCO (Craswell et al., 2021). Datasets (i)–
(iii) pertain to entity ranking tasks, and the MS
MARCO dataset corresponds to document ranking
tasks. The AIDA dataset contains news articles and
entities that are linked to Wikipedia. Mintaka is
generated through crowd workers, wherein the en-
tities in question-and-answer pairs are linked to
the Wikidata knowledge graph. LC-QuAD 2.0
(or in short, LC-QuAD) is also generated through
crowd workers, but, contains SPARQL queries. Fi-
nally, the MS MARCO dataset is frequently used
for diverse tasks to perform question answering,
passage ranking, and document ranking. Both LC-
QuAD and MS MARCO are question-answering
datasets. The ranking models are taken from their
original implementation given in Hugging Face,
BERT 2, E5 3. Thereafter, using in-batch negative
sampling (Wu et al., 2020b), we fine-tuned them on
the datasets described above. Each of the models is
trained using the default learning rates and the pa-
rameters considering 10 epochs. Finally, the evalua-
tion is performed by using the model’s embeddings
indexed by using Faiss indexing API (Douze et al.,
2024). Note that, for MS MARCO, while com-
puting the hard negatives, we randomly selected
10,000 negative documents from the whole corpus
at a time. Finally, for fine-tuning the models, we
used a server with 128 GB of RAM and an NVIDIA
RTX H100 GPU with 80 GB of RAM.
Label Noise In this work, we consider semantic-
aware label noise, wherein instead of flipping la-
bels randomly, our approach considers a more real-
istic scenario. More specifically, for a given ratio of
noise addition, we intentionally introduce an error
by replacing the correct (relevant) document with
a non-relevant one that is semantically very simi-
lar to the former. This is done by first randomly
choosing a subset of queries from the training batch.

2https://huggingface.co/docs/transformers/
model_doc/bert

3https://huggingface.co/intfloat/e5-base-v2
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Table 1: MRR and Recall results evaluated on four ranking datasets using the E5 model, grouped by noise ratio with comparisons
across loss functions (PR, LS, LR). The results reported below are the best results obtained considering specific smoothing rates
and relaxation parameters.

NR LF MRR ↑ Recall↑
Msmarco Lcquad Mintaka Aida Msmarco Lcquad Mintaka Aida

0
PR 0.8823 0.9191 0.2419 0.2881 0.9678 0.8739 0.3290 0.1501
LS 0.8819 0.8823 0.2433 0.3007 0.9666 0.8803 0.3701 0.1692
LR 0.9164 0.9194 0.3244 0.2856 0.9718 0.8818 0.4470 0.1557

1
PR 0.8782 0.9095 0.2323 0.2782 0.9637 0.8713 0.3147 0.1492
LS 0.8771 0.8915 0.2418 0.2914 0.9617 0.8701 0.3382 0.1676
LR 0.9165 0.9090 0.3385 0.2835 0.9713 0.8739 0.4640 0.1534

2
PR 0.8757 0.8922 0.2119 0.2678 0.9603 0.8576 0.2856 0.1404
LS 0.8819 0.8808 0.2247 0.2812 0.9597 0.8550 0.3003 0.1498
LR 0.9160 0.8910 0.3189 0.2672 0.9711 0.8593 0.4357 0.1423

4
PR 0.8541 0.8537 0.1957 0.2489 0.9451 0.8180 0.2658 0.1241
LS 0.8516 0.8332 0.2020 0.2719 0.9441 0.8000 0.2753 0.1493
LR 0.9128 0.8452 0.2818 0.2530 0.9703 0.8058 0.3748 0.1302

5
PR 0.6805 0.8169 0.1813 0.2500 0.9129 0.7854 0.2433 0.1293
LS 0.6907 0.8180 0.1877 0.2688 0.9091 0.7718 0.2612 0.1403
LR 0.9110 0.8187 0.2673 0.2412 0.9331 0.7857 0.3603 0.1206

Then, for each selected query, the correct answer is
changed and replaced with another candidate that
is closest in meaning, based on a similarity score
between the original relevant document and all the
other candidates. Therefore, we simulate noisy su-
pervision by replacing the correct document with a
semantically similar but non-relevant one for a sub-
set of queries. We vary the noise proportion across
five levels: 0% (no noise) to 5% of the training
labels, following a progressive corruption scheme.
Concretely, at 2% noise, 2% of the queries in the
training set have their relevant document replaced.
Note that although we do not perform human ver-
ification to find out the plausibility of the noisy
labels, we still ensure their semantic plausibility by
selecting replacements based on embedding simi-
larity 4. Additionally, some datasets, for instance,
Mintaka, originate from multiple human annota-
tors, which in principle could provide empirical
relevance distributions. However, the versions we
use in our evaluation only provide single canoni-
cal labels. For consistency across benchmarks, we
therefore did not compare against models trained
on empirical annotation distributions.

4.1 Results & Discussion

Tables 1 and 2 show the results in terms of MRRs
and recall@10 of applying two different calibrated

4This is further mentioned in the Section 5

loss functions considering E5 and BERT models.
NR depicts different noise ratios, and CL denotes
different loss functions. We report results consider-
ing five different noise ratios. Noise ratio herein in-
dicates the proportion of training queries for which
the relevant document is replaced with a semanti-
cally similar but incorrect one. Note that in these
tables, we show the results considering pairwise
ranking loss. However, we also conducted exper-
iments using cross-entropy loss. Since the results
show the same trend, we omit them in the paper.

Considering Table 1, the results suggest that la-
bel relaxation can significantly improve the per-
formance of the E5 model when fine-tuned on the
Mintaka and MS MARCO datasets under noisy la-
bels. However, considering the AIDA dataset, we
find that, in fact, smoothing performs better, and in
the LC-QuAD dataset, none of the calibration ap-
proaches lead to significant performance improve-
ment. This is because the nature of the dataset de-
termines the effectiveness of a calibration strategy.
For AIDA, the relatively structured entity annota-
tions and consistent alignment with the knowledge
graph render the soft regularization of smoothing
more effective than the plausibility distribution of
labels used by label relaxation. In LC-QuAD, the
queries are short and ambiguous, and the candidate
space is limited, which might impact the calibra-
tion approaches. This might further reduce the im-
pact of either calibration approach. These findings
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Table 2: MRR and Recall results evaluated on four ranking datasets using the BERT model, grouped by noise ratio with
comparisons across loss functions (PR, LS, LR). The results reported below are the best results obtained considering specific
smoothing rates and relaxation parameters.

NR LF MRR↑ Recall↑
Msmarco Lcquad Mintaka Aida Msmarco Lcquad Mintaka Aida

0
PR 0.8331 0.9410 0.4223 0.3755 0.9254 0.9271 0.5111 0.2231
LS 0.8310 0.9338 0.4261 0.3761 0.9051 0.9171 0.5331 0.2205
LR 0.8500 0.9371 0.4117 0.3551 0.9381 0.9113 0.5457 0.2210

1
PR 0.7891 0.9388 0.4235 0.3421 0.8987 0.9199 0.5035 0.2198
LS 0.8178 0.9381 0.4165 0.3383 0.8810 0.9090 0.5234 0.2171
LR 0.8438 0.9358 0.4097 0.3518 0.9341 0.9049 0.5434 0.2000

2
PR 0.7517 0.9108 0.4058 0.3353 0.5900 0.8989 0.5021 0.2065
LS 0.7234 0.9088 0.4241 0.3211 0.8571 0.8836 0.5312 0.2054
LR 0.8402 0.9015 0.3793 0.3301 0.9301 0.8844 0.5083 0.1845

4
PR 0.6985 0.8441 0.3963 0.3381 0.4895 0.8110 0.4938 0.2150
LS 0.7510 0.8419 0.3759 0.3230 0.8220 0.8190 0.5114 0.2065
LR 0.8400 0.8509 0.3299 0.3104 0.9301 0.8176 0.4372 0.1718

5
PR 0.6885 0.8001 0.3543 0.3211 0.4074 0.7719 0.4255 0.2031
LS 0.7491 0.8199 0.3741 0.3230 0.8113 0.7881 0.5013 0.2063
LR 0.7819 0.8192 0.3019 0.2944 0.9110 0.7898 0.4009 0.1777

highlight that while label relaxation offers strong
robustness under certain noise settings, its efficacy
is still dataset-dependent and should be carefully
selected based on the underlying characteristics of
the data and task.

In Table 2, we see the results of the BERT
model, wherein it can be observed that the label
relaxation does not show significant performance
improvement for Lc-QuAD, Mintaka, and Aida
datasets. In those datasets, label smoothing per-
forms slightly better. However, it also does not
significantly improve the results in comparison to
pairwise loss. These findings are consistent with
the study by Zhu et al. (2022) wherein they re-
ported that label smoothing does not improve the
performance of the BERT model under label noise
generated in the weakly supervised step.

E5 model, despite using the same underlying
BERT model, is extensively weakly-supervised
trained on the ranking dataset (Wang et al., 2022)
that makes it inherently more robust to noisy su-
pervision and better calibrated in its embedding
space. This encourages the model to learn smoother
decision boundaries and more stable representa-
tions. As a result, when fine-tuned with label re-
laxation, E5 is able to leverage its calibrated em-
bedding space to better align the relaxed supervi-
sion with meaningful semantic gradients. In con-
trast, the standard BERT model lacks such domain-
specific pre-training and starts from a relatively

uncalibrated representation space for the ranking
task, making it more sensitive to label noise and
less responsive to relaxation-based regularization.
However, we see that for the largest dataset, MS
MARCO, label relaxation outperforms the other
calibration approaches for the BERT model. This
observation suggests that for very large datasets,
the relaxed set can be helpful even when the model
is not pre-trained on ranking datasets. Herein, the
availability of training instances allows the model
to benefit from the soft supervision, avoiding over-
fitting to incorrect labels. In contrast, the stan-
dard BERT model lacks such domain-specific pre-
training and starts from a relatively uncalibrated
representation space for the ranking task, making it
more sensitive to label noise and less responsive to
relaxation-based regularization. With these results,
we highlight the following important findings.

Dataset size & diversity. Large datasets such as
MS MARCO and Mintaka work effectively with
label relaxation since this distributes probability
mass over semantically plausible candidates with-
out overfitting to noisy labels.

Candidate space structure. Highly structured
datasets like AIDA favor a calibrated loss function.
Herein, smoothing gains top performance since it
enforces small-entropy distributions.

Query ambiguity. In LC-QuAD, where ambigu-
ity and candidate space constraints dominate, cali-
bration does not yield notable performance gain.
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Table 3: Loss functions to use when training on MS MARCO, Mintaka, LC-QUaD, and AIDA datasets.

Dataset E5 BERT Notes

MS MARCO Label Relaxation Label Relaxation Largest dataset; soft supervision
avoids overfitting

LC-QuAD Pairwise loss Pairwise loss Small candidate space; calibration
has little effect

Mintaka Label Relaxation Label Relaxation Large, diverse queries; E5 benefits
from calibrated embeddings

AIDA Label Smoothing Label Smoothing Structured entity annotations;
smoothing aligns better

Model pre-training. This is probably the most
important finding of all. As mentioned previously,
E5’s extensive weakly-supervised pre-training on
ranking data produces smoother embedding mani-
folds, allowing label relaxation to align gradients
with semantically similar negatives. In contrast,
standard BERT lacks such calibration and is more
sensitive to label noise.

Based on the above observation, we provide a
practical guidance as to when to use a specific type
of loss function. This is summarized in Table 3.

Calibration Error Analysis Based on our pro-
posed expected calibration error, defined in Equa-
tion 4, we evaluated the calibration of the E5 and
BERT models, considering pairwise loss, label
smoothing, and label relaxation. The results are re-
ported in Table 4. Note that since LC-QuAD does
not yield notable performance improvement using
calibrated loss functions, we do not consider it.

We see that typically label relaxation leads to the
lowest calibration errors for most of the datasets.
However, the differences between the ECE values
of the calibrated and non-calibrated loss functions
are not remarkably high. In fact, considering the
MS MARCO dataset, we find that ECE is lower for
non-calibrated loss in high noise ratios compared
to calibrated loss functions, even when the per-
formance drops significantly with non-calibrated
loss functions. This shows some known shortcom-
ings of ECE, for instance, its histogram binning can
mask differences, specifically considering high esti-
mator bias and variance depending on bin count and
scheme. Additionally, since ECE aggregates class-
and score-conditional structure, work on ranking
scale calibration similarly reports that off-the-shelf
ECE can be misleading without class balancing or
rank-aware structure (Widmann et al., 2019; Fu-
tami and Fujisawa, 2024; Yan et al., 2022). These
works reported results on vision-based rankers. In

this work, we find the same drawback in document
ranking models as well.

As an alternative to calibration error, we ana-
lyze the behavior of the ranking models BERT and
E5 under label noise by plotting the training and
validation performance side-by-side and observe
the differences in Figure 1 and 2 (Appendix A),
respectively (). Therein, we see that as the label
noise increases, the gap increases notably. This
behavior is consistent with memorization under la-
bel noise. Specifically, the models eventually fit
corrupted labels, inflating training metrics while
harming generalization. This highlights that the
performance of ranking under noise is not captured
by ECE metric. The widening recall gap, as memo-
rization error (Zhang et al., 2021; Han et al., 2025),
is therefore a practical metric herein to guide cali-
bration or early stopping.

5 Conclusion & Future Directions

In this work, we have studied label relaxation
considering the neural ranking models in perform-
ing document ranking tasks. To this end, we first
formally define the label relaxation in the context
of the ranking task. Afterwards, we integrate it
into bi-encoder ranking models. Additionally, to
find out whether label relaxation can mitigate the
impact of label noise in fine-tuning neural rank-
ing models, we conducted extensive evaluations
considering 2 different bi-encoder models, 4 differ-
ent ranking datasets, and 5 different noise levels.
We also compare our results to the popular label
smoothing calibration approach. The results of our
evaluation suggest that label relaxation can indeed
be helpful in fine-tuning ranking models when label
noise is prevalent in the ranking datasets. However,
our findings also suggest that label relaxation is
effective on the E5 model, which is extensively
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Table 4: Calibration Error results evaluated on four ranking datasets using the E5 and Bi-Encoder models, grouped by noise ratio
(NR) and loss functions (LF) with the best ϵ and α as smoothing and relaxation parameters. Lower is better; bold indicates the
best value for a dataset at a given noise ratio.

NR LF E5↓ BERT↓
Msmarco Mintaka Aida Msmarco Mintaka Aida

0
PR 0.0424 0.2914 0.2098 0.0090 0.3277 0.3016

LS (0.1) 0.0317 0.2917 0.2101 0.0091 0.3199 0.2800
LR (0.1) 0.0269 0.2811 0.2197 0.0076 0.3185 0.2770

1
PR 0.1538 0.2879 0.2123 0.0094 0.3391 0.3123

LS (0.1) 0.1398 0.2883 0.2165 0.0091 0.3109 0.3001
LR (0.2) 0.1221 0.2846 0.2193 0.1000 0.3019 0.2877

2
PR 0.2024 0.2726 0.2066 0.1094 0.3293 0.2893

LS (0.2) 0.2119 0.2713 0.2081 0.1913 0.3150 0.2891
LR (0.2) 0.2175 0.2661 0.2041 0.1911 0.2854 0.2713

4
PR 0.2969 0.2598 0.2033 0.1111 0.3373 0.3049

LS (0.2) 0.3018 0.2561 0.2049 0.1101 0.3171 0.3098
LR (0.3) 0.3161 0.2476 0.1908 0.2000 0.3104 0.2811

5
PR 0.3150 0.3109 0.2025 0.2082 0.3322 0.2943

LS (0.3) 0.3310 0.2601 0.2019 0.2910 0.3091 0.2920
LR (0.3) 0.3293 0.2417 0.1902 0.2989 0.3047 0.2918

weakly supervised pre-trained on the ranking tasks.
On the other hand, if a pre-training on the ranking
tasks is not performed, the results do not improve.
Additionally, we find that the ECE might not be
suitable to measure the calibration of the ranking
models under noise and memorization errors could
be helpful to get better insights.

We believe label relaxation has a lot of potential
to build well-calibrated models. We can envisage
works that would explore adaptive label relaxation
approaches that adjust relaxation based on model
confidence or noise estimates, and investigate their
effects on model calibration. Furthermore, extend-
ing relaxation to cross-encoder and LLM-based
rankers, and studying new measures to compute cal-
ibration error in the context of document ranking,
could also be a potentially interesting direction.

Limitations

The following are some of the key limitations of
our study, which we acknowledge.
Model limitation Our experiments are restricted
to bi-encoder architectures, i.e., BERT and E5. Al-
though this choice allowed us to systematically an-
alyze calibration under controlled conditions, the
findings may not directly transfer to more complex
architectures such as cross-encoders or large lan-
guage model (LLM)-based rankers. However, such
an extension would require additional challenges
and opportunities.

Dataset limitation We considered experimenting
with four datasets, AIDA, Mintaka, LC-QuAD, and
MS MARCO. These vary in size, structure, and
annotation quality; therefore, providing a diverse
evaluation setting. However, our conclusions re-
main dataset-dependent, as seen from the differ-
ences in effectiveness across AIDA, LC-QuAD,
and MS MARCO. Future work should examine a
broader range of datasets, including multilingual
and domain-specific ranking tasks, to assess the
generalizability of these models.

Label noise modeling The label noise is modeled
using a semantic-aware perturbation strategy, re-
placing relevant documents with semantically simi-
lar but incorrect ones. This provides a more realis-
tic scenario compared to random flipping; however,
real-world noise can be more diverse such as ad-
versarial noise, annotation inconsistencies, or sys-
tematic bias. Our approach does not capture these
variations; hence, the robustness of label relaxation
under such conditions remains unexplored.

Calibration scope Our evaluation focused on text-
based calibration, therefore, the probability esti-
mates are aligned with annotation labels. We did
not compare our approach against ranking-based
calibration methods which adjust scores based on
relative order or rank-aware confidence measures.
These approaches are often stronger baselines in
retrieval and relevance tasks, however, they fall out-
side the scope of this paper due to space limitations.
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Hence, as part of future work, we would provide a
more comprehensive view of calibration strategies
for ranking.
Relaxation parameter The choice of relaxation
parameter α is tuned using validation performance,
which may not always be feasible in practice, es-
pecially when noisy labels affect the validation set
itself. Adaptive or noise-aware strategies to deter-
mine relaxation parameters could further improve
robustness and practicality.
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A Additional Results
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Figure 1: Train vs. validation recall across noise levels for PR, LS, and LR for BERT.
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Figure 2: Train vs. validation recall across noise levels for PR, LS, and LR for E5.
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