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Abstract
We study the source of uncertainty in DeepSeek
R1-32B by analyzing its self-reported verbal
confidence on question answering (QA) tasks.
In the default answer-then-confidence setting,
the model is regularly over-confident, whereas
semantic entropy—obtained by sampling many
responses—remains reliable. We hypothesize
that this is because of semantic entropy’s larger
test-time compute, which lets us explore the
model’s predictive distribution. We show that
granting DeepSeek the budget to explore its
distribution by forcing a long chain-of-thought
before the final answer greatly improves its
verbal score effectiveness, even on simple fact-
retrieval questions that normally require no rea-
soning. Our analysis concludes that reliable
uncertainty estimation requires explicit explo-
ration of the generative space, and self-reported
confidence is trustworthy only after such explo-
ration.

1 Introduction

Generative language models (GLMs) like GPT,
LLaMA, or Deepseek families have achieved great
performance on diverse tasks (Dubey et al., 2024;
DeepSeek-AI et al., 2025), yet they are prone to
failure modes such as “hallucinations” (Huang
et al., 2023). These inaccuracies can undermine
trust and lead to poor decisions in LLM-assisted
systems (Huang et al., 2024). To mitigate this issue,
quantification and the communication of model’s
uncertainty in its outputs is seen as a potential to
entrust these models with reliability.

Numerous uncertainty-quantification (UQ) ap-
proaches have been proposed in this direction: from
Monte-Carlo sampling based, such as Semantic En-
tropy (SE) (Farquhar et al., 2024) to simpler Verbal-
ized Confidence estimation (VC), which just asks
the model directly to state its confidence (Xiong
et al., 2024).

While Verbalized Confidence estimation is easy
to use, there is no scientific consensus on what it
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Figure 1: DeepSeek R1-32B’s Verbalized Confidence
(VC) improves and matches Semantic Entropy’s (SE)
effectiveness, when longer reasoning is forced.. Our
work suggests that it is the test-time exploration of the
model’s predictive space, not the particular uncertainty
heuristic, that makes confidence estimates reliable.

represents or what its source is, potentially making
it unreliable to use in critical scenarios. Further-
more, prior work has shown that Verbalized Confi-
dence is often pathological - for the same question
a model might first return “Answer A (100 % confi-
dence)” and, in a second sample, “Answer B (95 %
confidence),” even though these probabilities can-
not coexist (Xiong et al., 2024). On a more practi-
cal side, verbalized scores may be over-confident
(Yang et al., 2024; Pawitan and Holmes, 2024),
whereas Semantic Entropy remains comparatively
well calibrated (Farquhar et al., 2024).

Semantic Entropy’s effectiveness can be at-
tributed to its test-time compute—allocating extra
tokens at inference (Snell et al., 2024) to explore
the predictive distribution. Test-time compute can
also come in the form of an extended reasoning
chain that precedes the final answer (Wei et al.,
2023; DeepSeek-AI et al., 2025), and most recent
works show that such reasoning can improve ver-
balized or token-level calibration as well (Zeng
et al., 2025; Jurayj et al., 2025). These findings
prompted us to pose a hypothesis: Is the model
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able to directly quantify and express verbally its
uncertainty, or is the test-time token exploration
necessary for the model to reliably summarize its
confidence?

In this paper, we try to answer this question and
better understand the source of VC by perform-
ing a set of experiments with DeepSeek R1-32B
(DeepSeek-AI et al., 2025) as a representative
model. Our results show that without any chain-of-
thought, DeepSeek’s verbalized scores carry little
information about correctness. As we grant the
model progressively larger reasoning budgets, its
calibration improves and approaches the reliability
of Semantic Entropy, even on simple fact-retrieval
items. This trend suggests that meaningful uncer-
tainty estimates emerge only after the model’s pre-
dictive space has been explored, and that the final
confidence percentage largely summarizes the di-
versity exposed in this process. We further enforce
this hypothesis by using a separate reader model
that, by just analyzing DeepSeek’s reasoning trace,
matches the reliability of DeepSeek’s own Verbal-
ized Confidence.

2 Background and Related Work

Generative language models frequently generate
fluent but incorrect answers that can cause down-
stream harm (Band et al., 2024; Huang et al., 2024).
When no external verifier is available, a model’s
self-reported confidence is the only proxy for cor-
rectness, making reliable uncertainty estimates es-
sential.

Calibration of LLM Confidence Scores. A con-
fidence score is calibrated if, for example, predic-
tions tagged “80 % confident” are correct roughly
80 % of the time. Common approaches to obtain
the confidence scores include token-level probabil-
ities treated as a classification score (Dhuliawala
et al., 2022), semantic-level measures that evaluate
agreement across multiple sampled completions
(Farquhar et al., 2024), and explicitly verbalized
percentages in a model’s output (Xiong et al., 2024;
Tian et al., 2023).

Semantic Entropy vs. Verbalized Confidence
A generative model, given a question Q, defines
a distribution over semantically distinct answers
P (A | Q). The uncertainty of this distribution is
naturally quantified by its Shannon entropy, and
while computing it exactly is infeasible, we can
approximate it by Monte-Carlo sampling and clus-

tering semantically equivalent answers. This is ex-
actly how the Semantic Entropy (SE) method (Far-
quhar et al., 2024) works, leading to well-calibrated
scores. The big downside of this method is that
it requires sampling data on test-time (larger test-
time-compute budget).

Another way to obtain a confidence score is sim-
ply to ask the model for one, for instance, “I am
85 % sure.” This Verbalized Confidence (VC) is
easy to collect and works with any black-box API
(Xiong et al., 2024; Yang et al., 2024; Ni et al.,
2024). Yet, opposed to SE, it is unclear what the
number represents: is the model sampling its own
distribution, recalling similar training examples, or
just guessing? To our best knowledge, no study has
answered these questions, leaving the method too
uncertain for safety-critical use.

The most recent works find that reasoning-tuned
models that generate more tokens at the test time
give better calibrated verbalized score (Hammoud
et al., 2025; Wei et al., 2024; Xiong et al., 2024;
Zhao et al., 2024), This hints that exploring test-
time compute budgets’ impact on Verbalized Confi-
dence calibration might be crucial to understand its
source, yet we are not familiar with any research
work that tries to answer our questions specifically.

In this work, we systematically compare Ver-
balized Confidence and Semantic Entropy under
matched test-time compute budgets, examine sev-
eral task domains, and analyze the reasoning trace
to see where the verbalized score comes from and
why it lags behind Semantic Entropy.

3 Methodology

Our objective is to uncover where a model’s Ver-
balized Confidence comes from. We identify two
competing views:

Intrinsic latent variable: the model can read
out a hidden latent belief state and use it to ex-
press its uncertainty, and Self-sampling: model
does not have access to any reliable latent source of
confidence, and reliable confidence emerges only
after the model explicitly explores its own predic-
tive space, as Semantic Entropy does by sampling
many answers.

We test these views through a set of experiments
that measure the behavior of VC when the model
is forced to reason before answering, compare the
effectiveness and accuracy to the SE, and analyze
the uncertainty exposed in the reasoning traces. We
describe our experimental setup in Appendix A.
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4 Results

Without any reasoning tokens, the score is barely
better than random, and with enough exploration
budget, VC can approach SE’s effectiveness (sub-
section 4.1). Furthermore, an external reader can re-
cover essentially the same uncertainty signal by in-
specting the chain of thought alone (subsection 4.2),
suggesting that the Self-sampling hypothesis might
be true.

4.1 Extended Reasoning is Necessary for VC
to Reach SE-Level Effectiveness

Figure 3 shows final-answer accuracy, UQ effec-
tiveness, and average stated confidence for correct
and incorrect answers as a function of the reasoning
budget, with Semantic Entropy shown for compari-
son. We see that granting just 100–500 reasoning
tokens raises accuracy 41% → 63% and boosts
verbalized-confidence ROC-AUC 0.56 → 0.80.

For fact-retrieval questions (Fig. 3b), answer ac-
curacy does not improve with longer reasoning
budgets, yet UQ effectiveness continues to improve
with additional tokens. We can reach very long rea-
soning traces for fact-retrieval questions thanks to
the employed forced reasoning technique (Muen-
nighoff et al., 2025) presented in Figure 4.

Verbalized Confidence is initially weaker than
superior Semantic Entropy but reaches near par-
ity at 200 tokens for fact retrieval and 3,500 to-
kens for mathematical items, while maintaining
higher answer accuracy due to the reasoning pro-
cess. For comparison, in our experiments, SE used
218 tokens per sample on average, meaning the
two methods are very similar both in computational
efficiency and UQ effectiveness for fact retrieval
questions.

These results confirm that allocating test-time
compute to reasoning is essential for reliable un-
certainty estimates, and extended CoT effectively
mitigates DeepSeek’s over-confidence without sac-
rificing performance. The sheer scale of the im-
provement in effectiveness: from near-random 0.56
ROCAUC to 0.88 suggests that there is no latent
uncertainty information available for the model,
and self-sampling is necessary to obtain a good
uncertainty estimate.

4.2 External Reader Model Recovers VC
Calibration from Reasoning Trace Alone

If there is no hidden latent variable from which
Verbalized Confidence is drawn, then the reasoning

Q: Where was Charles Babbage born?

Final Answer: Cambridge, 
Confidence: 80%

Hmm, let me think … 
probably Cambridge.

Wait, lots of scientists … 
so maybe it’s London?

Wait, let’s  … so finally I 
think it’s Cambridge.

  👀🤖
reader model:

Final Answer will be:
London: 10%
Cambridge: 90%
Entropy: 0.47
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Figure 2: Separate reader matches the reliability
of DeepSeek’s own Verbalized Confidence by just
looking at the reasoning trace. With more reason-
ing tokens, the agreement between them (measured as
absolute Spearman correlation) increases, and the effec-
tiveness of both scores changes similarly.

trace has to contain all the uncertainty information
needed to explain Deepseek’s final score. We can
verify it using an external reader model that, given
only DeepSeek’s chain of thought, tries to predict
its final answer and confidence.

Figure 2 illustrates our experimental setup and
results. As a reader model, we used OpenAI’s
GPT-4o-mini (OpenAI, 2024), we provide more
information about the setup in Appendix C. We
display (i) the absolute Spearman correlation |ρ|
between DeepSeek’s self-reported confidence and
the reader entropy Hreader, and (ii) the ROC-AUC
of each score in detecting incorrect answers.

With no reasoning tokens exposed, the correla-
tion between Reader’s and Deepseek’s scores is
low, however, with more reasoning tokens, the ef-
fectiveness of the reader goes up in tandem with
Deepseek’s effectiveness, and the correlation be-
tween the two goes up. At 3.4 k tokens, DeepSeek
reaches ROC-AUC = 0.851 and the reader 0.841
with |ρ| = 0.57, indicating that almost the entire
confidence signal is now accessible in the trace.

These results support our claim that there is no
directly accessible notion of uncertainty, and uncer-
tainty information must be surfaced through test-
time token sampling. When the model provides
a Verbalized Score after the reasoning process, it
most likely just reads its reasoning trace and sum-
marizes the alternatives and uncertainty exposed in
it.
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Deepseek-R1-32B All Results - 270 samples
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Deepseek-R1-32B Fact Retrieval Results - 126 samples
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Deepseek-R1-32B Mathematical Reasoning Results - 134 samples

Figure 3: Effectiveness and Accuracy of Verbalized Confidence with Forced Reasoning vs Semantic Entropy.
(a) Full overview. (b) Fact retrieval results. (c) Mathematical reasoning results. Note: The remaining 10 samples
not falling into the Fact Retrieval or Mathematical Reasoning categories are included in the Full overview but not
presented as separate plots.

5 Discussion and Future Work

We aimed to determine whether large language
models can directly verbalize well-calibrated uncer-
tainty or whether reliable confidence estimates only
emerge after explicit exploration of their predictive
space, via additional test-time compute such as
parallel sampling (Semantic Entropy) or extended
reasoning.

Our experiments suggest that test-time compute,
not the particular uncertainty heuristic, is the de-
cisive factor for obtaining reliable confidence esti-
mates in DeepSeek-R1-32B. Left to produce only
a short answer, the model remains over-confident
because its belief state cannot be accessed directly.
Granting the model additional tokens, either by
sampling independent continuations (Semantic En-
tropy) or by forcing a longer chain of thought, al-

lows it to externalize alternative hypotheses. This
exposes a big issue with Verbalized Confidence -
its appeal lies in the simplicity and how fast it is,
yet it works well only after a significant reasoning
computation is done.

While these results are encouraging, they may
not be generalizable since we’ve tested only one
model and used a very compact QA dataset. Fur-
thermore, assuming it is true that test-time compute
is the decisive factor for reliable UQ, it still might
be the case that some methods of test-time compute
may be more efficient in eliciting uncertainty than
others. Future work could focus on making models
reason more efficiently or explore their uncertainty
in a more structured way. That could help Verbal-
ized Confidence inherit the Semantic-Entropy-level
of calibration with less computation needed.
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System prompt: 
(...) Please answer user’s questions.
Provide both the final answer and your confidence that the answer is correct. (...) Before the 
Final Answer, you might be asked to provide a short reasoning between `think` tokens. (...)

User Message:
Where was Charles Babbage born?

Verbalized Confidence with Forced Reasoning Semantic Entropy

Final Answer: Cambridge, Confidence: 
80%

<think> Hmm, let me 
think … Cambridge.

Wait, lots of scientists 
… London?

Wait, let’s  … so

Final Answer: 
Cambridge, UK 
Confidence: …

Final Answer: 
London 
Confidence: …

Final Answer: 
Cambridge 
Confidence: ……

Cambridge: 5
London: 2
Most frequent answer: Cambridge
Entropy: 0.86
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Figure 4: Two tested methods of obtaining Final Answer and Confidence - Verbalized Confidence with Forced
Reasoning (VC) works by prompting the model to reason for longer-until the fixed budget is exhausted - before
stating the answer and confidence. Semantic Entropy (SE) obtains 10 independent answers that are later clustered
semantically to identify the most frequent one, and to calculate the entropy in the answer distribution.

A Experimental Setup

Data Sources. Because long-trace experiments are computationally expensive, we built a small (270
samples) but diverse benchmark instead of using full datasets. We sampled questions from five popular,
open-source sources: TriviaQA, MMLU, and SimpleQA for fact retrieval (Joshi et al., 2017; Hendrycks
et al., 2021; Wei et al., 2024), plus GSM8K and AIME-2024 for mathematical reasoning (Cobbe et al.,
2021; AIME, 2024). Our goal is open-ended QA in natural language, so we stripped away multiple-choice
options in MMLU and any figure references in AIME-2024, manually discarding questions that could not
stand alone after this edit, such as “Which of the following is true?”. Every surviving example was then
hand-labeled with its knowledge domain and the skills needed to answer it, such as “Fact Retrieval” or
“Mathematical Reasoning”. Full sampling details and the final label distribution appear in Appendix B.

Model and Prompts. We chose Deepseek-R1-32B1 (DeepSeek-AI et al., 2025) following Jurayj et al.
(2025) for its strong reasoning capabilities at a manageable model size. Furthermore, it is one of the most
popular open-sourced reasoning-tuned models. All experiments were run on two NVIDIA A100 GPUs.

We provide an elaborate discussion on prompting and inference we adopted in Figure 4. Across all
setups, we used a single system prompt that directs the model to (1) think step by step, and then (2) provide
a final answer along with a Verbalized Confidence score. The full prompt text, as well as an interaction
example, is available in Appendix C. To regulate the length of the reasoning chain, we applied the
budget-based truncation method of Muennighoff et al. (2025): when the reasoning budget is exhausted (or
set to zero), the chain terminates immediately. If the budget remains, the system appends “Wait, ” tokens,
and asks to generate more tokens. For experiments with Verbalized Confidence, we lowered the decoding
temperature to 0.1 to prevent the model from going off-topic in long reasoning. For parallel sampling
in Semantic Entropy experiments, we set it to 1.0 to obtain more diverse responses and approximate the
predictive distribution more efficiently.

UQ Methods. Next, we describe how we obtain the estimates of verbalized score and semantic entropy:
For Verbalized Confidence, we ask the model to provide the final answer and its confidence between 0%
and 100% after (optional) forced reasoning (refer to Figure 4 for visualization).

For Semantic Entropy, we follow Farquhar et al. (2024), and generate n = 10 answers for each question
with no reasoning chain. Afterwards, we use OpenAI’s gpt-4o-mini (OpenAI, 2024) to cluster semantically
equivalent generations. We select the majority cluster – the cluster with the most members (i.e., the answer
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that appears most frequently once semantically equivalent responses are grouped) – as the predicted
answer and compute the Shannon entropy of the cluster-size distribution as the uncertainty score.

Evaluation and Metrics. We report two main metrics: the accuracy of the final answer and the
effectiveness of the UQ method measured as the area under ROC (ROC AUC) in the task of classifying
the model’s final answer correctness (hallucination classification). To calculate if the model’s final answer
is correct, we query OpenAI’s GPT-4o-mini (OpenAI, 2024) model with the question if this proposed
answer is equivalent to the ground truth answer in the dataset given a question.

We repeat experiments with verbalized score confidence across varying reasoning budgets 3 times and
show mean and 95% confidence intervals. For the rest of the experiments, we repeat them once unless
stated otherwise.

B Data Creation and Composition

Because our longest-trace runs are expensive, we limited the benchmark to 270 open-ended questions
drawn from five well-known, permissively licensed QA datasets. We first sampled 310 items uniformly at
random (seed 42) to balance fact-retrieval and mathematical-reasoning content while keeping the total
below the ≈300-sample budget we could process. Items whose solutions required figures (AIME-2024),
multiple-choice candidates (MMLU), or extra context passages (TriviaQA) were discarded after manual
inspection, leaving the 270 used in all experiments (Table ??). By doing so, we ensured that all the
incorrect answers were caused by the model’s mistakes, instead of missing context in the data.

Each example received two human labels - Knowledge Domain, and Skill Required. A large language
model (OpenAI o3) proposed initial tags for 100 random questions. The first author then reviewed every
instance, correcting tags where needed, and used these tags to manually label all 270 samples. You can
find the specific tags and number of datapoints in Figure 5. In the main paper, we break out results for
the full dataset and for the two most common Skill Required tags only; Knowledge Domain splits are
omitted because several categories are too small. Per-dataset results can be found in Appendix D. Five
representative questions and their tags are shown in Table 1.

Example Question (truncated) Dataset Skill Domain

In what year did Augustus De Morgan publish
the article "Trochoidal Curve" in the Penny Cy-
clopaedia?

SimpleQA Fact Retrieval History and Past Events

There exist real numbers x and y, both greater
than 1, such that logx (y

x) = logy
(
x4y

)
= 10.

Find xy.

AIME2024 Mathematical Reasoning Mathematics

James runs 12 miles a day for 5 days a week. If
he runs 10 miles an hour how many hours does
he run a week?

GSM8K Mathematical Reasoning Mathematics

In Python 3, which of the following function
removes all leading and trailing whitespace in
string?

MMLU Fact Retrieval IT and Engineering

Anaphylaxis is what sort of life-threatening ill-
ness?

TriviaQA Fact Retrieval Science, Nature and Medicine

Table 1: Five representative items from the 270-question benchmark.

C Prompts and Inference

Main VC vs SE runs. You can find the full system prompt used in the main VC vs SE experiments, as
well as a real interaction example with Verbalized Confidence and budget forcing in Figure 6.

Reader–model experiments. Our goal is to let an external model read DeepSeek’s reasoning trace
and predict a probability distribution over possible DeepSeek’s answers. After obtaining the distribution,
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Figure 5: Internal composition of our used data sample.

System prompt: 
You are a trivia expert, please answer user questions. Provide both the final answer and your confidence that 
the answer is correct. Be honest and precise in your confidence estimation, as the users will rely on this 
information to make decisions. Try not to overestimate your confidence. Answer in the format: `Final Answer: 
<final_answer>. Confidence: <confidence>` where <confidence> is a percentage between 0% and 100%, 
and <final_answer> is just the final answer in one brief sentence.
                      
Before the Final Answer, you might be asked to provide a short reasoning between `think` tokens. In your 
reasoning process, try to constantly reevaluate your confidence,
by considering the information you have and the information you are missing or may have calculated wrong. 
Reason not only about the final answer, but also about your confidence.

User Message:
The Fitzwilliam Museum is in which British town or city?

Model response:
<think> Okay, so I need to figure out where the Fitzwilliam Museum is located. I remember hearing about it 
before, but I'm not exactly sure. Let me think. I know there are several famous museums in the UK, like the 
British Museum in London and the Victoria and Albert Museum, also in London. But the Fitzwilliam Museum 
doesn't ring a bell as being in London. Maybe it's in another city.\n\nI think Cambridge is known for its 
universities, especially the University of Cambridge. There are a lot of museums there associated with the 
university. I recall that the Fitzwilliam Museum is one of them. It's a major art museum, right? They have a lot 
of paintings, sculptures, and other artifacts. I'm pretty sure it's in Cambridge because I've seen pictures of it 
before, and it's often mentioned alongside other Cambridge landmarks.\n\nWait, could it be in Oxford? No, 
Oxford has the Ashmolean Museum, which is also a big one. So, no, the Fitzwilliam is definitely in Cambridge. 
I'm pretty confident about that. I don't think it's in any other city like Manchester or Birmingham. It's 
specifically linked to the University of Cambridge, so that must be the location.\n\nI don't have any conflicting 
information, so I think I'm safe to say it's in Cambridge. My confidence is high because I've heard it mentioned 
in the context of Cambridge and its university.\nWait, just to double-check, I</think>
Final Answer: Cambridge. Confidence: 95%

Figure 6: Used system prompt and real interaction example. The question comes from the TriviaQA dataset.
Moments where the model was forced to reason for longer are highlighted.
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Dataset Sampled After Filtering Removed

GSM8K 100 99 1
TriviaQA 70 66 4
SimpleQA 40 40 0
MMLU 70 39 31
AIME2024 30 26 4

Total 310 270 40

Table 2: Number of samples per dataset before and after manual filtering.

we calculate Shannon entropy, which is used as a notion of uncertainty. The procedure of obtaining a
distribution over possible DeepSeek’s answers has four steps:

1. Candidate extraction. For each question, we feed the entire 3.4k-token reasoning chain to
gpt-4o-mini, prompting it to list all candidate answers mentioned in the trace.

2. Multiple-choice reformulation. We label the distinct candidates with letters A, B, C. . . , we also add
an option "None Unknown".

3. One-token completion. We prompt gpt-4o-mini again, asking which of the candidates is most
likely to be returned by DeepSeek as a final answer. We ask the API for exactly one letter A, B,
C. . . as a response. We keep the logits of this single-token prediction, apply softmax, and obtain a
categorical distribution p(A), p(B), . . . .

4. Reader entropy. The Shannon entropy of that distribution, Hreader = −∑
i p(i) log p(i), is the

reader’s uncertainty score used in our analyses.

You can find prompts that we used to extract the list of all candidates, as well as the final prediction, in
figure Figure 7.

D Results Across Datasets

We provide additional comparison of VC and SE with varying reasoning budgets across different sources
of data in Figure 8. While the trends are much noisier because of fewer samples, we see that for all the
sources the difference in confidence between correct and incorrect answers increases with more reasoning
tokens.
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Possible-candidates prompt
“You are a helpful assistant. We asked a person to answer an open-ended question.

The person wrote a reasoning trace and then gave a final answer. I want to know
what all the possible options were that the person considered before giving the final
answer. This is for research on the answers people consider. I want to use these
possible answers to create a multiple-choice question. Please give me all the possible
answers the person considered, without duplicates, keeping the answers distinct and
suitable for a multiple-choice question. Respond as a JSON list of strings, like this:
FINAL LIST: ["answer1", "answer2", ...], which I can later use in a quiz. Add the
correct answer, the final answer, and Other / Unknown to the list, making sure there
are no duplicates. Reason about possible answers and how to remove duplicates,
before giving the final list. Include only answers mentioned in the reasoning trace
plus the correct answer. Do not add answers that are missing from the trace or the
correct / unknown items.”

Final-prediction prompt

“You are a helpful assistant. We asked a person to answer a question; the person started
reasoning about the possible answers. Your role is to serve as an autocompletion
model that predicts the most likely final answer the person will give, based on the
current reasoning trace. You are not allowed to give your own answer—only the
person’s most likely final answer. Choose from the list of possible answers (A, B, C,
. . . ) and output exactly one letter, with no whitespace or comments.”

+ A) {Option A}
+ B) {Option B}
+ C) {Option C}
...

Figure 7: Reader-model prompts. First prompt is used to extract candidate answers from the reasoning trace, the
second one shows the follow-up prompt that asks the reader to predict DeepSeek’s final choice. The last block of
the second prompt is filled dynamically with the candidate list produced by the first one.
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Deepseek-R1-32B gsm8k Results - 99 samples
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Deepseek-R1-32B TriviaQA Results - 65 samples
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Deepseek-R1-32B simpleqa Results - 40 samples
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Deepseek-R1-32B MMLU Results - 39 samples
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Figure 8: Effectiveness and Accuracy of Verbalized Confidence with Forced Reasoning vs Semantic Entropy.
Despite noise from limited samples, the right-hand plots show a consistent and increasingly pronounced divergence
in reported confidence between correct and incorrect answers as the reasoning budget increases.
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