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Abstract

Recent papers show LLMs achieve near-
random accuracy in causal relation classifica-
tion, raising questions about whether such fail-
ures arise from limited pretraining exposure
or deeper representational gaps. We investi-
gate this under uncertainty-based evaluation,
testing whether pretraining exposure to causal
examples improves causal understanding us-
ing >18K PubMed sentences—half from The
Pile corpus, half post-2024—across seven mod-
els (Pythia-1.4B/7B/12B, GPT-J-6B, Dolly-
7B/12B, Qwen-7B). We analyze model behav-
ior through: (i) causal classification, where
the model identifies causal relationships in
text, and (ii) verbatim memorization probing,
where we assess whether the model prefers
previously seen causal statements over their
paraphrases. Models perform four-way clas-
sification (direct/conditional/correlational/no-
relationship) and select between originals and
their generated paraphrases. Results show al-
most identical accuracy on seen/unseen sen-
tences (p>0.05), no memorization bias (24.8%
original selection), output distribution over the
possible options almost flat — with entropic
values near the maximum (1.35/1.39), confirm-
ing random guessing. Instruction-tuned models
show severe miscalibration (Qwen: >95% con-
fidence, 32.8% accuracy, ECE=0.49). Condi-
tional relations induce highest entropy (+11%
vs direct). These findings suggest that failures
in causal understanding arise from the lack of
structured causal representation, rather than in-
sufficient exposure to causal examples during
pretraining.

1 Introduction

Causal understanding from text, intended here as
the ability of an LLM to identify whether a text in-
cludes a statement about a causal relation between
two entities, and which is the causal direction of
such a relation, is a critical task for modern natural
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language understanding. Previous work demon-
strates that Large Language Models (LLMs) strug-
gle with such causal tasks, achieving near-random
performance on benchmarks requiring causal in-
ference (Ashwani et al., 2024; Feng et al., 2024;
Guo et al., 2017; Joshi et al., 2024; Kanjirangat
et al., 2024). Recent works showed the importance
of analyzing the underlying model uncertainty to
achieve better results, or at least to understand the
reasons for poor performances (Cui et al., 2025;
Shorinwa et al., 2025). From this perspective, a
very promising direction is provided by distinguish-
ing between different sources of uncertainty, such
as epistemic, corresponding to the uncertainty re-
lated to lack of knowledge about the underlying
model, and aleatoric, that is the intrinsic ambi-
guity of the process (Hüllermeier and Waegeman,
2021). Another crucial aspect is how the presence
of seen versus unseen data — i.e., content observed
during pretraining or familiar observations — af-
fects uncertainty and model behavior in terms of
causal understanding. While uncertainty quantifi-
cation in LLMs has been explored in prior work
(He et al., 2025; Liu et al., 2025; Yadkori et al.,
2024), the link between uncertainty sources and
familiar causal patterns in the context of causal
understanding remains underexamined.

We design controlled experiments to examine
how these uncertainty sources arise in the context
of causal understanding. We consider memoriza-
tion as one of the tasks to understand the effect
of seen verbatim causal patterns, in line with the
uncertainty sources. Using scientific conclusion
sentences from PubMed abstracts, we test whether
models trained on these exact texts (via The Pile
dataset, Gao et al. (2020)) show reduced uncer-
tainty compared to similar but unseen texts and, if
this has an impact on their accuracy.

Our approach uses two complementary tests for
memorization effects. First, if models truly under-
stood causal patterns from training (not just sur-
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face forms), they should exhibit substantially lower
uncertainty and higher accuracy on familiar data
(i.e., training data) versus unseen data. Second, if
only surface memorization occurred, we would ex-
pect substantial differences in uncertainty between
original sentences and their paraphrases within the
training dataset. In a nutshell, we use uncertainty
metrics to explore memorization effects in causal
understanding and whether this reflects representa-
tional limitations rather than data exposure.

Our contributions: We propose uncertainty-
based quantification (i.e., entropy, ECE/ACE) as
a way for analyzing LLMs’ causal understanding
competence, linking calibration metrics to perfor-
mance on causal tasks. We conduct experiments to
examine how uncertainty sources, including mem-
orization of verbatim causal statements, influence
causal understanding in LLMs. Within this frame-
work, we show: (i) Exposure to training data does
not guarantee memorization or improved perfor-
mance — models show identical accuracy on seen
versus unseen texts; (ii) Identify overconfidence
in most performing models, with high confidence
predictions despite very low accuracy; (iii) Quan-
tify that conditional causal relationships induce
the highest uncertainty, suggesting models lack nu-
anced causal representations; (iv) In the experi-
ments, we consider two datasets, an existing one
from the literature and an extension constructed by
us to be used for testing memorization and causal
understanding.

Our experimental findings indicate that uncer-
tainty in LLM causal understanding reflects epis-
temic limitations rather than insufficient exposure
to training examples. Models do not leverage al-
ready observed patterns for causal tasks, instead
exhibiting systematic uncertainty that correlates
with task complexity rather than data familiarity.

2 Related Work

Recent work examines uncertainty sources in
LLMs. Kirchhof et al. (2025) demonstrates that
models can assess their uncertainty through verbal-
ized confidence. Giulianelli et al. (2023) proposes
semantic entropy to measure uncertainty in free-
form generation. However, these approaches focus
on general tasks rather than structured reasoning.
Wang et al. (2024) shows LLMs struggle with cal-
ibrated uncertainty in knowledge-intensive tasks,
consistent with our findings in causal reasoning.

Memorization’s role in LLM capabilities re-

mains debated. Carlini et al. (2021) demonstrate
that models memorize training data verbatim, while
(Li et al., 2024; Zhang et al., 2023) show this mem-
orization can be beneficial. Tirumala et al. (2022)
quantifies memorization across model scales. Other
findings show that memorization alone cannot ex-
plain model capabilities, requiring 100+ exact rep-
etitions for reliable recall (Kandpal et al., 2023; Li
et al., 2024).

While prior work evaluates causal understand-
ing in LLMs through various benchmarks, none
have examined it through the lens of uncertainty
sources and verbatim memorization recalls. Our
work extends this by showing memorization fails to
improve structured reasoning tasks. Our approach
uniquely combines controlled exposure to training
data with uncertainty quantification, revealing that
causal understanding requires more than pattern
memorization, especially when the complexity in-
creases.

The rest of the paper is organized as follows. In
Section 3, we present the datasets used for the ex-
perimental study and analyses. Section 4 presents
the detailed discussion of the proposed uncertainty-
based quantification, and the experimental setup is
presented in Section 5. Results and analysis are
reported in Section 6, with detailed discussion in
Section 7.

3 Data Construction

First, we used two datasets of sentences labeled
with their causal types to test the impact of expo-
sure to causal patterns during pretraining on the
accuracy and uncertainty of causal understanding
tasks with LLMs.

We used Yu et al. (2019)’s dataset, consisting
of 3,061 sentences from science findings classified
into four causal relationship types: direct causal,
conditional causal, correlational, or no relationship.
The original dataset lacked source abstracts for the
extracted sentences. As these were needed to train a
classifier for extending the dataset with more recent
abstracts, we searched PubMed using near-exact
sentence matches. This yielded a filtered dataset
with the following distribution: direct causal (234),
conditional causal (113), correlational (489), and
no relationship (598). This resulting dataset is here-
after referred to as Original. Although filtering
removed almost half of the entries, the label dis-
tribution remains highly similar to the original (to-
tal variation distance = 0.026). Future work will
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consider more sophisticated matching schemes to
preserve more data.

To control for verbatim memorization, we cre-
ated an extension from PubMed abstracts published
after 2024, beyond our models’ training cutoff.
We use a BERT-based classifier (F1-score = 0.97)
trained on the original annotations to label 5,400
new sentences, then subsample to match the class
distribution of our Original dataset. This resulting
dataset is hereafter referred to as Newer

We complement the datasets by generating, with
GPT-4o-mini, for each sentence: (i) five para-
phrases especially focused on preserving the causal
relationship; (ii) one negation that reverses the
causal relationship; (iii) two questions that probe
understanding of the causal content. Considering
the original plus paraphrase resulted in 18,366 sen-
tences.

Since both datasets are used in Multiple Choice
Question Answering (MCQA) setups, we hereafter
refer to the original-based dataset as MCQA and
the newer one as MCQA-newer. For instance, the
samples generated for the Causal Type Classifica-
tion Task are depicted in Figure 1. Examples from
the generated dataset can be found in Appendix A.

4 Uncertainty Quantification

We focus on LLMs answering multiple-choice
questions. Let Y denote the set of possible options
and Y the corresponding variable. The probabil-
ity distribution over the possible choices P (Y ) is
assumed to be available. We quantify uncertainty
through multiple metrics.

Entropy. We can describe the model uncertainty
related to this task by the entropy (Shannon, 1948),
i.e., H := −∑

y∈Y P (y) lnP (y). This is a non-
negative function taking the value of zero for de-
terministic distributions, and its maximum value
for uniform distributions. In the case of quaternary
variables, the value of the maximum is 1.39.

Calibration. We bin predictions by confidence
level and compute actual accuracy within each bin.
Perfect calibration yields a diagonal relationship
between confidence and accuracy. We then com-
pute Expected Calibration Error (ECE) and Adap-
tive Calibration Error (ACE) (Nixon et al., 2019a;
Posocco and Bonnefoy, 2021).

ECE measures how well a model’s estimated
probabilities match the observed probabilities. A
perfectly calibrated model has zero ECE. It is com-

puted as the weighted average of the absolute dif-
ferences between average accuracy and average
confidence.

ECE =
R∑

r=1

|Br|
n

|acc(Br)− conf(Br)| (1)

Where, R is the number of bins (typically fixed-
width over the interval [0, 1]), Br is the set of
indices of predictions with confidence scores in
the r-th bin, n is the total number of samples,
acc(Br) =

1
|Br|

∑
i∈Br

1(ŷi = yi) is the accuracy
in bin r, conf(Br) =

1
|Br|

∑
i∈Br

p̂i is the average

confidence in bin r, p̂i = maxk p
(k)
i is the pre-

dicted confidence for sample i and k is the number
of labels/classes.

To overcome the limitations of ECE, such as
the bias-variance trade-off induced by binning ap-
proaches and its alignment to binary-class settings
(Guo et al., 2017), ACE was proposed, which uti-
lizes flexible binning (Nixon et al., 2019b). ACE
is motivated by the bias-variance trade-off, which
suggests that an effective estimate of overall cali-
bration error should emphasize regions where pre-
dictions are concentrated, while placing less weight
on sparsely populated regions. ACE takes as input
the predictions P, correct labels, and a number of
ranges R:

ACE =
1

R

R∑

r=1

|acc(Br)− conf(Br)| (2)

Where, R is the number of bins (adaptively cho-
sen so each bin contains roughly the same number
of samples), Br, acc(Br), conf(Br), and p̂i are
defined as above.

Consistency. For sentences with multiple para-
phrases, we measure whether models make con-
sistent predictions across semantically equivalent
inputs.

Statistical Tests. We apply chi-square tests for
original versus paraphrase performance, t-tests for
dataset comparisons, and ANOVA for differences
across causal types.

5 Experimental Design

We specifically select models confirmed to be
trained on The Pile dataset (Gao et al., 2020; Phang
et al., 2022). Since PubMed abstracts used in Yu
et al. (2019) are included in The Pile, these mod-
els necessarily encountered our MCQA sentences
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{"qa_idx": 0, "context": "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale.",

"text": "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale.",
"text_type": 0, "causal_class_label": 0,

"choices": [{"label": 1, "text": "Direct Causal", "description": "The statement explicitly states that one variable directly causes changes in another."},
{"label": 3, "text": "Correlational", "description": "The statement describes an association between variables, but no causation is
explicitly stated."},
{"label": 2, "text": "Conditional Causal", "description": "The statement suggests causation but includes uncertainty through hedging words or
modal expressions."},
{"label": 0, "text": "No Relationship", "description": "No correlation or causation relationship is mentioned."},
{"label": 4, "text": "Other", "description": ""}]

Figure 1: Examples from the constructed data (Task 1) - Casual Type Classification

during pretraining. As a control, we also include
a model not trained on The Pile, allowing us to
distinguish data exposure effects from other con-
founders.

In total, we evaluate seven models spanning dif-
ferent architectures, training data, and training ap-
proaches. Base pretrained models include pythia
variants (1.4B, 7B, 12B parameters) and gpt-j-6b,
all trained on The Pile without instruction tuning.
Instruction-tuned models include dolly-v2 variants
(7B, 12B), which use pythia as base models but
undergo additional instruction tuning, and qwen-
7b-base, an instruction-tuned model not trained on
The Pile 1. This selection allows us to isolate the ef-
fects of: (i) exposure to training data (The Pile), (ii)
model scale, and (iii) instruction tuning on causal
understanding and uncertainty.

To investigate the link between uncertainty
sources and familiar causal patterns in the context
of causal understanding, we focus on two comple-
mentary tasks.

Task 1: Causal Type Classification. Given a
sentence s ∈ S, where S represents the set of sci-
entific conclusion sentences, the model M must
classify the causal relationship into one of four pre-
defined classes: Y = {causal, conditional causal,
correlational, no relationship}. Formally, the model
applies a mapping function:

fM : S → Y , (3)

returning the predicted class ŷ := fM (s) for the
sentence s. In particular, we are interested in prob-
abilistic models, returning a probability distribu-
tion over the four causal types. In these cases, the
model’s prediction is:

ŷ = argmax
y∈Y

PM (y|s) (4)

1There is also no explicit claim of biomedical literature in
the training data, but exposure to PubMed abstracts through
other sources cannot be completely ruled out.

This directly tests causal understanding with a ran-
dom baseline of 1

|Y| = 25%.
Task 2: Verbatim Memorization Probing.

Following Duarte et al. (2024)’s hypothesis that
models preferentially select exact text included
in their training data (verbatim recall), we test
for memorization bias in the context of seen-
versus-unseen text. Given a question q derived
from an original sentence s0 ∈ XOriginal∪Newer

and a set of semantically equivalent paraphrases
P = {s0, s1, . . . , sn} where meaning(si) =
meaning(s0) for all i, where meaning(.) indicates
the semantics of the sentence, the model must se-
lect the most appropriate answer:

ŝ = argmax
si∈P

PM (si|q) (5)

Under the memorization hypothesis, we expect:

PM (s0|q) > PM (si|q) ∀i ∈ {1, . . . , n} (6)

when s0 was seen during training. In contrast, with-
out memorization bias, we expect uniform selection
probability: PM (si|q) ≈ 1

|P| for all i.
To mitigate documented selection biases (e.g.,

positional bias) in multiple-choice questions, we
randomize the order of answer options for each
question. All models are self-hosted and queried
via VLLM (Kwon et al., 2023) API with temper-
ature 0.0 for deterministic outputs. For each pre-
diction, we extract: (i) the selected choice, (ii) the
probability distribution over choices, (iii) the corre-
sponding entropy, and (iv) the maximum probabil-
ity (confidence).

Memorization Assumptions. We acknowledge
that presence in The Pile does not guarantee memo-
rization. Previous work (Carlini et al., 2023; Kand-
pal et al., 2023) shows reliable memorization re-
quires 100+ exact repetitions during training. Our
design tests whether exposure (seen patterns) —
even without guaranteed memorization—provides
any advantage for causal reasoning.
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6 Results and Analysis

6.1 Pretraining-observance Does Not Reduce
Uncertainty

Models show no performance advantage on train-
ing data. Across all models trained on The Pile,
accuracy differs by <1.5% between MCQA and
MCQA-newer (Table 1). All Pile-trained mod-
els with high entropy (>1.3) perform near random
chance (25%) but with appropriate uncertainty. Sta-
tistical significance tests confirm these observations
(Table 2 and in Appendix B.2). T-tests compar-
ing original versus paraphrase performance yield
p-values > 0.05 for all models, with negligible ef-
fect sizes (Cohen’s d < 0.2). Dataset comparisons
(MCQA vs MCQA-newer) show similar results
with small effect sizes (|d| < 0.2), indicating no
systematic advantage on the data observed in pre-
training, suggesting that the presence of an example
in the pre-training corpus does not reliably lead to
verbatim recall or systematic memorization that
could benefit accuracy on the task.

Figure 2 reveals that entropy remains consis-
tently high across both datasets. Pythia and GPT-J
models exhibit entropy near maximum (1.3-1.35),
indicating near-random guessing regardless of data
familiarity. Only qwen-7b-base, not trained on The
Pile, achieves lower entropy (0.29), suggesting bet-
ter causal understanding is likely attributable to
model architecture rather than mere training data
exposure.

To better understand these patterns, we also con-
ducted statistical tests on entropy measures in Ta-
ble 2 (see also B.2 in the appendix). The results re-
veal a striking divergence: while accuracy remains
stable across original and paraphrased sentences,
entropy patterns differ significantly (p < 0.001 for
pythia and dolly models). This divergence indicates
that models exhibit different types of uncertainty
for familiar versus novel phrasings, even when per-
forming equally poorly. Specifically, pythia models
show higher entropy (more uniform distributions)
on paraphrases, suggesting they become more un-
certain when surface forms change. This pattern
persists despite no accuracy improvement on orig-
inal sentences, providing strong evidence against
functional memorization. The MCQA vs MCQA-
newer comparisons support this: entropy differ-
ences are significant for several models (pythia-7b,
gpt-j-6b, dolly models) while accuracy remains
constant.

Models develop different uncertainty profiles for

familiar versus unfamiliar datasets without corre-
sponding performance benefits. Only qwen-7b-
base approaches significance for accuracy on origi-
nal vs paraphrase (p = 0.082), suggesting instruc-
tion tuning may introduce subtle biases toward fa-
miliar phrasings. However, the effect size remains
negligible (d = 0.023). ANOVA tests on the en-
tropy measures reveal also significant differences
across causal types (p < 0.001), confirming that
uncertainty patterns reflect task complexity rather
than data familiarity (details of the probability and
entropy assignments are shown in Appendix B.1.

6.2 Two Distinct Uncertainty Profiles
Figure 3 reveals two distinct calibration patterns:
base models maintain appropriate uncertainty de-
spite 25% accuracy, while instruction-tuned models
exhibit overconfidence.

The distribution of prediction confidence (see
Appendix B.4) reveals two distinct patterns. Pile-
trained models (pythia, gpt-j) consistently as-
sign low confidence to their predictions, with
probability distributions peaked around 0.30-
0.35—appropriately uncertain given their near-
random accuracy. These models maintain ECE
< 0.16, indicating well-calibrated uncertainty.

In contrast, qwen-7b-base exhibits overconfi-
dence, with most predictions assigned >95% proba-
bility despite achieving only 32.8% accuracy. This
confidence-accuracy gap yields ECE=0.49 versus
0.13 for base models—a 3.8x increase in calibra-
tion error. Dolly models, with accuracies between
21% and 23%, show bimodal confidence distribu-
tions but with very different calibration error pat-
terns depending on the model size, i.e., the 7B ver-
sion has an ECE of 0.36 and ACE of 0.23, whereas
12B although less accurate than the 7B, presents the
highest calibration error of all models (ECE=0.56,
ACE=0.31).

These observations suggest that in causal un-
derstanding tasks, partial competence breeds false
confidence. Models performing near random main-
tain appropriate low confidence, while the best-
performing model develops overconfidence—an
especially concerning trait in applications that de-
mand reliable causal inference.

6.3 Instruction Tuning Creates
Overconfidence

Our model selection reveals an important factor:
instruction tuning fundamentally alters uncertainty
behavior in causal understanding. Base pretrained
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Model Accuracy Entropy ECE ACE Accuracy ∆
(Overall) (Mean±SD) Original Paraphrase (O-P)

pythia-1.4b 0.248 1.34±0.05 0.067 0.136 0.245 0.249 -0.004
pythia-7b 0.251 1.32±0.06 0.131 0.142 0.249 0.252 -0.003
pythia-12b 0.231 1.32±0.07 0.149 0.151 0.231 0.231 0.000
gpt-j-6b 0.175 1.35±0.04 0.151 0.158 0.169 0.177 -0.008
dolly-v2-7b 0.240 0.91±0.19 0.363 0.239 0.240 0.240 0.000
dolly-v2-12b 0.212 0.53±0.28 0.564 0.312 0.202 0.215 -0.013
qwen-7b-base 0.328 0.29±0.35 0.493 0.275 0.339 0.326 0.013

Table 1: Summary statistics for causal type classification task. ECE (lower is better). ACE (lower is better).
Worst-performing models show best calibration, while better-performing models exhibit overconfidence.

Figure 2: Entropy distributions across models. Higher values indicate greater uncertainty (max=1.39 for
random guessing). Qwen-7b shows low entropy (high confidence) while Pythia/GPT-J show near-maximum
entropy.

Accuracy Entropy

Model OvP MvN OvP MvN

pythia-1.4b 0.744 0.604 <0.001 0.573
pythia-7b 0.859 0.708 <0.001 <0.001
pythia-12b 0.823 0.506 <0.001 0.513
gpt-j-6b 0.670 0.655 0.787 <0.001
dolly-v2-7b 0.625 0.589 <0.001 <0.001
dolly-v2-12b 0.525 0.001 <0.001 0.004
qwen-7b-base 0.082 0.672 0.123 <0.001

Table 2: Statistical significance tests (p-values). OvP:
Original vs Paraphrase; MvN: MCQA vs MCQA-Newer.
Bold indicates p < 0.05. Note the divergence between
accuracy and entropy tests, revealing that uncertainty
patterns differ from performance patterns.

models (pythia variants, gpt-j-6b) exhibit high en-
tropy (≈1.35) with appropriately low confidence
(30-35%), yielding good calibration despite poor
performance.

However, instruction-tuned models show differ-
ent patterns. Dolly models—fine-tuned from pythia
bases on instruction-following data—develop mod-

erate confidence (40-60%) without corresponding
accuracy improvements. Most markedly, qwen-7b-
base exhibits overconfidence (>95%) while achiev-
ing only marginally better accuracy (32.8%).

This divergence offers valuable insights into
dolly models: identical pretrained weights (pythia)
produce different uncertainty profiles after in-
struction tuning. Compare pythia-7b (ECE=0.13,
entropy=1.32) with dolly-v2-7b (ECE=0.36, en-
tropy=0.92)—instruction tuning does not even half
the entropy while almost tripling the calibration
error.

These results suggest instruction tuning teaches
models to be confident in their responses, even
when this confidence is unjustified. While this may
improve user experience in conversational settings,
it creates problematic overconfidence in domains
requiring accurate uncertainty quantification, such
as causal-language related tasks.
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Figure 3: Calibration plots, confidence vs accuracy. Perfect calibration follows the diagonal. Base models
(Pythia/GPT-J) show good calibration despite poor accuracy. Instruction-tuned models (Qwen/Dolly) show
overconfidence.

6.4 Uncertainty Varies by Causal Complexity

Uncertainty patterns differ across causal relation-
ship types. Conditional causal statements induce
the highest entropy across all models, while direct
causal relationships show moderately lower uncer-
tainty. Correlational statements, despite being non-
causal, often receive more confident predictions
than conditional causal ones.

ANOVA confirms significant differences in en-
tropy across causal types (p < 0.001 for all models).
This pattern persists across both original and para-
phrase sentences, indicating that uncertainty arises
from conceptual difficulty rather than surface-level
confusion.

Causal Type Mean Entropy Accuracy

Direct Causal 1.15±0.42 0.31
Conditional Causal 1.28±0.29 0.19
Correlational 1.09±0.45 0.26
No Relationship 1.12±0.43 0.22

Table 3: Performance breakdown by causal relationship
type (averaged across all models). Conditional causal
statements show highest entropy and lowest accuracy.

Table 3 quantifies this pattern: conditional causal
statements exhibit 11% higher entropy than direct
causal statements, approaching maximum entropy.
This suggests that models struggle particularly with
nuanced causal identifications involving conditions
or moderating factors. Detailed analysis can be
found in Appendix B.5.

6.5 Identifying Inherently Ambiguous
Questions

We analyzed the results based on the intuition that
if all paraphrases of a sentence get similar wrong
predictions, it might indicate inherent ambiguity
(aleatoric uncertainty).

This paraphrase consistency analysis reveals a
subset of questions where all models consistently
select the same incorrect answer across paraphrases
(i.e., consistency > 0.7 and accuracy < 0.3). These
represent 60-75% of questions depending on the
model (Figure 4). High consistency on wrong an-
swers suggests inherent ambiguity in the task rather
than model-specific confusion.

A manual analysis of misclassified instances re-
veals recurring linguistic patterns, including the
use of hedging expressions (e.g., “may influence,”
“suggests association”) and complex multi-clause
constructions. These features are associated with
misclassification across model families.

6.6 No Evidence on Verbatim Recalls with
Pre-training Exposures

The verbatim memorization probing (task 2) pro-
vides complementary evidence. When presented
with questions about causal relationships and asked
to choose between original sentences and para-
phrases (all semantically correct), models show no
preference for the original form. Selection rates for
original sentences average 24.8% (95% CI: [24.2%,
25.4%]) across all Pile-trained models, statistically
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Figure 4: Ambiguous questions Proportion of ques-
tions with consistent wrong answers across paraphrases,
indicating inherent ambiguity.

indistinguishable from the 25% random baseline
(chi-square test, p > 0.05).

Entropy analysis of this task reveals similar pat-
terns: models exhibit high uncertainty (mean en-
tropy 1.31) regardless of whether choosing between
already seen or potentially novel phrasings. This
task design, which controls for correctness while
varying surface form, shows that models do not
leverage already seen patterns even when given the
opportunity.

This null result holds even when examining only
high-frequency scientific phrases likely repeated
many times in training data. Models treat original
and paraphrase sentences identically, confirming
that surface-level causal patterns exposed during
pretraining may not contribute to causal understand-
ing (details of probabilities and entropy analysis is
in Appendix C).

6.7 Consistency Across Semantic Paraphrases

To further test verbatim recall, we analyze predic-
tion consistency across paraphrases of the same
sentence. If models rely on "seen/recalled" pat-
terns, we expect higher consistency for original
sentences versus their paraphrases.

For each sentence with multiple probes, we com-
puted Pearson correlation between choice prob-
ability vectors to assess confidence consistency,
Spearman rank correlation to evaluate preference
consistency by comparing ranked orders, and KL
divergence to quantify overall distributional shifts
between probabilistic outputs (see Appendix B.3
for details).

Only pretrained models exhibit moderate KL di-
vergence (KL < 0.15), suggesting relatively stable
probabilistic behavior across input variations. How-
ever, larger and instruction-tuned models such as
qwen-7b-base and dolly models exhibit higher KL
divergence (>0.5 for qwen and >1.0 for dolly mod-

els), indicating greater sensitivity to paraphrasing
and less consistency in their output distributions,
i.e., unstable predictions across semantically equiv-
alent inputs. This pattern holds across both the
MCQA and MCQA-newer datasets.

Correlation analysis of probability vectors and
ranked order reveals weak consistency (mean Pear-
son and Spearman ρ < 0.2) across all models but
qwen-7b-base (Pearson ρ > 0.71 and Spearman ρ >
0.73).

Critically, consistency patterns do not differ be-
tween MCQA (training data) and MCQA-newer
(unseen data). The absence of improved consis-
tency on training data provides evidence against
memorization-based reasoning. Models treat se-
mantically equivalent sentences as unrelated inputs,
confirming they lack robust causal understanding
rather than merely forgetting training examples.

7 Discussion

Our experimental findings show that uncertainty in
causal tasks stems from absent causal understand-
ing rather than insufficient data exposure (Figure
5). Three key insights emerge: First, the indepen-
dence of performance from training data exposure
suggests that simply scaling datasets will not re-
solve causal understanding deficits. Models require
architectural innovations or training objectives that
explicitly target causal inference. Second, overcon-
fidence from instruction tuning poses deployment
risks. The shift from calibrated uncertainty (base
models: ECE=0.13) to overconfidence (instruction-
tuned: ECE=0.49) indicates fine-tuning teaches
models to suppress appropriate uncertainty. Third,
the particular difficulty with conditional causal rela-
tionships indicates that models lack compositional
reasoning about causality. While they may rec-
ognize simple cause-and-effect patterns, they fail
when conditions, moderators, or exceptions are in-
troduced.

These results suggest that causal understanding
in LLMs requires fundamental advances beyond
current pretraining paradigms. Memorization, even
at scale, cannot substitute for genuine causal knowl-
edge.

8 Conclusion

In this work, we focused on analyzing the criti-
cal limitations in the causal understanding abili-
ties of large language models (LLMs). Through
a controlled evaluation combining causal clas-
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Figure 5: Entropy vs Accuracy. Ideal models appear top-left (accurate and confident). Most models cluster
bottom-right (inaccurate and uncertain).

sification and verbatim memorization probing,
we demonstrate that exposure to causal content
during pretraining does not guarantee accurate
recall or improved causal understanding. Our
analysis, leveraging multiple uncertainty met-
rics—including entropy, consistency, calibration,
and accuracy—reveals that uncertainty in causal
tasks stems primarily from deficits in causal under-
standing rather than limitations in memorization.
Addressing these limitations will require a shift be-
yond current pretraining paradigms—toward mod-
els that explicitly encode and reason over causal
structures, and that are capable of expressing cal-
ibrated uncertainty when faced with ambiguity or
unseen conditions.

Limitations

Our study has three key limitations. First, we can-
not determine whether the models truly failed to
acquire causal patterns during training, or whether
they learned them but are unable to apply or re-
call them during inference. Structured prompting,
Causal probing with small datasets, pre-trained
data inspections through sampling, probing rep-
resentations, etc., can be possible approaches to
tackle this problem. Second, presence in The Pile
does not guarantee memorization—research shows
reliable memorization requires 100+ repetitions
(Kandpal et al., 2023). Our results demonstrate
that even exposure without guaranteed memoriza-
tion provides no benefit for causal reasoning. Third,
our binary classification of "seen" versus "unseen"
may oversimplify the memorization spectrum. Fu-
ture work should examine the relationship between

repetition frequency and causal understanding.
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A Dataset & Prompts

The examples from the constructed dataset are
shown in Figures 6 and 7.

Dataset construction prompt template: ”Para-
phrase the following sentence while preserving its
exact meaning, especially the causal relationship.
Change the wording and structure but keep the
scientific accuracy: [sentence]”

B Task 1: Causal Type Classification.

B.1 Probabilities analysis

From Figure 8, we analyze the probabilities related
to the correct choices, assigned by different models
in MCQA and MCQA_newer. In Figure 9, we de-
pict the probability assignment to selected choices,
comparing the original and paraphrased sentences.
Figure 10, shows the entropy of the choice proba-
bilities.

The trends appear similar when comparing the
two versions of the dataset, with no evidence of
verbatim recalls/ memorized patterns that facil-
itate better causal understanding. Random be-
havior on "memorized" data - High entropy on
MCQA shows no memorization benefit. A per-
fect inverse relationship with performance is noted,
where pythia/gpt-j/gpt-6b, presents high entropy
(≈ 1.3 − 1.4), indicating nearly uniform distri-
butions, which implies no causal understanding.
qwen-7b-base, on the other hand presents a low
entropy (≈ 0.2 − 0.6) indicating confident, deci-
sive predictions. Entropy near ln(4) ≈ 1.39 for
weak models confirms they are essentially guess-
ing randomly. No paraphrase penalty: Original vs
Paraphrase performance presents nearly identical
behaviours.

B.2 Statistical significance tests

We provide statistical tests examining differences
in accuracy and entropy between original versus
paraphrased sentences, and between MCQA ver-
sus MCQAnewer datasets. Ttests assess mean dif-
ferences while ANOVA examines variance across
causal relationship types. The statistical test results
are reported in Tables 4 and 5. These were com-
puted on the accuracies and entropies of models,
respectively.

B.3 Consistency analysis

For each sentence with multiple probes, we com-
puted Pearson correlation between choice prob-

ability vectors to assess confidence consistency,
Spearman rank correlation to evaluate preference
consistency by comparing ranked orders, and KL
divergence to quantify overall distributional shifts
between probabilistic outputs. Tables 6 and Figures
13, 12 and 14. High consistency would indicate
robust causal understanding, while low consistency
suggests models treat paraphrases as unrelated in-
puts.

———-

B.4 Overconfidence Analysis
We present calibration analyses (Figures 15-21) for
each model, examining the relationship between
predicted confidence and actual accuracy. Each
model’s analysis includes accuracy breakdowns by
causal type, confidence distributions, calibration
plots, and confusion matrices for high-confidence
errors. These reveal overconfidence patterns, par-
ticularly in instruction-tuned models.

B.5 Uncertainty Analysis
This section examines (Figures 22 - 28) how uncer-
tainty (measured by entropy) varies across different
causal relationship types and its correlation with
model accuracy. The analysis reveals that condi-
tional causal relationships consistently induce the
highest uncertainty across all models, suggesting
limitations in compositional causal reasoning rather
than simple memorization effects.

C Task 2: Verbatim Memorization
Probing

We analyze results from the memorization prob-
ing task, where models choose between original
sentences and semantically equivalent paraphrases.
The probability (Figures 29 and 30) and entropy
(Figure 31) analyses demonstrate no preference
for original (potentially memorized) text over para-
phrases, providing direct evidence against verbatim
memorization as a driver of causal reasoning per-
formance.
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{"qa_idx": 0, "context": "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale.",

"text": "However, the small sample size in this study limits its generalizability to diverse populations,
so we call for future research that explores SSL-powered personalization at a larger scale.",
"text_type": 0, "causal_class_label": 0,

"choices": [{"label": 1, "text": "Direct Causal", "description": "The statement explicitly states that one variable directly causes changes in another."},
{"label": 3, "text": "Correlational", "description": "The statement describes an association between variables, but no causation is
explicitly stated."},
{"label": 2, "text": "Conditional Causal", "description": "The statement suggests causation but includes uncertainty through hedging words or
modal expressions."},
{"label": 0, "text": "No Relationship", "description": "No correlation or causation relationship is mentioned."},
{"label": 4, "text": "Other", "description": ""}]

Figure 6: Examples from the constructed data (Task 1) - Casual Type Classification

Example non-causal: {"context": "Faster aspart and IAsp were confirmed noninferior in a basal-bolus regimen regarding change from baseline in HbA1c.",

"question": "What was the outcome of comparing faster aspart and IAsp in terms of their effect on HbA1c levels in a basal-bolus regimen? ",

"choices": [{"text": "Faster aspart and IAsp were shown to be noninferior in a basal-bolus regimen with respect to the change in HbA1c from the starting point. ",
"type": 1},
{"text": "Faster aspart and IAsp were confirmed noninferior in a basal-bolus regimen regarding change from baseline in HbA1c.", "type": 0},
{"text": "Faster aspart and IAsp were validated as noninferior in a basal-bolus treatment concerning the change in HbA1c from baseline. ", "type": 1},
{"text": "Faster aspart and IAsp were not confirmed noninferior in a basal-bolus regimen regarding change from baseline in HbA1c.", "type": 2},
{"text": "I don't know", "type": 3}],
"true_sent_type": 0, "causal_class_label": 0}

Example causal: {"context": "Vildagliptin effectively improved glucose level with a significantly greater reduction in glycemic variability and hypoglycemia
than glimepiride in patients with T2DM ongoing metformin therapy.",
"question": "What was the effect of vildagliptin compared to glimepiride on glucose levels in patients with T2DM? ",
"choices": [{"text": "Vildagliptin significantly enhanced glucose levels, showing a much larger decrease in glycemic variability
and hypoglycemia compared to glimepiride in patients with T2DM who were already on metformin treatment. ", "type": 1},
{"text": "Vildagliptin effectively improved glucose level with a significantly greater reduction in glycemic variability
and hypoglycemia than glimepiride in patients with T2DM ongoing metformin therapy.", "type": 0},
{"text": "Vildagliptin did not effectively improve glucose level with a significantly greater reduction in glycemic variability
and hypoglycemia than glimepiride in patients with T2DM ongoing metformin therapy.", "type": 2},
{"text": "I don't know", "type": 3},
{"text": "In patients with T2DM receiving ongoing metformin therapy, vildagliptin led to a notable improvement in glucose levels,
with a significantly greater reduction in glycemic variability
and hypoglycemia than glimepiride. ", "type": 1}],
"true_sent_type": 0, "causal_class_label": 1,}

Figure 7: Examples from the constructed data (Task 2) - Example with the configuration: original (type 0), two
paraphrases (type 1), one negation (type 2) and I don’t know (type 3), with and without causal labels

Original vs Paraphrase MCQA vs MCQA-newer
Model t-stat p-value t-stat p-value

pythia-1-4b 0.340 0.744 0.577 0.604
pythia-7b -0.184 0.859 0.412 0.708
pythia-12b -0.232 0.823 -0.753 0.506
gpt-j-6b -0.444 0.670 0.494 0.655
dolly-v2-7b -0.512 0.625 -0.604 0.589
dolly-v2-12b -0.669 0.525 -12.427 0.001
qwen-7b-base 2.032 0.082 -0.468 0.672

Table 4: T-tests computed on the accuracies for each model between Original and Paraphrase indistinguishable of
the dateset and, between the original sentences of MCQA and the original sentences of MCQA-newer. Accuracies
feed to the t-tests were the means of the binary correctness grouped by the causal relationship type.

Original vs Paraphrase MCQA vs MCQA-newer Causal-type ANOVA
Model t-stat p-value effect size t-stat p-value effect size f-stat p-value

pythia-1-4b 69.273 0.000 0.884 0.563 0.573 0.015 15.509 0.000
pythia-7b -10.205 0.000 -0.152 -11.637 0.000 -0.307 25.805 0.000
pythia-12b 18.441 0.000 0.286 0.655 0.513 0.017 8.400 0.000
gpt-j-6b 0.270 0.787 0.004 -7.847 0.000 -0.207 139.133 0.000
dolly-v2-7b -5.656 0.000 -0.083 -11.328 0.000 -0.301 40.102 0.000
dolly-v2-12b 11.673 0.000 0.181 2.846 0.004 0.076 25.551 0.000
qwen-7b-base 1.541 0.123 0.023 -5.679 0.000 -0.150 153.846 0.000

Table 5: Statistical tests computed on the entropies for each model between Original and Paraphrase indistinguish-
able of the dateset and, between the original sentences of MCQA and the original sentences of MCQA-newer.
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model dataset text type prob correlation Spearman KL div

pythia-1-4b mcqa Paraphrase -0.007 0.003 0.105
pythia-1-4b mcqa_newer Paraphrase -0.020 -0.009 0.093
pythia-1-4b mcqa_newer Original -0.009 0.003 0.058
pythia-1-4b mcqa Original 0.002 0.025 0.066
pythia-7b mcqa_newer Paraphrase 0.003 -0.001 0.127
pythia-7b mcqa_newer Original 0.002 0.000 0.130
pythia-7b mcqa Paraphrase -0.009 -0.014 0.129
pythia-7b mcqa Original -0.017 -0.026 0.147
pythia-12b mcqa Paraphrase 0.019 -0.001 0.137
pythia-12b mcqa Original 0.025 0.011 0.105
pythia-12b mcqa_newer Paraphrase 0.016 -0.005 0.143
pythia-12b mcqa_newer Original 0.024 0.005 0.108
gpt-j-6b mcqa_newer Paraphrase 0.123 0.113 0.087
gpt-j-6b mcqa Original 0.156 0.119 0.078
gpt-j-6b mcqa_newer Original 0.183 0.160 0.066
gpt-j-6b mcqa Paraphrase 0.109 0.098 0.093
dolly-v2-7b mcqa_newer Paraphrase 0.059 0.040 1.049
dolly-v2-7b mcqa_newer Original 0.054 0.045 1.045
dolly-v2-7b mcqa Paraphrase 0.018 0.017 1.141
dolly-v2-7b mcqa Original 0.029 0.026 1.186
dolly-v2-12b mcqa Original 0.050 0.006 2.240
dolly-v2-12b mcqa_newer Paraphrase 0.053 0.026 2.475
dolly-v2-12b mcqa_newer Original 0.056 0.026 2.430
dolly-v2-12b mcqa Paraphrase 0.045 0.015 2.376
qwen-7b-base mcqa Original 0.777 0.775 0.494
qwen-7b-base mcqa Paraphrase 0.762 0.769 0.527
qwen-7b-base mcqa_newer Original 0.727 0.739 0.547
qwen-7b-base mcqa_newer Paraphrase 0.710 0.727 0.602

Table 6: Consistency analysis over predictions aggregated by model, dataset and text type.
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Figure 8: Probabilities assigned to the correct choice.
Box plots showing the distribution of probabilities as-
signed to correct answers by different models for orig-
inal questions and paraphrases. Results are shown for
mcqa (left) and mcqa_newer (right) datasets. Higher
probabilities indicate greater model confidence in cor-
rect predictions.

Figure 9: Probabilities assigned to the selected choice.
Box plots showing the distribution of probabilities as-
signed to selected answers by different models for orig-
inal questions and paraphrases. Results are shown for
mcqa (left) and mcqa_newer (right) datasets. Higher
probabilities indicate greater model confidence in se-
lected predictions.

Figure 10: Entropy of choice probabilities. Box plots
showing the distribution of entropy values across differ-
ent models for original questions and paraphrases. Re-
sults are shown for mcqa (left) and mcqa_newer (right)
datasets. Higher entropy values indicate more uniform
probability distributions across answer choices, reflect-
ing greater model uncertainty. Maximum entropy of
ln(4) ≈ 1.39 corresponds to uniform distribution across
four choices.
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Figure 11: Accuracy comparison of original vs paraphrase in mcqa (left) and mcqa_newer (right).

Figure 12: Probability correlation: confidence consis-
tency — whether the model’s confidence patterns are
consistent.

Figure 13: Rank correlation: preference consistency -
Whether the model’s preference ordering stays the same.

Figure 14: KL divergence: distribution consistency -
How much the full probability distributions differ.

Figure 15: Overconfidence analysis for Pythia 1.4B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
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Figure 16: Overconfidence analysis for Pythia 7B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).

Figure 17: Overconfidence analysis for Pythia 12B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
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Figure 18: Overconfidence analysis for GPT-j 6B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).

Figure 19: Overconfidence analysis for Dolly-v12
7B. Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
Bottom row: Confusion matrices for high-confidence
errors (confidence >0.8) in mcqa (left) and mcqa_newer
(right). Heatmap values represent the percentage of each
true class that was misclassified with high confidence.
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Figure 20: Overconfidence analysis for olly-v12 12B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
Bottom row: Confusion matrices for high-confidence
errors (confidence >0.8) in mcqa (left) and mcqa_newer
(right). Heatmap values represent the percentage of each
true class that was misclassified with high confidence.

Figure 21: Overconfidence analysis for Qwen 7B.
Top row: Accuracy by causal relationship type for
original questions and paraphrases in mcqa (left) and
mcqa_newer (right). Middle row: Model confidence
distribution using 50 bins (left) and calibration plot
showing predicted probabilities (x-axis) versus actual
accuracy (y-axis) with data grouped into 20 bins (right).
Bottom row: Confusion matrices for high-confidence
errors (confidence >0.8) in mcqa (left) and mcqa_newer
(right). Heatmap values represent the percentage of each
true class that was misclassified with high confidence.

Figure 22: Uncertainty analysis for Pythia 1.4B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.
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Figure 23: Uncertainty analysis for Pythia 7B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 24: Uncertainty analysis for Pythia 12B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 25: Uncertainty analysis for GPT-j 6B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 26: Uncertainty analysis for Dolly-v12 7B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 27: uncertainty analysis for olly-v12 12B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.

Figure 28: Uncertainty analysis for Qwen 7B. Left:
Entropy-based uncertainty by causal relationship type.
The red dashed line indicates maximum entropy (ran-
dom guessing baseline). Right: Relationship between
model uncertainty (entropy) and prediction accuracy,
showing how confidence relates to performance.
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Figure 29: Probabilities assigned to the correct choice.
Box plots showing the distribution of probabilities as-
signed to correct answers by different models for orig-
inal questions and paraphrases. Results are shown for
mcqa (left) and mcqa_newer (right) datasets. Higher
probabilities indicate greater model confidence in cor-
rect predictions.

Figure 30: Probabilities assigned to the selected
choice. Box plots showing the distribution of proba-
bilities assigned to selected answers by different mod-
els for original questions and paraphrases. Results are
shown for mcqa (left) and mcqa_newer (right) datasets.
Higher probabilities indicate greater model confidence
in selected predictions.

Figure 31: Entropy of choice probabilities. Box plots
showing the distribution of entropy values across dif-
ferent models. Results are shown for mcqa (left) and
mcqa_newer (right) datasets. Higher entropy values
indicate more uniform probability distributions across
answer choices, reflecting greater model uncertainty.
Maximum entropy of ln(4) ≈ 1.39 corresponds to uni-
form distribution across four choices.
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