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Abstract

Fine-tuning large language models (LLMs)
with low-rank adaptaion (LoRA) is a cost-
effective way to incorporate information from
a specific dataset. However, it is often un-
clear how well the fine-tuned LLM will gen-
eralize, i.e., how well it will perform on un-
seen datasets. Methods have been proposed
to improve generalization by optimizing with
in-context prompts, or by using meta-learning
to fine-tune LLMs. However, these methods
are expensive in memory and computation,
requiring either long-context prompts or sav-
ing copies of parameters and using second-
order gradient updates. To address these chal-
lenges, we propose Amortized Bayesian Meta-
Learning for LoRA (ABMLL). This method
builds on amortized Bayesian meta-learning
for smaller models, adapting this approach to
LLMs while maintaining its computational effi-
ciency. We reframe task-specific and global pa-
rameters in the context of LoRA and use a set of
new hyperparameters to balance reconstruction
accuracy and the fidelity of task-specific pa-
rameters to the global ones. ABMLL provides
effective generalization and scales to large mod-
els such as LLAMA3-8B. Furthermore, as a re-
sult of using a Bayesian framework, ABMLL
provides improved uncertainty quantification.
We test ABMLL on Unified-QA and Crossfit
datasets and find that it outperforms existing
methods on these benchmarks in terms of both
accuracy and expected calibration error.

1 Introduction

Large language models (LLMs) handle a variety
of tasks reasonably well (Radford et al., 2019).
However, to tailor LLMs to specific domains,
fine-tuning on specific datasets is often necessary.
While methods such as low-rank adaptation (LoRA;
Hu et al. (2021)) fine-tune a pretrained LLM cost-
effectively, a fine-tuned LLM is limited to the do-
main it is trained on. Its performance may not
improve in other domains and sometimes worsens

as it suffers from catastrophic forgetting. Such
catastrophic forgetting may result in overfitting and
erasing existing capabilities of the pretrained LLM
(Lazaridou et al., 2021; Luo et al., 2023).

Meta-learning is a strategy for solving this prob-
lem, training models on a variety of tasks in a way
that supports generalization across tasks (Finn et al.,
2017). However, meta-learning typically requires a
large amount of computation and memory, making
it challenging to apply to LLMs. One form of meta-
learning that has been applied to LLMs involves
fine-tuning models on in-context prompt-response
examples (Min et al., 2022; Chen et al., 2022). An-
other more traditional approach, MAML-en-LLM
(Sinha et al., 2024), adapts the Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) frame-
work to LLMs. However, both methods are limited
in the size of the language models that can be used:
the former requires long-context prompts, whereas
the latter uses second-order gradient updates and
saves a model for each task.

Recent work on Amortized Bayesian Meta-
Learning (ABML; Ravi and Beatson (2019)) ad-
dresses some of the computation and memory re-
quirements of meta-learning. This approach posits
a generative model over parameters where task-
specific parameters are generated from global pa-
rameters, and inference over task-specific parame-
ters is amortized. In other words, the conditional
distribution over task-specific parameters is shared
across tasks, implying that computation and mem-
ory costs stay constant with respect to the number
of tasks. This approach thus offers a path towards
efficient meta-learning for LLMs. However, sev-
eral challenges exist. First, we need to specify the
generative model over weight space in the context
of LLMs. Second, the prior term used in ABML
no longer adapts to the setting of fine-tuning a pre-
trained model because the spread of its weights
mismatches that of an arbitrary prior used to train
a model from scratch. Third, the enormous size
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of LLMs makes training difficult, as the scale of
probabilities assigned to the model variables can
overwhelm the influence of the data likelihood.

In this paper, we present a solution to these prob-
lems, taking a Bayesian approach to fine-tuning
LLMs using ABML. To define the underlying gen-
erative model and efficiently characterize the distri-
butions involved, we use LoRA to express both the
model weights and their uncertainty. We introduce
a new prior over global variables that accounts for
the spread of the parameters learned in the pre-
trained model. We also introduce two adjustable
hyperparameters that balance reconstruction accu-
racy and the fidelity of task-specific parameters to
the global ones.

Using amortized Bayesian meta-learning for
LLM fine-tuning, we achieve both higher accuracy
and better uncertainty estimation over unseen tasks
compared with regular fine-tuning and other scal-
able methods in the meta-learning literature. Figure
1 illustrates an example where incorporating uncer-
tainty estimation in fine-tuning leads to a more
calibrated model response. Our method is scalable
and avoids the computation and memory overhead
of other meta-learning approaches, making it adapt-
able to larger models such as LLAMA 3 8B. We
show that amortized Bayesian meta-learning pro-
vides fine-tuned LLMs that are accurate on domain-
specific tasks, more generalizable to new tasks, and
provide better uncertainty estimation.

2 Related Work

Meta-learning methods in LLMs. Extensive
work has explored meta-learning for generalization,
typically adopted for models in the pre-LLM era
(Finn et al., 2017; Snell et al., 2017; Ravi and Beat-
son, 2019; Nichol et al., 2018). Sinha et al. (2024)
adapted Model-Agnostic Meta-Learning (MAML),
developed in Finn et al. (2017), to LLMs. How-
ever, this adaptation is more expensive in com-
putation and memory than our method, requiring
second-order gradient updates and saving a model
for each task. More recently, Kim and Hospedales
(2025) proposes a heirarchical Bayesian approach
to LoRA meta-learning, but its parameters also in-
crease linearly with number of tasks. As a result,
we evaluate on larger models than those tried in
these two papers.

As a different approach, Min et al. (2022) and
Chen et al. (2022) explored meta-learning for
LLMs using in-context learning. These works show

Figure 1: An example where better uncertainty cali-
bration leads to a more reasonable response. This is a
prompt and response from an unseen dataset, coming
from a pretrained LLM (left) and an LLM fine-tuned
with ABMLL (right), with both being updated with 10
gradient steps on other examples of this dataset as in the
meta-learning literature. The label is B), so both LLMs
are incorrect, but the question is ambiguous: it could
interpreted as either Jason “asked” Steven to deliver, or
Jason “came to” Steven to deliver, resulting in different
answers. ABMLL results in a more calibrated response.

that it is possible to fine-tune LLMs on in-context
examples and achieve generalization. However, our
approach does not require curation of such exam-
ples, does not place constraints on the size of the
context window of a model, and is more scalable.

Uncertainty representation for LLMs. Ap-
proaches to capturing uncertainty for LLMs can
rely on the intrinsic representation of uncertainty
in the model or focus on capturing extrinsic un-
certainty about model parameters. Intrinsic ap-
proaches produce better uncertainty calibration via
prompt engineering and sampling (Gruver et al.,
2023) or learning an external model (Shen et al.,
2024). Extrinsic approaches include using fine-
tuning methods to incorporate uncertainty, such
as training LoRA with ensembles (Balabanov and
Linander, 2024), Laplace approximation (Yang
et al., 2023), and variational inference (Wang et al.,
2024). Our work takes the extrinsic approach but
differs from existing approaches by using the meta-
learning setting to achieve strong uncertainty cali-
bration through generalization across datasets.

3 Background

3.1 Low-Rank Adaptation (LoRA)
LoRA (Hu et al., 2021) fine-tunes LLM weights on
a low-rank space to improve efficiency compared
with regular fine-tuning. Let W0 of size dout-by-din
denote a weight matrix from a pretrained LLM. Let
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x denote the input to W0, and z denote the output
of W0, LoRA fine-tunes pretrained weight W0 by
adding perturbation on the low-ranked space,

z = (W0 +∆W0)x = (W0 +BA)x.

The trainable matrices B and A are known as LoRA
adapters. The sizes of B and A are dout-by-drank
and drank-by-din, respectively, with drank being
significantly smaller than the original dimensions.
Therefore, the number of parameters to be updated
are (dout + din)drank, significantly fewer than the
original doutdin.

3.2 Amortized Bayesian Meta-Learning

Amortized Bayesian Meta-Learning (ABML) Ravi
and Beatson (2019) improves upon MAML-based
meta-learning frameworks by representing uncer-
tainty with a Bayesian approach. It also amortizes
inference over the parameters so that memory no
longer increases linearly with the number of tasks.

Let θ denote global parameters such that a few
steps of gradient descent will produce local param-
eters ϕi on task i with dataset Di. ABML treats
θ as random variables, and minimizes a negative
evidence lower bound using variational inference,

argminθ
[ M∑

i=1

−Eqθ(ϕi|Di)[log p(Di|ϕi)]+ (1)

KL
(
qθ(ϕi|Di)

∣∣∣∣p(ϕi|θ)
)]

+ KL(q(θ)||p(θ)).

The variational distribution qθ(ϕi|Di) is repre-
sented by the Gaussian distribution N(µϕ, σ

2
ϕ) with

µϕ, σϕ as trainable parameters.

4 Method

Our method extends Amortized Bayesian Meta-
Learning, making it possible to apply to LLMs.
This approach combines the advantages of meta-
learning for adapting to new tasks with Bayesian
inference for uncertainty representation.

We use the the objective of Eq. 1 from ABML.
In our setting, θ and ϕi are the global and task-
specific model parameters produced as the output
of LoRA adapters. On a high level, the generative
process is

θ ∼ p(θ),

ϕi ∼ p(ϕi|θ),
Di ∼ LLM(ϕi),

Algorithm 1 One epoch in the ABMLL algorithm.
The “test section” does not need to be performed
every epoch.
Input: Likelihood model p(Di|ϕi), prior p(θ)
and p(ϕ|θ), variational posterior qθ(ϕi|Di), with
trainable parameters B,A; constant c, β; number
of tasks M and inner-loop size K.

Training section
for task i ∈ {1, 2, ...,M} do

Draw batch Di from task i dataset.
Inner-loop:
for iter k ∈ {1, 2, ...,K} do

Run a step gradient descent to mini-
mize w.r.t. ϕi: −Eqθ(ϕi|Di)[log p(Di|ϕi)] +

βKL
(
qθ(ϕi|Di)

∣∣∣∣p(ϕi|θ)
)
.

end for
Outer-loop: Run a step gradient descent to
minimize w.r.t. θ: −Eqθ(ϕi|Di)[log p(Di|ϕi)] +

βKL
(
qθ(ϕi|Di)

∣∣∣∣p(ϕi|θ)
)
+ βKL(q(θ)||p(θ)).

end for
Test section
Take unseen task i. Create a copy of the above
weights, and on the new weights:
for iter k ∈ {1, 2, ...,K} do

Draw batch Di from task i dataset.
Run a step gradient descent to mini-
mize w.r.t ϕi: −Eqθ(ϕi|Di)[log p(Di|ϕi)] +

βKL
(
qθ(ϕi|Di)

∣∣∣∣p(ϕi|θ)
)
.

end for
Evaluate on rest of data in task i.
Delete the weights copy and reload the weights
at the end of training section.

Output: B, A.

where i represents any task i, and LLM(ϕi) denotes
the LLM considered as a probabilistic model that
takes ϕi as its weights and outputs token sequences
with joint probabilities defined by the LLM’s au-
toregressive predictive distribution. We provide
a pseudocode, Algorithm 1, to illustrate our ap-
proach. For any LLM layer with pretrained weights
W0, the quantities for our extension to ABML are:

µθ = BµθAµθ ,

log σ2
θ = BσθAσθ + cI,

µϕ = BµϕAµϕ ,

log σ2
ϕ = BσϕAσϕ + cI,
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p(ϕi|θ) = N(ϕi;µθ +W0, σ
2
θ),

qθ(ϕi|Di) = N(ϕi;µϕ +W0, σ
2
ϕ),

p(θ) = p(µθ, σθ)

= N(µθ; 0, I) · Gamma(
1

σ2
θ

; a0, b0),

KL(q(θ)||p(θ)) = − log p(θ).

Lastly, p(Di|ϕi) is defined as the joint probabil-
ity assigned to Di where the LLM takes ϕi as its
weights. The trainable parameters are the LoRA
adapters A and B. However, we introduce four
pairs of these adapters to compute both the mean
and variance of the LoRA outputs on local and
global model weights. I is identity matrix, and c is
a hyperparameter constant dependent on the spread
of pretrained LLM weights. a0 and b0 are hyperpa-
rameters, and the simplification of the KL term as
− log p(θ) follows Ravi and Beatson (2019).

Balancing the reconstruction error. LLMs
are often overparameterized. As a result, prob-
abilistic quantities on the space of weights,
KL

(
qθ(ϕi|Di)

∣∣∣∣p(ϕi|θ)
)

and KL(q(θ)||p(θ)),
can overwhelm quantities on the data space,
log p(Di|ϕi). β−VAE (Higgins et al., 2016) and
Bayesian neural network approaches by Trinh et al.
(2022) introduce hyperparameters to temper the
likelihood versus regularization terms. Inspired
by this idea, we introduce hyperparameters β, γ,
resulting in the following objective,

argminθ
[ M∑

i=1

−Eqθ(ϕi|Di)[log p(Di|ϕi)]+ (2)

βKL
(
qθ(ϕi|Di)

∣∣∣∣p(ϕi|θ)
)]

+ γKL(q(θ)||p(θ)).

This provides a flexible way to control how close
the global parameters θ are to the prior p(θ), and
how close the task-specific parameters ϕi are to θ.

5 Empirical Evaluations

Model and datasets. We fine-tune LLAMA3-8B
on CrossFit (Ye et al., 2021) and UnifiedQA (Ye
et al., 2021), textual datasets commonly used to
train meta-learning models. Because a key aim
of our paper is to study uncertainty quantification,
we filter for multiple choice datasets, leading to a
subset of CrossFit and UnifiedQA with 34 datasets
with 68K training datapoints in total. They feature
problems such as sentiment analysis, natural lan-
guage inference, and identifying particular traits or
topics in a given text. For evaluation on an unseen
task, we use Winogrande (Sakaguchi et al., 2021),

a multiple choice dataset evaluating common sense
reasoning.

Metrics. We use accuracy to evaluate general
performance and expected calibration error (ECE)
to evaluate uncertainty estimation.

Implementation details. All methods use batch-
size of 2 and inner-loops with 5 gradient steps.
LoRA adapters follow standard practice with rank
= 8, and learning rate is tuned in [10−6, 5 · 10−5].
For ABMLL, β = 5 · 10−10, γ = 10−6, c = e−20.
For the gamma prior, a0 = 1, b0 = 0.01, following
Ravi and Beatson (2019). During validation on the
unseen dataset, all models train 10 gradient steps
on 10 batches from this dataset and evaluate on the
rest.

Baselines. We use four baseline methods that can
viably scale to LLAMA3-8B. Pretrained is the off-
the-shelf LLM. Regular LoRA is the default LoRA
method trained on the whole randomly shuffled
training dataset. Structured LoRA also uses the
default LoRA, but the training dataset follows the
same “structure” as our method: it is iteratively
trained 5 gradient steps on one task at a time. Thus,
it tests the effect of our generative model on per-
formance. The Reptile (Nichol et al., 2018) algo-
rithm primarily uses a weighted average between
new weights and previous weights to achieve meta-
learning.

Results. Figure 2 shows validation accuracy and
ECE over epochs across methods. We observe that
ABMLL consistently achieves higher accuracy. On
ECE, ABMLL also consistently achieves the best
performance, whereas structured LoRA worsens as
training continues. For fairness, the result at the
end of every sixth epoch is reported from regular
LoRA, because both ABMLL and Reptile run six
instead of one gradient step during each epoch’s
training.

Table 1 reports the best validation score for each
model from three random seeds, showing a statisti-
cally significant advantage for ABMLL.

Conclusion

Meta-learning is an effective method for support-
ing better generalization across datasets, but its
demands on computation and memory can make it
difficult to apply to large language models. We
have shown how meta-learning can be used to
adapt LLMs by combining Amortized Bayesian
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Figure 2: Validation accuracy and ECE on the vertical axis over epochs on the horizontal axis across our method
(ABMLL) and four benchmarks. On accuracy, ABMLL consistently achieves higher. On ECE, ABMLL also
consistently achieves the best performance, whereas structured LoRA, the second best performer on accuracy,
worsens on uncertainty calibration as training continues.

Table 1: Validation accuracy and ECE across three ran-
dom seeds, with standard error.

Method Accuracy ↑ ECE ↓
Pretrained 68.2%± 0.3% 0.327± 0.000

Regular LoRA 68.2%± 0.3% 0.327± 0.000
Structured LoRA 73.6%± 0.6% 0.320± 0.001

Reptile 73.5%± 0.2% 0.370± 0.005

ABMLL 74.8%± 0.3% 0.317± 0.001

Meta-Learning with Low-Rank Adaptation. This
approach results not just in better accuracy across
several benchmarks, but also in better calibration.

Limitations

One limitation of the paper is the scope of empirical
evaluation regarding datasets and models. While
the datasets feature natural text that can occur in
the real world, it would be beneficial to evaluate
on more test datasets to confirm the method’s con-
sistency. Additionally, the paper’s method can be
naturally extended to other models, so evaluating
on more models would be a reasonable venue for
future work.

As a meta-learning method, our approach must
be trained on datasets that can be naturally divided
into different tasks, a requirement that is not always
available to practioners seeking significant model
improvement on one particular domain.

While our empirical results suggest that our ap-
proach provides more accurate and calibrated re-
sponses, theoretical convergence is not guaranteed
due to the need for approximate inference and var-

ious design choices, including limitations of the
variational family qθ(ϕi|Di).
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