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Abstract

Quantifying uncertainty in large language mod-
els (LLMs) is important for safety-critical ap-
plications because it helps spot incorrect an-
swers, known as hallucinations. One major
trend of uncertainty quantification methods is
based on estimating the entropy of the distribu-
tion of the LLM’s potential output sequences.
This estimation is based on a set of output se-
quences and associated probabilities obtained
by querying the LLM several times. In this
paper, we advocate and experimentally show
that the probability of unobserved sequences
plays a crucial role, and we recommend future
research to integrate it to enhance such LLM
uncertainty quantification methods.

1 Introduction

The advent of large language models (LLMs) has
revolutionized numerous fields by demonstrating
remarkable capabilities across a diverse array of
tasks. However, despite their impressive perfor-
mance, these models often struggle with reliability
issues, particularly due to factual inaccuracies in
their outputs. In this context, quantifying their con-
fidence and adjusting them for various tasks can
reduce risks and enhance the quality of outputs.

However, uncertainty quantification (UQ) on
LLMs remains challenging since the output possi-
bilities for these models are substantially greater
than those of discriminative models. As the gen-
eration length increases, the number of potential
outcomes grows exponentially, making it unfeasi-
ble to evaluate all possible answers (Geng et al.,
2024). We can distinguish two types of uncertainty
in LLMs: aleatoric uncertainty, stemming from
inherent randomness, and epistemic uncertainty, re-
sulting from a lack of information (Kendall and Gal,
2017). Following previous work, we aim to quan-
tify a measure of total uncertainty, i.e., aleatory
and/or epistemic, as both types of uncertainty con-
tribute to model errors.

Among the methods of uncertainty quantifica-
tion for LLMs, we identify black-box methods,
which assume access only to the generations, and
white-box methods, which also utilize internal
states of the LLM or token-level probabilities. In
this paper, we focus on the latter, utilizing token-
level probabilities. Concretely, we study sampling-
based estimation methods, that is, approaches that
rely on information (e.g. probability) obtained
from multiple answers generated by the LLM, in
order to quantify uncertainty.

Sample-based uncertainty quantification meth-
ods via entropy estimation, like Predictive Entropy
(E) (Malinin and Gales, 2020) and the recently pro-
posed Semantic entropy (SE) (Kuhn et al., 2023;
Farquhar et al., 2024), have succeeded recently per-
haps due to their simplicity, as they do not require
any special training or architectural modifications.
However, we note that these methods are them-
selves subject to epistemic uncertainty, as they rely
on only a glimpse of the probability distribution of
possible answers due to practical constraints. We
highlight that methods like E and SE, in particu-
lar, do not account for this epistemic uncertainty,
as they only consider the estimated probability of
sampled sequences, neglecting the remaining prob-
ability of possible but unobserved answers.

Recent work by Abbasi Yadkori et al. (2024)
has moved in a similar direction and explored the
concept of missing mass in UQ. However, their
approach directly compares the distributions of the
generated answers against the ground truth. In-
stead, here we present work focusing on modeling
the probability of unobserved answers without the
need for ground truth. Concretely, our aim is to
propose a framework that enables us to incorporate
this probability into existing formulations for es-
timation based on entropy. We provide technical
considerations for the calculation of such probabil-
ity and evaluate the relevance of one such imple-
mentation by using it as a UQ method.
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2 Proposed Approach

Let us denote by x the object about which we quan-
tify uncertainty; in our case study, x refers to the
input given to the LLM which often consists on
a question and potentially a prompt. We denote
by (S,P) the probability space, where S is the set
of all possible sequences, and P is the probability
measure over S. The entropy for the random out-
put sequence of the LLM and the input x is defined
as Equation 1 shows, below, where p(s|x) is the
probability of the sequence s conditioned on the
input x.

E∗(x) = −
∑

s∈S
p(s|x) log p(s|x). (1)

As it is not realistic to compute the probability of
all answers in S, entropy-based UQ methods for
LLMs estimate E∗(x) on a set of M sequences
sampled from the model denoted s1, . . . , sM . Let
us denote A ⊂ S the set of unique sampled answers
and note that |A| ≤ M because some identical
answers might be sampled multiple times. Each
answer s ∈ A consists of a sequence of length N
in the set of vocabulary tokens T . The probability
of s = (t1, . . . tN ) is obtained by the product of
conditional token probabilities via the language
model, as follows.

p(s|x) =
∏

i

p(ti|t<i, x). (2)

Some works have considered adjusting the calcula-
tion of sequence probabilities to account for vary-
ing sequence lengths. This is due to the tendency
for longer sequences to exhibit lower joint likeli-
hoods. To address this, a length normalized proba-
bility, which we denote p′ was proposed (Malinin
and Gales, 2020) as follows.

log p′(s|x) = 1

N

∑

i

log p(ti|t<i, x). (3)

We now focus on the probability of sequences
not observed in the set A of sequences provided by
the LLM for a given input x. This probability is
given by

P(Ā|x) = 1− P(A|x) (4)

= 1−
∑

s∈A
p(s|x), (5)

where Ā denotes the complement set of A.

We believe that the probability of unobserved
sequences can capture some of the uncertainty as-
sociated with an input x. When uncertainty is low,
the model’s output probabilities tend to be higher,
leading to a lower probability for the unobserved se-
quences. Conversely, when uncertainty is high, the
model’s output probabilities are lower, resulting in
a higher probability for the unobserved sequences.
In case of maximum uncertainty, all sequences in S
are equally likely, with each having a probability of
1/|S|. As a result, P(Ā|x) = 1− M/|S| approaches
1, especially when the set of possible sequences
is very large. Conversely, in situations of minimal
uncertainty, P(Ā|x) = 0.

In practice, we have two technical concerns re-
lated to the accurate calculation of probabilities
for unobserved answers. Firstly, to the best of our
knowledge, it is not always clear whether the last to-
ken, specifically the end-of-sequence (EOS) token,
is considered in sequence probability calculations
presented in Equation 2. If sequences do not in-
clude the EOS token, this raises concerns about the
construction of the sample space, as two unfinished
sequences are not mutually exclusive. Let us intro-
duce a small example to illustrate our discussion
about the sequence probability calculation.

Example. For the question input x =“Where are
St. Peter’s Basilica and the Sistine Chapel?”, let
us assume we observed two output sequences such
that A = {“vatican”, “vatican city”} and consider
the token conditional probabilities presented in Fig-
ure 1. If we do not include the end-of-sequence
token, the probability value of 0.8 may be incor-
rectly interpreted as the probability of the sequence
“vatican”. In fact, this represents the probability
that the sequence starts with “vatican”, which also
includes the possibility of the sequence being “vat-
ican city”. Essentially, the events of the sequence
beginning with “vatican” and “vatican city” are not
mutually exclusive.

In addition to this issue, we also note that se-
quence length normalization techniques as shown
in Equation 3, and often used approaches like SE,
can distort probabilities, potentially leading to the
sum of output probabilities differing from 1.

Due to the issues discussed above, we highlight
that we cannot properly estimate the probability
of unobserved answers with the usually-adopted
sequence probability calculations. Thus, we com-
pute the probability of sequences without sequence
length normalization and considering the EOS to-
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Figure 1: Example of tree of possible sequences with
token conditional probabilities.

ken. Formally, we consider the probability of a
sequence s = (t1, . . . , tN ,EOS) as

p(s|x) =
∏

i

p(ti|t<i, x)× p(EOS|t≤N , x). (6)

Example (revisited). Looking back at our pre-
vious example, if we consider the EOS token
in the computation of the probability, we ob-
tain p(“vatican”|x) = 0.8 × 0.6 = 0.48,
p(“vatican city”|x) = 0.8 × 0.4 × 1 = 0.32
and the probability of the unobserved samples is
P(Ā|x) = 1− 0.48− 0.32 = 0.2.

Based on this framework, here we present an
alternative method for computing the uncertainty
of an LLM where we directly use the value P(Ā|x).
We note that this approach, which we call Unob-
served Probability (UP), is arguably a very simple
way to capture some part of the LLM uncertainty,
as derived from our analysis.

• EOS-Inclusive UP (EOS-UP): this approach
consist of quantifying the LLM uncertainty
using P(Ā|x) in the way we consider most
suitable or recommended, i.e., accounting for
the EOS token in calculating the sequence
probabilities as in Equation 6.

• Length-Normalized UP (LN-UP): we pro-
pose to quantify the LLM uncertainty using
P(Ā|x) as above, but considering the usual
way for calculating the sequence probabili-
ties, i.e., without accounting for EOS token
and performing sequence length normaliza-
tion, following Equation 3.

3 Experiments and Results

In this section, we detail our experimental setup to
evaluate the relevance of using the probability of
unobserved answers for LLM uncertainty quantifi-
cation via our proposed approach UP. We compare
its performance with three entropy-based methods

and also include, for reference, the probability of
unobserved answers calculated using the conven-
tional method for sequence probabilities.

Model and dataset. Our experiments focused on
the uncertainty quantification for the falcon-40b-
instruct model (Almazrouei et al., 2023) and were
performed on a general knowledge dataset, Trivi-
aQA (Joshi et al., 2017). This model and dataset
were recently used by Nikitin et al. (2024). Trivi-
aQA was also originally used by Kuhn et al. (2023)
for their seminal work on SE.

Sampling. We conducted our sampling using two
styles of prompts. On the one hand, we adopt a
prompt that pushes the model to produce short an-
swers (SHORT), “Answer the following question as
briefly as possible”. This prompt was used on a
more recent implementation of SE, presented by
Farquhar et al. (2024).1 On the other hand, we also
experiment with the original prompt (NORMAL)
presented by Kuhn et al. (2023), and was also con-
sidered by Nikitin et al. (2024), “Answer the fol-
lowing question in a single brief but complete sen-
tence.”. Following the methodology of previous
studies (Farquhar et al., 2024; Nikitin et al., 2024),
we employed top-K sampling with K = 50 and
nucleus sampling with p = 0.9 at a temperature of
T = 1.

Evaluation Metric. In line with previous works
(Farquhar et al., 2024), we evaluated the model’s
accuracy by sampling an additional answer at a
lower temperature (T = 0.1). Then we used an-
other LLM, Meta-Llama-3-8B-Instruct (AI@Meta,
2024), to compare this answer with the ground
truth answers from the datasets. The prompts for
checking answers correctness are provided in the
appendix. We evaluate uncertainty quantification
methods by measuring their ability in predicting
model output accuracy using the Area under the
Receiver Operating Curve (AUROC).

UQ methods. We considered the following base-
line methods in our experiments.

• Predictive Entropy (E) (Malinin and Gales,
2020; Kuhn et al., 2023) is a Monte-Carlo
estimation of predictive entropy, shown by
Equation 7, below. As per the original imple-
mentation, this uses sentence length normal-

1https://github.com/jlko/semantic_uncertainty
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ization as in Equation 3.

E(x) ≈ − 1

M

M∑

m=1

log p′(sm|x) (7)

• Semantic Entropy (SE) (Kuhn et al., 2023;
Farquhar et al., 2024) is defined on a set of
clusters capturing the distinct meaning, de-
noted C. This consists in a sub-σ-algebra of
the event-space of all possible answers S . The
uncertainty quantification is calculated by an
approximation of the semantic entropy involv-
ing the normalization of the cluster probabili-
ties (Farquhar et al., 2024), as shown in Equa-
tion 8 and Equation 10, below, where C ∈ C.

p′(C|x) =
∑

s∈C

p′(s|x) (8)

p′′(C|x) =
p′(C|x)∑

C∈C p′(C|x) (9)

SE(x) ≈ −
∑

c∈C
p′′(C|x) log p′′(C|x) (10)

• Discrete Semantic Entropy (DSE) (Kuhn
et al., 2023; Farquhar et al., 2024) consists
in a variant of SE where cluster probabilities
are approximated by p(C|x) ≈ |{s : s∈C}|/M .

The results in terms of AUROC are presented
in Figure 2. We observe that the probability of
unobserved answers EOS-UP is indeed relevant
for quantifying uncertainty, achieving performance
comparable to the Predictive Entropy (E) method.

Moreover, we note that while state-of-the-art
baselines (E, SE, and DSE) are affected by the
number of available samples, the probability of un-
observed answers maintains its performance even
with a single sample. Sampling more answers from
the LLM can generally lead to larger answer vari-
ability, and hence as M grows, the effect of the
probability of unobserved answers on the estima-
tion decreases. Therefore, our results suggest that
incorporating the probability of unobserved sam-
ples in the estimation of uncertainty can be of crit-
ical importance when the number of samples is
limited (e.g. M = 1). Note that when M = 1,
A = {s1}, E method reduces to − log p′(s1|x),
and LN-UP method to 1 − p′(s1|x). Since these
quantity are strictly decreasing and monotonic with
respect to p′(s1|x), they yield the same ranking
over input instances and thus the same AUROC
performance, as shown in Figure 2.

Finally, we observe the poor performance of our
proposed probability of unobserved answers, con-
sidering length-normalization and no EOS token

Figure 2: Influence of the number of samples (M ) for
the LLM uncertainty quantification in terms of AU-
ROC, for the SHORT (top) and NORMAL (bottom) an-
swer length scenarios. We compare the performance
of our proposed approach variations (UP) against rele-
vant baselines. Results were computed on 500 pairs of
questions and ground truth answers on the falcon-40b-
instruct model.

probability (LN-UP), not only remains the worst
performing method for all M values, but also that
its performance decreases dramatically as M grows.
We think that, as shown by our technical considera-
tions, our suggested way to compute this probabil-
ity (EOS-UP) is necessary to obtain an adequate
estimation.

4 Conclusion

In this work, we aimed to focus on the probabil-
ity of unobserved answers, which we note have
been overlooked by existing entropy-based LLM
UQ methods. We acknowledge that this probability
captures only a portion of the uncertainty. For in-
stance, hesitation between observed answers is not
considered since the probability of each separate
observed answer is not used.

Our empirical results are encouraging and in the
future we plan to integrate this quantity into exist-
ing entropy estimation methods. To achieve this,
we believe a theoretical framework that consid-
ers both aleatoric and epistemic uncertainty, such
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as the Evidence Theory (Shafer, 1976; Smets and
Kennes, 1994) would be suitable.

We also note that current approaches of entropy-
based UQ, present other issues and limitations. Al-
though the work of (Nikitin et al., 2024) has made
progress in this regard, we think further improve-
ments are necessary, for example, by more directly
modeling hypernymy and hyponymy relationships
across answers, and/or clusters of answers.
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Appendix

To check the correctness of the answers, we used
the same prompts as previous studies presented in
Figure 3.

Prompt (single answer)

We are assessing the quality of answers
to the following question: {question} \n
The expected answer is: {correct_answer}.
\n The proposed answer is: {pre-
dicted_answer} \n Within the context of
the question, does the proposed answer
mean the same as the expected answer?
\n Respond only with yes or no.\n Response:

Prompt (multiple answers)

We are assessing the quality of answers to
the following question: {question} \n The
following are expected answers to this ques-
tion: {correct_answers}. \n The proposed
answer is: {predicted_answer} \n Within
the context of the question, does the pro-
posed answer mean the same as any of the
expected answers? \n Respond only with
yes or no.\n Response:

Figure 3: Prompts fed to the model in our experiments
when providing a single (top) and many correct answers
(bottom), where placeholders are denoted in bold.
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