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Abstract

Recent work has revealed Large Language
Models (LLMs) often exhibit undesirable be-
haviors, such as hallucination and toxicity, lim-
iting their reliability and broader adoption. In
this paper, we discover an understudied type of
undesirable behavior of LLMs, which we term
Verbosity Compensation (VC). VC is similar
to the hesitation behavior of humans under un-
certainty, compensating with excessive words
such as repeating questions, introducing am-
biguity, or providing excessive enumeration.
We present the first work that analyzes Ver-
bosity Compensation, explores its causes, and
proposes a simple mitigating approach. Our
experiments on five datasets of knowledge and
reasoning-based QA tasks with 14 LLMs, re-
veal three conclusions. 1) A pervasive presence
of VC across all models and all datasets. 2)
The large performance gap between verbose
and concise responses. We also demonstrate
that this difference does not naturally diminish
as LLM capability increases. 3) Higher un-
certainty exhibited by VC responses across all
five datasets, suggesting a strong connection
between verbosity and model uncertainty. We
propose a simple yet effective cascade algo-
rithm that replaces the verbose responses with
the other model-generated responses, alleviat-
ing the VC of the Mistral model from 63.81%
to 16.16% on the Qasper dataset.

1 Introduction

Recent research has highlighted various undesir-
able behaviors of Large Language Models, such as
hallucination (Huang et al., 2023), toxicity (Wen
et al., 2023), and ethical bias (Tao et al., 2023),
which pose significant risks to users. Among
them, the verbose response issue where LLMs re-
spond with excessive words has attracted more and
more attention in the LLM era because of unnec-
essary long output for solving problems (Singhal
et al., 2023) and the unavoidable high cost of LLM-
generated tokens.

The existing work mainly focuses on the length
of the response and its applications. Researchers
found that imposing a length constraint in the
prompt can improve the performance of LLMs,
under chain-of-thought (Chiang and Lee, 2024;
Nayab et al., 2024) and machine translation (Bri-
akou et al., 2024) settings. Singhal et al. (2023)
found RLHF training favors the lengthy response.
However, length is not enough to analyze verbosity
as it provides a general overview but fails to capture
key fine-grained features such as content structure.

In this paper, we discover a type of undesirable
verbosity behavior of LLMs. We term it Verbosity
Compensation (VC). Instead of focusing merely on
the length, we analyze the frequency, types, and
their relation to model performance. We also find
VC is closely connected to the uncertainty of LLMs,
demystifying the mechanism of the VC behavior,
and improving the understanding of both VC and
uncertainty. Interestingly, VC is similar to the hesi-
tation behavior of humans under uncertainty (Juola,
2008; Brookshire and McNeil, 2014). Figure 1
shows a motivating example. In the first response,
LLM generates a concise answer that is correct
with low uncertainty. In the second and third re-
sponses, instead of generating an answer concisely,
such as “16.5”, LLM repeats the question, and pro-
duces ambiguity, leading to a VC response with
low performance and high uncertainty. VC is harm-
ful and undesired for both users and servers. For
the users, VC will lead to confusion and ineffi-
ciency (Fowler, 1927; Oppenheimer, 2006). When
an LLM enumerates multiple answers, users are
unclear about which one is correct. Besides, VC
leads to bias among users of different length prefer-
ences if verbose answers attain higher/lower scores.
For the servers, the verbosity leads to unnecessary
higher costs and higher latency because of useless
tokens.

To analyze the VC behavior systematically,
we unify four long-context question-answering
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Figure 1: An illustration of comparison between concise and verbose responses. For each example, we ask the
model to generate the response as concisely as possible. In the first response, LLM generates a concise answer,
while in the second and third responses, LLM performs repeating, and ambiguity, leading to a verbose response
with low performance and high uncertainty (Detailed numbers in Appendix B.2).

datasets and a reasoning-based language under-
standing dataset. We choose short-form QA with
several tokens (comprising phrases, names, rather
than complete sentences) in the gold answer to en-
sure the gold label is concise and easy to judge VC
behavior in responses. We benchmark 14 LL.Ms
on proposed datasets. Although we find that dif-
ferent models and datasets exhibit diverse distribu-
tion, we can categorize VC into five distinct types,
including repeating questions, enumerating, ambi-
guity, verbose details, and verbose format. The
result reveals a pervasive presence of verbosity
compensation (VC) across all models and all
datasets. Notably, GPT-4 exhibits a VC frequency
of 50.40%. Meanwhile, we found that verbose re-
sponses exhibit significantly different recall from
concise ones, with a notable drop of 24.72% on the
Qasper dataset, highlighting the urgent need to
disentangle verbosity with veracity.

Next, we measure the uncertainty of model re-
sponses using perplexity and Laplacian scores for
open and closed-source models. We find that ver-
bose responses exhibit higher uncertainty across all
five datasets, suggesting a strong connection be-
tween verbosity and model uncertainty. Finally,
we leverage the connection between performance
and VC to develop a routing algorithm that ob-
tains significant improvements over the random
selecting baseline and uncertainty-based routing.
To mitigate VC in LLMs, we propose a simple yet
effective cascade algorithm that replaces verbose
responses with responses of larger LLMs. Experi-
ments demonstrate the efficacy of the proposed al-
gorithm through tests on three model combinations:
Gemma to Gemini, Mistral to GPT-4, and Llama
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to Claude. The results show that our approach ef-
fectively alleviates the VC of the Mistral model
from 63.81% to 16.16% on the Qasper dataset. The
insights above can inspire the development of prac-
tical applications and effective mitigation strate-
gies. Future work can mitigate the uncertainty of
the LLMs by alleviating VC behavior due to the
proposed connections between them.

2 Related Work

Verbosity in LLM Responses Recently work
has studied the verbosity of LLM-generated con-
tents and its implications. Concise thoughts (Nayab
et al., 2024) use prompts to constraint the length of
Chain-of-thought reasoning and generate more con-
cise responses with better performance. Ivgi et al.
(2024) investigate the fallback behavior of LLM-
generated responses when facing uncertainty. Sing-
hal et al. (2023) investigate the correlation between
generated length and reinforcement learning from
human feedback (RLHF) techniques. Saito et al.
(2023) find that LLMs sometimes prefer more ver-
bose answers even if they have similar qualities.
By contrast, Huang et al. (2024) find that GPT-4
prefers short responses in faithfulness and cover-
age when it comes to summarization. Unlike these
works, we discover the connection between per-
formance and verbosity compensation behavior in
both CoT and general QA settings and connect
verbosity to uncertainty. Besides, we use the cas-
cading model to mitigate verbosity while they use
prompt engineering.

Uncertainty Quantification of LLMs With the
thriving of Large Language Models (LLMs), re-
searchers have begun exploring uncertainty quan-



tification in LLM responses (Geng et al., 2023).
For white-box models, researcher have focused
on unsupervised methods including entropy (Ma-
linin and Gales, 2020), similarity (Fomicheva et al.,
2020; Lin et al., 2022), semantic (Kuhn et al., 2023;
Duan et al., 2023), and logits (Kadavath et al., 2022;
Chen et al., 2024), whereas for black models, the
uncertainty evaluation is based on multiple sam-
pled output of the LLMs (Malinin and Gales, 2020;
Lin et al., 2023; Manakul et al., 2023) However,
these works aim to improve the evaluation metrics
for LLM uncertainty while we focus on connecting
uncertainty with verbosity compensation behavior.

Optimisation of LLM API Calls Recently, re-
searchers have proposed to reduce the cost of lever-
aging a pool of LLMs (Wang et al., 2024) with a
cascade algorithm. FragulGPT (Chen et al., 2023)
use a cascade algorithm to visit LLMs from weak to
strong and use an LLM evaluator to judge if the re-
sponse is good enough to use (Madaan et al., 2023).
(Ramirez et al., 2024) leverage the uncertainty of
the prediction as the evaluator to evaluate both cas-
cading and routing structures. Similarly, (Gupta
et al., 2024) improve it by using token-level uncer-
tainty. Our work, by contrast, aims at mitigating
verbosity compensation which has not been ex-
plored before, and our evaluator is the verbosity of
the response in the cascade algorithm.

3 Verbosity Compensation

In this section, we first introduce the definition
and quantification of VC, and then we propose the
metrics for evaluating the correlation between ver-
bosity compensation and performance, uncertainty,
and alleviating it with LLM routing.

3.1 Verbosity Compensation of LLMs

We first formalize the task. A dataset D consists
of multiple data samples where each consists of
a source text x, a query ¢, and a ground truth y.
Since this is the first study, we mainly focus on
the samples where y mainly contains short phrases
for simplicity. A large language model LLM (x)
consumes the concatenation of x, ¢, and an instruc-
tion I to produce the response r. We use |r| to
represent the tokens in r. For instruction I, we al-
ways ask LLM to generate as concisely as possible
so that the model is instructed not to generate ver-
bose responses. Since the LLMs have maximum
context window sizes L., we truncate the source

to accommodate diverse context limits (details in
A3).

We define a response 7 to exhibit verbosity (we
use the term verbosity as an alias for VC, and con-
ciseness as an alias for Non-VC) if and only if
it contains redundant tokens compared with the
ground truth, since we assume the gold label to
be concise. To detect VC, we define the verbosity
compensation detector V' (z,y,r) (abbreviated as
the verbosity detector). Using this detector, VC
behavior for an LLM is defined as a triple (x, y, )
where V' (x,y,r) = 1 describes that the VC occurs
in the response r. To quantify the frequency of VC,
we define it as the ratio of VC responses in each

dataset 3, yep V (2,4, 7)/|D|.

3.2 Performance and Verbosity Compensation

A key bias of verbosity compensation is that the
performance of the verbose responses is different
from the concise ones. To quantify this behavior,
we propose two evaluation metrics. One is perfor-
mance difference (A), defined as the average score
of the concise responses minus the average score
of the verbose responses.

Y @yen(l = V(z,y,1)) x recall(y, r)
E(x,y)ep(l —V(z,y,r))
Z(w,y)eD V(z,y,r) x recall(y, )
> (@yep V(@ y,7)

A(D) =

where 7 is the response generated by LLM and
recall(y,r) is defined as |r N y|/|y|. This metric
computes the difference between concise and ver-
bose responses of a model over a dataset. If VC
has no influence on the performance, the A should
be 0. An LLM should show zero A because ver-
bosity and performance are naturally independent
and thus have no relation with each other. However,
if A is positive, then it demonstrates that verbosity
responses lead to the performance drop for this
model on the dataset, and vice versa. To remove
the influence of the length difference between ver-
bose and concise responses, we use recall as the
scoring function. Compared with precision or F1
scores, scores are higher for verbose responses (or
A will be smaller) because verbose responses usu-
ally contain more tokens than concise ones.

A main problem of A is that the recall differ-
ence between verbose and concise responses is
twisted by the absolute performance of the LLMs.
According to the definition, a dataset with lower
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Algorithm 1 Cascade Model Selection Algorithm.

Input: A list of LLMs M, A sample (z,y, ¢), instruction I,
a verbosity detector V().
Output: A response r.
order M by model capability from weak to strong
for LLM in M do
r+ LLM(z P ¢P L)
if V(x,y,r) is false then
break
end if
end for
return r

performance naturally has a smaller space for per-
formance difference. An extreme case is that the
performance is zero on a dataset and the maximum
A is zero as well. This impedes the fair comparison
between datasets and models because they have di-
verse absolute performances. Thus, we propose
relative performance difference

> (e recall(y, )
Z(u’tay)ED 1

0 can be seen as the A if the absolute performance
of the LLMs is scaled to the same number. We
use this to compare the influence of performance
across datasets and LLMs.

6(D) = A(D)/

3.3 Verbosity Compensation and Uncertainty

For humans, verbosity compensation usually hap-
pens when we feel uncertain about the answers.
Thus, for the LLMs, it is natural to speculate ver-
bosity compensation of LLMs is also related to the
uncertainty of the model. To test this hypothesis,
we evaluate the uncertainty of the LLMs with the
tool proposed by Fadeeva et al. (2023). First, we
split the samples according to the length of the re-
sponse |r|. Then, we quantify the uncertainty of
each split. For open-sourced models, we use per-
plexity (Fomicheva et al., 2020) for evaluation, and
for the close-sourced model, we use the sum of
eigenvalues (Lin et al., 2023) of the graph laplacian
as the metrics.

3.4 Alleviating Verbosity Compensation with
Cascade Model Selection

Although it is difficult to ask a single LLM to gen-
erate a concise but correct answer, the verbosity
compensation behavior can be mitigated by an en-
semble of multiple models. To this end, we propose
a Cascade Model Selection algorithm (CaSel) to
increase the chance of getting concise responses.
The algorithm is simple and straightforward (Al-
gorithm 1). Given a list of LLMs from weak to

strong, we first ask the weak model to generate a
response. At any time, if we detect V (z,y,r) = 1,
we stop the generation of the current sample and
redo the generation by a stronger model, and repeat
the process. With the power of diverse LLMs, the
algorithm can finally obtain a response with less
verbosity and better performance.

4 Experiment Setup

4.1 Datasets and Metrics

We include two types of datasets. 1) Knowledge-
based question answering which aims at extracting
knowledge from the given source text that is long
or in a particular position. These datasets include
Qasper (Shaham et al., 2022), LongBench (Bai
et al., 2023), NarrativeQA (Shaham et al., 2022),
and NaturalQuestions_30 (NQ30) (Liu et al.,
2024). and reasoning-based question answering.
More details for dataset construction can be found
in Appendix A.1. 2) Reasoning-based Question An-
swering, including a modified MMLU (Hendrycks
et al., 2021b,a) dataset. Metrics. We report recall
when measuring verbosity compensation behav-
ior and use F1 score for evaluation of the cascade
model performance (Bai et al., 2023).

4.2 Models

We use 14 LLMs in total across all experiments,
including both open-source and closed-source mod-
els in 6 families: GPT, Claude, Gemini, Llama,
Gemma, Mistral. Details are in Appendix A.2. For
each model, in addition to the prompt that intro-
duces the task, we also ask them to “generate as
concisely as possible, use a single phrase if pos-
sible”. Verbosity Detector. We assume that the
gold answer y is concise and clear so that we can
compare it with the predicted results to detect ver-
bosity. Specifically, we use an LLM as V' (z, y, 7).
We prompt GPT-3.5-Turbo with definitions and
demonstrations of verbosity, as well as the ques-
tion, prediction, and ground truth. The model needs
to generate a binary value showing whether the re-
sponse is verbose. To evaluate the effectiveness of
this detector, we manually annotate 100 samples
and compare them with model predictions. 93% of
the samples have the same label, demonstrating the
effectiveness of the LLM-based detector.

S Result and Analaysis

In this section, we analyze verbosity compensation
and its connection with performance and uncer-
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Figure 2: Frequency of Verbosity Compensation. All models exhibit intensive verbosity compensation behavior.
Among them, llama3-70b has the lowest frequency on average (Details in Appendix B.1).

tainty. Then, we evaluate the cascade algorithm.

5.1 Verbosity Compensation

Frequency of Verbosity Compensation Behav-
iors. Figure 2 shows the frequency of each model
on each dataset. As shown, all the models display
verbosity compensation behavior on all datasets.
On average, 74.19% of the responses are verbose
for mistral-7b. The best model is llama3-70b which
only contains 13.62% verbose responses. Further-
more, the frequency of VC averaged on seven open-
source models is 39.80% which is significantly
higher than closed-source models 28.96%.

Five Types of Verbosity Compensation Behav-
iors. After showing verbosity happens frequently
in LLMs, we further conduct a human annotation to
inspect verbose response patterns and classify them
into five types. Specifically, we choose six com-
binations of model and dataset (Table 1) and pick
out the samples with verbose responses that are
not fully correct (recall # 1, V(x,y,r) = 1). By
checking all these samples, we classify verbosity
compensation behavior into five types (Table 1):
Ambiguity indicates not answering precisely; re-
peating question indicates repeating the tokens in
the question or providing unrelated information;
enumerating shows answering multiple answers in
a row trying to cover the correct answer; verbose
detail/format means generating more detailed ex-
planations or format symbols. Then, we annotate
the verbosity compensation behaviors and obtain

statistics in diverse settings. As shown in Figure 3,
the ratio distribution of five types of behavior varies
across different models and datasets. Furthermore,
the main type of Gemini-1.5-flash is repeating ques-
tions on the MMLU dataset (67.86%), and enumer-
ating on the Qasper dataset (47.62%). In contrast,
llama-3-70b mainly produces verbose details on the
Qasper dataset (32.87%). This shows that different
datasets or models have a significantly different
distribution of the main type of verbosity behavior.

5.2 Verbosity Compensation and Performance

Verbose and concise responses exhibit signifi-
cantly different performance. As shown in Ta-
ble 2 and Table 3, the performance difference
(A # 0) exists on most of the datasets and
tasks, including both knowledge/reasoning-based
tasks. This demonstrates that when the model per-
forms verbosity compensation, the performance
also changes significantly (Supplementary experi-
ments in Appendix C.4, C.6). Among them, most
of the datasets and models show lower perfor-
mance on verbose samples (marked in red). For
instance, llama3-70b shows 24.7% performance
gap on Qasper dataset. However, all models cannot
disentangle performance with verbosity (A = 0),
highlighting the urgent need to disentangle ver-
bosity with veracity.

Correlation with Model Capability. We investi-
gate the influence of model capability on the per-
formance difference between verbose and concise
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Figure 3: Human annotation of five types of verbosity compensation behavior on five datasets. Different models and

datasets show diverse patterns of verbosity types.

Dataset Question Gold Model Prediction Type

Qasper What is the size of the dataset? 3029 It is very large Ambiguty

Longbench Which genus has more species, Dracula or Pistacia? Dracula Pistacia has more species Repeat

NarrativeQA ~ What costumes are the teenagers forced to wear? Bunny costumes Pig , donkey , rabbit Enumberate

NQ30 who ran the fastest 40 yard dash in the nfl Jakeem Grant Chris Johnson 4.24 seconds  Detail

NarrativeQA  What types of activities occur in ...? alleged phenomena “ Disappearances folklore ” Format

Table 1: Examples of five verbosity compensation types.
Short (Qasper) Medium (LongBench) Long (NarrativeQA)
L. concise verbose A Avg. concise verbose A Avg. concise verbose A Avg.

gemma-7b 4k 4524 4676 -1.52 46.51 36.04 18.37 | +17.67 30.74 15.39 6.70  +8.69 12.66
gemma-2-9b 8k  54.84 49.46  +5.38 5273 44.86 4351  +1.36 4450 2938 23.05 +6.33 26.81
gemma-2-27b 8k 5451 4826  +6.25 53.55 45.97 33.68  +12.30 43.41 32.17 30.86  +1.30 31.87
llama-3-8b 8k  54.36 5351 +0.85 53.99 36.18 29.00 +7.18 34.64  29.25 19.51  49.74 25.68
llama-3-70b 8k  52.86 28.74 49.80  49.98 3779  +12.19 48.76  34.30 2591  +8.39 32.06
mistral-7b 8k 63.23 44.84 © +18.39 56.42 54.03 37.04 | +16.99 46.13 27.60 2669 +091 2721
mixtral-8x7b 8k  64.12 50.03  +14.10 56.78 2.62 624  -3.61 340 3755 28.57  +8.98 33.09
gpt-3.5-turbo 16k 59.81 37.46 | +22.34 5477  53.88 47.02  +6.85 5221 39.41 27.35 +12.06 35.49
gpt-40 128k 63.80 44.07 | +19.72 58.43 68.83 63.53  +5.30 67.53 59.14 47.12  +12.02 53.25
claude-3-haiku 200k 61.30 56.01 +5.29 5854  53.02 57.88  -4.86 54.95 50.68 38.50 +12.18 46.13
claude-3.5-sonnet 200k  58.36 38.01 | +20.35 56.12  59.42 5736 +2.06 58.85 50.77 5629  -5.52  52.16
gemini-flash-1.5 Im 6252 41.64 | +20.88 56.00  59.32 58.02  +1.30 59.00 2.51 .12 +1.39 1.98
gemini-pro-1.0 32k 54.70 35.73 | +18.98 51.44 47.85 44.68  +3.18 47.06 22.43 32.40 -9.96 24.89
gemini-pro-1.5 2m 59.40 4579  +13.61 56.65 64.19 5575  +8.44 6297 36.26 41.74 -5.47  37.79
Avg 57.79 4431 1348 5441 48.30 42.13 6.17 46.73 33.35 28.99 436  31.50

Table 2: Overall recall comparison between verbose and concise responses. Bold/Underline indicate the largest
positive/negative performance gap between verbose and concise responses. The verbose responses obtain a
significantly different performance than the concise ones, demonstrating the strong relationship between verbosity

and performance.

responses 9. We explore two types of model capa-
bilities. One is general capability. We leverage the
scores on the leaderboard! (ELO) as the measure-
ment. The other one is the capability of consuming
lengthy input. For this, we investigate the influence
of the size of the window context. We define the
log context window size as log(L./1000) where
L. is the context window size.

Table 6 shows the correlation on five datasets.
Each number in the table is computed based on the
14 data points of 14 LLMs on the corresponding

"https://1lmarena.ai/

dataset. As shown, for Qasper, LongBench, and
NarrativeQA datasets, a strong negative correlation
is observed. This indicates that when modeling
capability increases, the J decreases accordingly.
In contrast, for MMLU and NQ30, no obvious
correlation is observed. The results show that train-
ing a stronger model will help avoid the influence
of VC on performance for long context questions
and answering tasks. However, it does not help
MMLU and NQ?30. In other words, simply training
a stronger model or extending context window can-
not successfully disentangle VC and performance.
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Lost-in-the-Middle (NQ30) MMLU (Mixed) All

L. concise verbose A Avg. concise verbose A Avg. A
gemma-7b 4k 4332 37.83 4549 4218 4459 4752 293 4530 548
gemma-2-9b 8k 55.82 45.18 +10.64 53.44 63.75 49.07 +14.68 61.67 7.68
gemma-2-27b 8k  54.84 4781 +7.04 5379  68.53 4581 | 422.72 | 6698  9.92
llama-3-8b 8k  49.55 41775 +7.80 47.92  54.65 4757 +7.08 5329 6.53
llama-3-70b 8k  52.08 5033  +1.75 5198  60.72 52.88  +7.85 59.92 10.86
mistral-7b 8k  52.89 4439  +8.51 48.81 64.43 46.25 | +18.18 54.55 12.59
mixtral-8x7b 8k 54.86 4992  +4.94 5284 6.10
gpt-3.5-turbo 16k 5390 4293 +10.98 5143  72.33 50.44 [ +21.89 69.56 14.83
gpt-4o 128k 63.28 52.30 +10.98 60.16 81.00 67.72  +13.29 79.21 12.26
claude-3-haiku 200k 61.17 48.95 +12.22 5494  61.95 6449 255 62.61 843
claude-3.5-sonnet 200k  57.22 5772 -050 5734  71.35 56.45 | 41490 6797 446
gemini-1.5-flash 1m 54.69 4770  +6.99 53.03 58.77 47.17 +11.60 56.60 6.26
gemini-1.0-pro 32k 5155 4575  +5.81 50.11 54.15 48.10 +6.06 52.58 4.81
gemini-1.5-pro 2m 57.06 46.29 +10.77 55.84 62.12 5445 +7.66 61.73  7.00
Avg 55.21 47.52 7.69 5299  63.61 5272 1090 6137 8.57

Table 3: Overall recall comparison between verbose and concise responses. Bold/Underline indicate the largest
positive/negative performance gap between verbose and concise responses. Similar to Table 2, the verbose responses
obtain a significantly different performance than the concise ones.

Verbosity compensation behavior of Chain-of-
Thought reasoning. We further conduct an ex-
periment to demonstrate VC also happens in Chain-
of-Thought (CoT) settings. To this end, we pick
100 samples from two datasets, including MMLU
and Qasper, and instruct the models to generate a
Chain-of-Thought prompt. Also, we ask the model
to generate as concisely as possible, where each
step contains fewer than 10 tokens. If any step
violates this constraint, we regard this response
as verbose. Thus, the verbosity evaluator V' is
setas 1 (\/,c, |s| > 10). Based on the definition,
we do not restrict the number of steps of Chain-of-
Thought reasoning; a short response can be verbose
as well if the length of a single step is too long.
Table 4 shows the comparison between the con-
cise and verbose responses of two models on
two datasets (Length statistics of responses in Ap-
pendix C.7). All settings display significant A.
For gpt-turbo-3.5, the recall gap can be as large
as 24.54% on MMLU dataset. This shows that
verbosity compensation can also happen in gen-
erating longer responses (Appendix C.2), such as
Chain-of-Thought reasoning samples.

5.3 Uncertainty and Verbosity Compensation

Uncertainty Evaluation. The results are shown
in Figure 4. As shown in the figure, all four mod-
els show larger uncertainty when the length of the
responses increases. Especially, when the length
is around three tokens, the uncertainty increases
shapely. These results demonstrate that 1) when

LLMs generate longer responses, they are more
uncertain about the sample, and 2) when verbosity
compensation happens (V(x,y,r) = 1), LLMs
usually are more uncertain about the sample than
generating concise results.

Uncertainty and Length of Response . We fur-
ther explore the reason why uncertainty and VC
are connected. We conduct a qualitative study and
plot the distribution of the softmax score of the first
tokens of confident and uncertain responses in Fig-
ure 1. As can be seen, for the uncertain response,
the probability distribution is more flattened, and
the tokens carrying much information do not stand
out (ranked high) among the candidates. The model
selects the one without critical information but is
safer to generate, repeating the question or being
off-topic and verbose. Besides, these tokens usu-
ally cannot end a sentence grammatically, such as
“Avergae” or “+”, the model needs to continue gen-
erations making the response longer.

5.4 Cascade Model Selection for Mitigating
Verbosity Compensation

Reducing Frequency of Verbosity Compensa-
tion. Table 5 shows the comparison of using the
proposed algorithm. As shown in the table, com-
paring the cascading algorithm and individual mod-
els, the frequency of VC decreases greatly for all
settings. For instance, Mistral — GPT decreases
the frequency from 63.81% (Mistral) and 31.79%
(GPT) to 16.60%. It worth noting that, applying the
algorithm greatly reduce the frequency of VC on
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Qasper

MMLU

L. concise verbose A

Avg. concise verbose A Avg.

gemma-2-9b 8k 35.82 2273 13.09 30.12 60.63 50.00 10.62 58.42
gpt-3.5-turbo 16k 69.05 47.81 21.24 61.06 80.95 56.41 2454 68.32

Table 4: Recall difference of Chain-of-Thought generation. Both models perform worse when they generate verbose
answers, demonstrating VC also happens on CoT settings.
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Figure 4: Uncentainty quantification of three open-sourced and one close-sourced models. The scores are averaged
across all five datasets. The uncertainty increases with the increasing length of the generated output for all models.

Qasper LongB NQA NQ30 MMLU Avg.

mistral-7b 63.81 5895 4140 46.59 57.40 74.19
gpt-40 31.79 2099 5040 28.78 15.00 29.39
mistral — gpt 16.60  14.48 21.00 18.54 10.20 16.16
llama3-8b 68.48 17.16 3298 23.17 20.60 32.48

claude-3.5-sonnet ~ 13.00  35.86 27.80 29.27 26.40 26.47
Illama — claude 820 11.80 14.60 11.71 7.80 10.82

gemma-2-9b 46.40 3519 5220 27.07 2240 36.65
gemini-pro-1.5 2240 19.15 2851 11.95 9.20 18.24
gemma — gemini 1580 11.14 1820  8.29 4.60 11.61

Table 5: Frequency of Verbosity Compensation using
diverse cascade models. A — B indicates combining
two models using a cascade algorithm. All settings
greatly reduce the frequency of VC compared with both
strong and weak models.

Dataset ELO LogLen
Qasper 0.09 -0.26
LongBench  -0.34 -0.53
NarrativeQA  -0.33 -0.61
MMLU -0.05 0.13
NQ14 0.06 0.02

Table 6: Correlation between model capability and §.
Details in Appendix B.3.

both weak model and strong models. We also com-
pare the latency of multiple LLMs in Appendix C.5.

Using Cascade Model Selection for LLM Rout-
ing. Inspired by the lower performance of the
more verbose responses (Appendix B.4), we mod-
ify the CasSel to form a model routing algorithm
(details in Appendix A.4). Figure 5 shows the per-
formance of the proposed algorithm. As shown,

Narrative_qa

® gemma-2-9b
gemini-1.5-pro

v Best Routing

—— Routing

0.41 Baseline

0.38

o 50 100 150 200 250 300

Figure 5: Routing performance of diverse models and
datasets. X-axis (unit 10~3 dollars per sample) is the
average cost. The Y-axis is the F-1 score averaged
across the samples on one dataset. Routing performance
(green line) is higher than the linear combination of the
baseline models (blue line).

the performance of routing is better than the base-
line (Appendix C.1). Furthermore, the routing re-
sults from Gemma-2 to Gemini-1.5 are better than
the individual performance of both models. This
indicates that the routing algorithm improves the
performance for all settings and can surpass the
performance of stronger models with less cost.

6 Conclusion

In this paper, we define VC and propose a compre-
hensive benchmark to evaluate 14 LLMs, revealing
they suffer significantly from five types of VC. We
conduct a rigorous analysis and connect VC to 1)
model performance and 2) model uncertainty, shed-
ding light on future applications and mitigation. We
propose a simple but effective cascade approach to
mitigate verbosity compensation in LLMs, and our
extensive experiments show it is highly effective.
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Ethics Statement

We include five datasets from the existing sources
which we do not annotate or incorporate external
resources. Thus, the dataset will not be harmful as
long as the datasets themselves keep high quality.
We also annotate some of the model-predicted re-
sults to classify the model results. However, the
annotation is a classification task that is free of
harmful content generation. Our work shows the
negative part of verbosity responses, however, we
do not mean verbosity is always unnecessary or
harmful. Sometimes it might be helpful for the
need of confirmation, or providing more context to
the users.

Limitations

In this paper, we mainly show the negative effects
of verbose responses on question-answering tasks.
However, recent research has shown that the model
can benefit from long reasoning chains (Guo et al.,
2025). In this case, it is difficult to judge whether
the long reasoning is verbose. Thus, future work
can extend the proposed settings to diverse long-
response scenarios and develop smarter verbosity
detection. Another limitation is the mitigation al-
gorithm requires multiple models to collaborate.
In the future, researchers can propose to use a sin-
gle model to mitigate VC, via fine-tuning or other
techniques.
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A Implementation Details

A.1 Details of Dataset Construction

The principles of constructing datasets are twofold.
First, the quality of samples needs to be high.
The questions are picked from existing human-
annotated datasets, with clear answers. We also
filter out Yes/No, True/False, or multi-choice ques-
tions to ensure the answer cannot be simply cho-
sen from a set of candidate answers. Second, the
dataset should be challenging enough for LLMs
with moderate performance levels. Otherwise, if
the performance is close to 100 percent, the model
is too certain about the answer and the phenom-
ena is difficult to observe. Noting that most of the
benchmark datasets LLMs already obtain perfor-
mance higher than 90%,

Knowledge-based question answering. Firstly,
we use long-context question-answering tasks
whose difficulty resides in picking out useful in-
formation across long context and gathering them
to answer the question. The distractor paragraphs
will also incorporate the difficulty of recognizing
the needed information. Specifically, we collect
the three long-form question-answering datasets
as our evaluation benchmark for long-context QA.
These datasets display three levels of lengths, in-
cluding short (Qasper), medium (LongBench),
and long (NarrativeQA). Qasper (Dasigi et al.,
2021) is a question-answering dataset over NLP
papers. It also contains extractive, abstractive,
yes/no, and unanswerable questions. The average
length of the source text is 4119.85 words. We also
incorporate three datasets from LongBench (Bai
et al., 2023) to form a new dataset. We directly
name it LongBench. It include HotpotQA (Yang
et al., 2018), MuSiQue (Trivedi et al., 2022), and
2WikiMultihopQA (Ho et al., 2020). The average
length of the source text is 9522.36 words. Narra-
tiveQA (Kocisky et al., 2018) is a QA dataset over
entire books or movie transcripts. The answers can
be abstract or extractive, yes/no, and unanswerable,
and the average length is 70340.45 words.

LLMs are proven to show difficulties in under-
standing the information in the middle of the con-
text (Liu et al., 2024), known as lost-in-the-middle.
We pick the most challenging split of the dataset in
the original work, where the gold answer is in the
middle of 30 documents for a QA pair in the Nat-
ural Question dataset. We call this NaturalQues-
tions_30 (NQ30). dataset. The average length of
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input of NQ30 is 3602.13.

Reasoning-based question answering We mod-
ify the multi-choice answering samples in
MMLU (Hendrycks et al., 2021b,a) so that the
options work as hints to the question. In this way,
the model needs to generate the answer based on
the hint rather than picking out the correct option,
increasing the difficulty because of the flexibility
of open-ended question answers.

For each dataset, we sample 600 instances from
them to form our datasets.

A.2 Details of Large Language Models

We include 2 models from Mistral AI>, among
them, mistral-7b is its first proposed dense model
while mixtral-8x7b enhances the 7b model by
incorporating a sparse mixture of experts. Gem-
ini (Team et al., 2023; Reid et al., 2024) is a family
of LLMs proposed by Google from which three
versions of LLMs are selected, including gemini-
pro-1.0, gemini-flash-1.5, and gemini-flash-1.5.
Built from the research and technology used to cre-
ate Gemini models, Gemma (Team et al., 2024a,b)
is a family of lightweight, open models. We include
gemma-7b, gemma-2-9b, and gemma-2-27b for
experiments. LlaMA 3 (Dubey et al., 2024) is a
family of LLMs with dense Transformer structure.
We include llama-3-8b and llama-3-70b for ex-
periments. Claude (Anthropic, 2024) is a family
of large language models developed by Anthropic.
We include two models in ascending order of ca-
pability: claude-3-haiku, claude-3.5-sonnet. We
also include two versions of GPT models?, includ-
ing gpt-3.5-turbo and gpt-40 in experiments.

During experiments, we use the default param-
eters of all 14 LLMs. We run gemma, llama,
and mistral models from Huggingface* on 8 A100
GPUs. For gpt, claude, and gemini models, we
run with the official API from the official website.
For all datasets, we use the same prompt shown in
Table 7. We design a reinforced prompt to ensure
LLM understands concise responses are required.
Thus, we reinforce the prompt by repetition, and
explanation, especially for the weaker models, mak-
ing a fairer comparison by avoiding failing to un-
derstand instructions. We evaluate the robustness
of VC against diverse prompts in Apendix C.3.

Zhttps://docs.mistral.ai/getting-started/
models/

3https://openai.com/

*https://huggingface.co/

A.3 Input Chunking Algorithm

Before we feed the input into the model, we first
chunk the source so that the model can consume
it. As shown in Algorithm 2, we first split the
source into sentences and fed as many sentences as
possible to LLMs.

Algorithm 2 Input Chunking Algorithm.

Input: Source input x, query ¢, LLM window size
k, instruction I,,,.
QOutput: A chunk c that LLM can consume.

Split the source x into sentences
{817527"' )Sn}

Initialize ¢ <— empty string

Initialize length budgets B <+ Lk —

count_token(q) — count_token(7y,).
for sin s{,s9,--- , 5, do
if count_token(c) + count_token(s) > B then
break
end if
¢ + cPs [/ @ indicates concatenating
two strings with a blank.
end for
return c

A4 LLM Routing Algorithm

Model routing aims to send the sample to the proper
model among a diverse collection of LLMs to gen-
erate the result so that under the same amount of
API cost, the performance is better than other base-
lines, such as randomly choosing which model
to use. We develop an LLM routing algorithm
by modifying the proposed model selection algo-
rithm. Different from model selection, we define
two numbers p. and p, as the possibility of se-
lecting a stronger model for concise and verbose
responses. In this way, the cost is controllable to
fulfill the diverse budget needs of users. It is worth
noting that V' (x, y, r) is not available because y is
not given in the routing setting. Thus, we propose
a heuristic to approximate gold V' (z, y, r). We first
sample 100 instances from the training set of the
original dataset and compute the average length of
the gold labels K. Then, we simply classify a re-
sponse as verbose if it contains more than R tokens,
represented as V' (z,y,r) = |r| > R. Algorithm 3
shows the pseudo-code of LLM Routing. Different
from the cascade algorithm for mitigating VC, this
algorithm contains two probabilities that are used
to control the budget of a single call. The algo-
rithm mimics the real cost by counting tokens in
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https://docs.mistral.ai/getting-started/models/
https://docs.mistral.ai/getting-started/models/
https://openai.com/
https://huggingface.co/

You are given an article and a question.

Answer the question as concisely as you can, using a single phrase if possible. Article:

{Source Documents}
Question:
{Question ¢}

Using a single phrase rather than a sentence.

Do not repeat any question-related information or explain the answer.

The answer is:

Table 7: Prompt of all models on all datasets.

the input and output, timing by the cost per token.
We collect the cost of each model from website?
and use it collected cost to ensure the fairness of
comparison. The full name of all models and the
price we use in LLLM routing algorithm is shown
in Table 8. We run each p,, p. setting ten times
and compute the average to obtain the green lines
and we run ten times that we randomly choose a
weaker or stronger model with different probabil-
ity to draw the blue line serving as the baseline.
Specifically, for the stars in each figure, p,, = 1 and
pe = 0, degenerate to the proposed model selection
algorithm.

Algorithm 3 Cascade Model Selection Algorithm
for LLM Routing.

Input: A list of LLMs M, A sample (z, y, q), instruction I,
a verbosity detector V (), possibility for routing on concise
responses p., possibility for routing on verbose responses
Do

Output: A response r.
order M by model capability from weak to strong
Set p. to 1 if p, # 1 {We ensure routing on verbose re-
sponses first. }
for LLM in M do

r« LLM(z @ ¢ P lv)
if V(x,y,r) is false then
prob <— A random number from O to 1
if prob > p. then
break {Do not route for concise responses with
1 — p. probability }
end if
else
prob <— A random number from O to 1
if prob > p, then
break {Do not route for verbose responses with
1 — p, probability}
end if
end if
end for
return r

Figure 6 shows the performance of the different
datasets with three routing settings: Mistral 7b
— GPT-40, Gemma?2 9b — Gemini-1.5-pro, and

Shttps://artificialanalysis.ai/models

LLaMA-3-8b — Claude-3.5-sonnet. As shown, the
performance of routing is better than the baselines
for all models, datasets, and settings. Furthermore,
the routing results from Gemma-2 to Gemini-1.5
are better than the individual performance of both
models.

B Details of Experimental Results

B.1 Frequency of Verbosity Compensation

Table 9 shows the detail numbers of frequency of
verbosity compensation behavior.

B.2 Uncertainty Verses Length

Table 10 shows some examples of verbose and
concise responses and the distribution of the first
token.

B.3 Model Capability and Relative Delta

Figure 7 plots the Correlation between model win-
dow size and 6, visualizing the negative correlation
score in Table 6. The models with the stronger ca-
pability to consume lengthy input obtain lower rela-
tive delta, indicating verbosity compensation is bet-
ter avoided. Also, the decreasing speed of the ten-
dency line ranks as follows: Long (NarrativeQA),
Medium (LongBench), and Short (Qasper). This
means that the effectiveness of the length capabil-
ity on disentangling verbosity and performance is
more significant when the task has a longer input.

B.4 Truncation Principle

We conducted an experiment on Qasper dataset
with llama-3-8b and found that When the response
is verbose, only keep the first 4 tokens, then stop
the generation. The recall only drops from 44.93%
to 43.13%. In other words, if the gold answer is
not in the first 4 tokens, then the model is not likely
to generate it in the rest of the tokens.
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Input Cost  Output Cost Model Full Name

mistral-7b 0.17 0.2  mistralai/Mistral-7B-Instruct-v0.3
mixtral-8x7b 0.24 0.24  mistralai/Mixtral-8x7B-Instruct-v0.1
Ilama3-8b 0.05 0.08 meta-llama/Meta-Llama-3-8B-Instruct
Ilama3-70b 0.59 0.79 meta-llama/Meta-Llama-3-70B-Instruct
gemma-7b 0.07 0.07 google/gemma-7b-it

gemma-2-27b 0.8 0.8 googlegemma-2-27b-it

gemma-2-9b 0.2 0.2 google/gemma-2-9b-it

claude-3-haiku 0.25 1.25 claude-3-haiku-20240307
claude-3.5-sonnet 3 15 claude-3-5-sonnet-20240620
gemini-flash-1.5 0.35 1.05 gemini-1.5-flash

gemini-pro-1.0 0.5 1.5 gemini-1.0-pro

gemini-pro-1.5 3.5 10.5 gemini-1.5-pro

gpt-3.5-turbo 0.5 1.5 gpt-3.5-turbo-0125

gpt-4o 5 15  gpt-40-2024-05-13

Table 8: The full name and the cost of tokens for each model. The unit of input/output cost is dollar per one million
tokens.

L Qasper LongB NQA NQ30 MMLU Avg.

mistral-7b 8k 63.81 5895 1420 46.59 5740 74.19
mixtral-8x7b 8k 66.37 438 57.80 66.40 66.40 5227
llama3-8b 8k 6848 17.16 3298 23.17 20.60 3248
llama3-70b 8k 13.84 10.03 2720  5.85 11.20 13.62
gemma-7b 4k 44.46  41.10 31.82 14.39 23.80 31.11
gemma-2-27b 8k 24.00 40.76 52.60 25.12 49.00 38.30
gemma-2-9b 8k 46.40  35.19 5220 27.07 2240 36.65

claude-3-haiku 200k  61.20 48.11 40.00 52.44 28.60 46.07
claude-3.5-sonnet 200k  13.00 3586 27.80 29.27 2640 2647
gemini-flash-1.5  Im 33.60 29.40 39.80 26.83 25.20 3097
gemini-pro-1.0 32k 2040 3142 27.20 29.51 30.80 27.87
gemini-pro-1.5 2m 2240 19.15 2851 11.95 9.20 18.24

gpt-3.5-turbo 16k 26.02  25.81 3238 23.90 10.60 23.74
gpt-4o 128k 31.79 2099 5040 28.78 15.00 29.39
Avg 3453 3171 44.11 3198 31.14 34.69

Table 9: Frequency of Verbosity Compensation. All models have verbosity compensation behavior. Among them,
llama3-70b has the lowest frequency on average.
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Figure 6: Routing performance of diverse models and datasets. X-axis (unit 10~ dollars) is the average cost of
running one sample. The Y-axis is the F-1 score averaged across the samples on one dataset. Routing performance
(green line) is higher than the linear combination of the baseline models (blue line) with all datasets and models.

C Supplementary Experiments

C.1 Comparison with Uncertainty-based
Routing Algorithm

We further conduct an analysis to compare the per-
formance of the proposed routing algorithm with
the uncertainty-based routing algorithm in addition
to the random baselines. For the uncertainty-based
routing algorithm, we first use perplexity as the
metric to rank the uncertainty of the responses gen-
erated by a small model. We select top K% uncer-
tain samples and replace them with the responses
generated by the larger model. We select K from
a set of {0, 10,20, ---,100} and connect them to
draw the curve in Figure 8. As can be seen, al-
though the uncertainty-based routing algorithm can
obtain a better performance than the random base-
line, it is still worse than the proposed algorithm
by comparing the AUC of the figure (Area Under
the Curve), demonstrating the effectiveness of the
proposed algorithm.

C.2  Verbosity Compensation in Trip Planning
Dataset

To further demonstrate that VC generally occurs
in diverse open-ended tasks with diverse response
lengths, we run a trip planning dataset from the
Natural-Plan benchmark (Zheng et al., 2024) using

two Llama-3 models and test VC frequency and
performance gaps. The task is to find the itinerary
regarding the order of visiting N cities. We ran-
domly select 500 data points from the dataset to
form our dataset. For the prompt design, we fol-
low the zero-shot prompt in the original paper and
add one sentence “Answer as concisely as possi-
ble, each step contains less than 10 words”. For
the verbosity detector follows our CoT setting:
V(z,y,7) = 1(V,cg|s| > 10). The results are
shown in Table 11. VC also occurs frequently in
trip planning, demonstrating the general presence
of VC in both short- and long-response open-ended
tasks.

C.3 Robustness of Verbosity Compensation
against Prompt Choices

As shown in Table 7 We design a reinforced prompt
to ensure LLM understands concise responses are
required. Thus, we reinforce the prompt by repe-
tition, explanation, etc., especially for the weaker
models, making a fairer comparison by avoiding
failing to understand instructions.

We further experiment with multiple possible
prompts to show VC is not overfitting to certain
prompt settings. We aim to show that as long as
the model knows to generate as concise as possible,
we can observe significant VC behaviors.
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Three Examples of Verbose Responses

Question What is the average length of the sentences?

Gold 15.5

Vanilla Average sentence length: 16.5 words

Distribution  [[’Average’, 0.47828879952430725], ', 0.29009681940078735], [’15°, 0.17595264315605164], ['9’,
0.034647125750780106], [average’, 0.021014543250203133]]

Question What were their accuracy results on the task?

Gold 97.32 %

Vanilla +7 % relative gain

Distribution  [[’+’, 0.39178282022476196], [*", 0.20970624685287476], ['7°, 0.1850651204586029], ['96’,
0.1850651204586029], ['97°, 0.028380654752254486]]

Question What'’s the size of the previous largest OpenlE dataset?

Gold 3,200 sentences

Vanilla “ 13 times larger ”

Distribution  [[*"’, 0.5911211967468262], [*13’, 0.3585331439971924], [’"L’, 0.02022705413401127], [’ Three’,
0.01785031333565712], [’3’, 0.012268329039216042]]

Three Examples of Concise Responses

Question What is the sample size of people used to measure user satisfaction?

Gold 34,432

Vanilla 34,432 users

Distribution  [[*34°, 0.9797704219818115], ['", 0.008476674556732178], [’ Thirty’, 0.006601640954613686], [ To-
tal’, 0.004004097543656826], [’Cor’, 0.0011471931356936693]]

Question Which news organisations are the headlines sourced from?

Gold BBC and CNN

Vanilla BBC and CNN

Distribution  [[’BBC’, 0.9247239232063293], [, 0.04062953218817711], ['"B’, 0.027924243360757828], ['B’,
0.003779135411605239], [’"C’, 0.0029431935399770737]]

Question which datasets did they experiment with?

Gold Europarl MultiUN

Vanilla Europarl MultiUN

Distribution  [["Eu’, 0.9808066487312317], [’Euro’, 0.009615491144359112], [* Europ’, 0.0074885510839521885],

[’",0.0014745831722393632], [’European’, 0.000614697695709765]]

Table 10: Distribution of the first token generated by llama-3-8b on Qasper dataset. When generating the verbose
responses, the model is uncertain about the gold answer. Thus, starting with some commonly seen tokens. In
contrast, the concise responses directly start with gold answers with high confidence.

concise verbose A Avg.  VC Freq.
llama-3-8b 15.18 362 1156 9.22 51.49
llama-3-70b 21.81 487 1694 19.63 12.87

Table 11: VC frequency and performance gaps on trip planning dataset.

Table 12 shows the performance gap on MMLU  C.4 Evaluation of Verbosity and Performance

and Qasper datasets using Llama-3-8b with differ-
ent prompt designs. As can be seen, compared with
the original prompt, the variation of the prompt can
also observe a significant A over both datasets.
This demonstrates the robustness of VC against the
choice of prompts. It is worth noting that, “Answer
as concise as possible” yields the highest scores
on two datasets, as well as the highest A, demon-
strating a simpler prompt with less constraint might
generate a larger performance gap between concise
and verbose responses.

on Same Test Instances

As shown in Table 2, and Table 3, the performance
of concise and verbose samples is based on the
split of the dataset. There is no overlap between
the samples in the concise and verbose split. To
prevent the influence of bias in different instances,
we conduct an analysis that fixes the test instances
and compares different models. Specifically, for
each instance, we calculated the ratio of LLMs
exhibiting VC behavior and reported the averaged
ratio across datasets in Table 13. This approach
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Figure 7: Correlation between model window size and ¢.

Results show that the model with a longer context window

shows less § on Qasper, LongBench, and NarrativeQA dataset.

MMLU Qasper
concise verbose A Avg. concise verbose A Avg.
Prompt in Table 7
58.4 4482 13.57 55.6 58.99 54.6 439 5598

Using a single phrase rather than a sentence.

55.13 4343 11.71 52.70 54.22 48.11 6.11 51.30
Answer as concise as possible.

68.04 50.26 17.78 61.07 70.17 60.44 9.73 63.63

Table 12: Comparison between original and other variations of the prompts. VC consistently occurs, demonstrating

the robustness of the VC against prompts.

concise verbose overall
Recall Support Recall Support A VC Freq. Avg. Recall
Qasper 61.85 2272 45.63 389 16.22 32.46 56.59
LongBench 50.31 1912 44.22 375  6.10 30.42 48.46
NarrativeQA  38.09 2540  31.67 355 642 36.29 35.76
MMLU 65.09 1694  51.47 475 13.62 24.20 61.79
NQ30 53.34 1516  44.89 362 845 26.41 51.10

Table 13: Overall recall comparison between verbose and concise responses. Each dataset contains the prediction

from all 14 LLMs.

also increases the robustness of our findings, as
the support (number of samples) for each dataset
is 14 times higher than when using a single model.
As shown in the table, the performance ¢ is still
pervasive for all five datasets. Specifically, on the
Qasper dataset, the A reaches 16.22%

C.5 Latency Comparison of CaSel Algorithm
and Individule Models

We conduct an analysis to compare the useless
token generated and the time cost of individual
models and the CaSel algorithm on two datasets
using Mistral-7b and GPT-40. To assess the
number of useless tokens generated, given a re-
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Qasper NarrativeQA
#Mistral # GPT #Total VCFreq. Infer. Time # Mistral #GPT #Total VCFreq. Infer. Time
Mistral-7b 663 N/A 663 63.81 0.80 596 N/A 596 41.40 1.22
GPT-40 N/A 207 207 31.79 1.27 N/A 327 327 50.40 14.86
Mistral — GPT 0 86 86 16.60 1.21 0 93 93 21.00 5.93

Table 14: Comparison of the number of generated useless tokens and inference time. # Mistral/GPT indicates the
number of useless tokens generated by Mistral-7b and GPT-40 on the dataset. # Total is the sum of # Mistal/GPT,
showing the total number of useless tokens. Infer. Time is the running time of the algorithm per sample (Unit:
second). CaSel (Mistral — GPT) generated the fewest number of useless tokens and maintained the lowest VC
frequency. The inference time is higher than the small model but still lower than the larger model.
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Figure 8: Routing performance of Mistral-7b to GPT-40.
X-axis (unit 10~3 dollars) is the average cost of running
one sample. The Y-axis is the F-1 score averaged across
the samples on one dataset. Routing performance (green
line) is higher than the random baseline models (blue
line) and uncertainty-based baseline (purple .

sponse r, we first define the useless tokens as the
part with longer than gold answer in response 7:
Zfil max (0, |r;| — |y|), where N is the number
of samples in a dataset. As shown in Table 14, with
our proposed cascade algorithm, the total inference
time might be higher than using a small model
(0.79 vs. 1.21 seconds per sample) and lower than
using a large model (14.86 vs. 5.93 seconds per
sample), but the number of useless tokens gener-
ated is much less. On the other hand, by using the
proposed algorithm, the useless tokens generated
decrease from 596/327 to 93, mitigating the VC

rate from 41.40% to 21.00% on the NarrativeQA
dataset, demonstrating that useless tokens greatly
decrease by using the proposed algorithm.

C.6 The Influence of the Digits in Responses

We analyze the performance and VC frequency
of the samples with and without numbers using
llama-3-8b on the Qasper and NarrativeQA dataset.
The results are shown in Table 15. Although the
model is easier to perform better on the sample
without numbers, the VC frequency is relatively
lower for the responses with digits. To understand
the reason, we further inspect the Qasper dataset,
we find that the samples with numbers are not as
open-ended as the ones without numbers, meaning
that the search space of the answers with numbers
is smaller. This leads to a lower VC frequency and
is easier to answer.

C.7 Response Length of Chain-of-Thought
Experiments

Our evaluation is not limited to short gold answers.
To demonstrate the generalization of the proposed
VC behavior, we run the experiments on Chain-of-
Though settings where the responses can contain
more than 300 words. Table 16 shows the statistics
of Chain-of-Thought experiments. The average
response length can reach more than 50 words, and
the VC behavior is still pervasive.
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Qasper NarrativeQA

concise verbose Avg. VCFreq. concise verbose Avg. VC Freq.

w/o digits 58.99 53.66 56.18 52.63 33.39 18.18 27.21 40.66
w/ digits 58.97 57.73 58.40 45.83 56.25 10.00 38.46 38.46

Table 15: Comparison between responses with digits and without digits. The responses with digits show lower
verbosity compensation frequency.

MMLU Qasper
VCFreq. MinLen. MaxLen. AvgLlen. VCFreq. MinLen. Max Len. AvgLen.
gpt-3.5-turbo 51.49 3 90 26.24 37.62 4 81 23.38
gemma-2-9b 20.79 9 107 27.92 43.56 18 103 37.08
llama-3-8b 43.56 15 333 57.14 44.15 20 185 50.15

Table 16: Lengths of the generated responses under chain-of-thought setting. The maximum length of the generated
results can reach more than 300 words demonstrating that VC occurs in long response settings.
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