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Abstract

This research aims to explore the intersection
of Large Language Models and confidence cal-
ibration in Entity Matching. To this end, we
perform an empirical study to compare baseline
RoBERTa confidences for an Entity Matching
task against confidences that are calibrated us-
ing Temperature Scaling, Monte Carlo Dropout
and Ensembles. We use the Abt-Buy, DBLP-
ACM, iTunes-Amazon and Company datasets.
The findings indicate that the proposed mod-
ified RoBERTa model exhibits a slight over-
confidence, with Expected Calibration Error
scores ranging from 0.0043 to 0.0552 across
datasets. We find that this overconfidence can
be mitigated using Temperature Scaling, reduc-
ing Expected Calibration Error scores by up to
23.83%.

1 Introduction

Entity Resolution (ER) can be defined as the task
of determining which data entries across differ-
ent data sources refer to the same real-world en-
tity. A key sub-task of ER is Entity Matching
(EM), which specifically addresses the binary clas-
sification problem of determining whether pairs
of data entries from different sources refer to the
same entity (Christophides et al., 2020). In today’s
data-driven era, EM plays a critical role in various
domains, including the medical field (Jaro, 1995;
Méray et al., 2007), where accurate matching can
improve patient care; the reconstruction of histor-
ical populations by linking birth, marriage, and
death records (Bloothooft et al., 2015); and law en-
forcement, where matching data entries is vital for
investigations and crime prevention (Dahlin et al.,
2012).

The state-of-the-art methods for performing EM
utilize Transformer-based architectures (Vaswani
et al., 2017), pre-trained Large Language Models
(LLMs) (Brunner and Stockinger, 2020; Li et al.,
2020; Peeters et al., 2020; Peeters and Bizer, 2021,
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Figure 1: Overview of this research’s model (without
any confidence calibration methods visualised), model
input and model output. In addition to classifying each
entry pair as a ‘match’ or ‘no match,’ the model also
generates a score that should reflect the model’s confi-
dence in its prediction.

2022, 2023, 2024), such as RoBERTa (Liu et al.,
2019) and GPT-4 (et al., 2024).

However, while these models are successful,
they have, in other Natural Language Processing
tasks, shown to struggle to accurately express their
confidence in predictions and can exhibit overconfi-
dence (Desai and Durrett, 2020; Jiang et al., 2021).
Ideally, a model provides information about its cer-
tainty alongside its predictions. For example, in a
binary EM task, a model would output a ‘match’ or
‘no match’ prediction label alongside a probability,
or confidence score, that is reliable. Refining mod-
els’ predicted confidence scores to ensure that they
accurately reflect the true likelihood of the predic-
tions is called confidence calibration. While the
topic of confidence calibration on LLMs has been
explored (Desai and Durrett, 2020; Sankararaman
et al., 2022; Chen and Li, 2024), the intersection of
confidence calibration, LLMs, and the application
of EM has not yet been researched. Yet, confidence
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calibration is important as it provides transparency
over models’ results (Ghahramani, 2015). For ex-
ample, the distribution of confidence in a model’s
EM predictions can give the user insights into the
model’s overall reliability in the task. Precise confi-
dence scores can also play a crucial role in guiding
subsequent tasks. Moreover, confidence scores can
be used to help researchers better understand a
model’s inner workings. Finally, they can help in
improving a model: when it is clear in what spe-
cific cases a model is uncertain, it is easier to see a
model’s weak points and with that, possible areas
for improvement.

Contributions. This paper aims to explore the
confidence calibration performance of LLMs in
EM and benchmark confidence calibration meth-
ods to enhance their performance. We focus on pre-
trained RoBERTa (Liu et al., 2019) as the LLM of
interest as it has a competitive performance among
LLM models for EM (Li et al., 2020; Peeters and
Bizer, 2021, 2024). In contrast to other state-of-
the-earth models for EM, RoBERTa is open-source
and lightweight. Our study assesses the confidence
calibration performance in EM using the Expected
Calibration Error (ECE) as the primary metric. We
evaluate fine-tuned RoBERTa model’s ECE scores
both with and without the use of confidence cal-
ibration methods and investigate which methods
yield the greatest improvement. Since confidence
calibration methods may influence the model’s pre-
dictions, we additionally examine their effect on
the F1 score to ensure that improved confidence
calibration does not come at the cost of classi-
fication performance. Furthermore, we analyze
confidence histograms, reliability diagrams, the
Maximum Calibration Error (MCE) and the Root
Mean Square Calibration Error (RMSCE). The con-
fidence calibration methods tested are Temperature
Scaling (Guo et al., 2017), Monte Carlo Dropout
(Gal and Ghahramani, 2016), and Ensembles (Lak-
shminarayanan et al., 2017). We use the Abt-Buy,
DBLP-ACM (dirty and structured) (Köpcke et al.,
2010), iTunes-Amazon (dirty and structured), and
Company (Konda et al., 2016) datasets, ensuring
diversity in terms of data content, size and struc-
ture.

Figure 1 presents an overview of the proposed
modified RoBERTa model used in this research.
As shown, the goal is to obtain confidence scores
that accurately reflect the model’s confidence in its
EM predictions. Confidence calibration methods
can help improve these scores.

2 Confidence Calibration

We say that a model is well-calibrated if its pre-
diction’s confidence scores accurately reflect the
probability of those predictions being correct. For
EM, for example, all pairs that are predicted to
match with around 0.5 to 0.6 confidence should
be actual matching pairs 50 to 60% of the time.
This is also referred to as the alignment between
the ‘predicted probability’ (the confidence) and the
‘empirical probability’ (Naeini et al., 2015; Guo
et al., 2017; Küppers et al., 2022). Generally, for
a binary classification task such as EM, the ‘confi-
dence’ signifies the confidence of a prediction be-
longing to the positive class (in the case of EM: a
‘match’). The predicted probability of the positive
class then needs to align with the empirical proba-
bility of the positive class. ‘High confidences’, in
this context, generally denote predicted probabili-
ties close to either 0 or 1, while ‘low confidences’
denote predicted probabilities close to 0.5.

The confidence calibration of models has been
evaluated by plotting confidence histograms and re-
liability diagrams, and by measuring the Expected
Calibration Error (ECE) (Naeini et al., 2015) or
similar metrics such as the Maximum Calibration
Error (MCE) (Naeini et al., 2015) and Root Mean
Square Calibration Error (RMSCE) (Kumar et al.,
2019). Intuitively, these scores measure the dif-
ference between the predicted probability and the
empirical probability, and should therefore be mini-
mized to optimize the confidence calibration. Com-
pared to the ECE, the MCE is useful in production
settings where reliable confidence measures are ab-
solutely necessary due to high risks. This is due to
its measure of the worst-case deviation between the
predicted probabilities and the empirical probabili-
ties. When comparing the ECE to the RMSCE, the
latter places a greater emphasis on larger errors.

3 Related Work

3.1 Large Language Models for Entity
Matching

Various pre-trained LLMs have shown state-of-the-
art results for EM tasks. Brunner and Stockinger
(2020), for example, analysed the performance of
four LLMs: BERT (Devlin et al., 2019), XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019)
and DistilBERT (Sanh et al., 2020), and found
an increase in F1 scores of up to 35.9% com-
pared to state-of-the-art non-LLM methods. Other
state-of-the-art results were presented by Li et al.
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(2020), who introduced DITTO: an EM system
that combines the use of LLMs such as BERT, Dis-
tilBERT and RoBERTa with various optimisation
techniques; and Peeters et al. (2020); Peeters and
Bizer (2021, 2022), who experimented with BERT
and RoBERTa-SupCon for EM in the product do-
main.

Decoder-only models have more recently caught
the attention in the field. Narayan et al. (2022)
compared GPT-3 against the DITTO system. The
performance of GPT-3 (Brown et al., 2020) using
few-shot learning was better than DITTO’s perfor-
mance for four out of seven datasets. In their pa-
per “Using ChatGPT for Entity Matching”, Peeters
and Bizer (2023) test the performance of ChatGPT
(GPT3.5) on an EM task using product data. They
find that though the results of ChatGPT on this
data is generally worse compared to the results of a
finetuned RoBERTa, it is beneficial that ChatGPT
does not necessarily require any finetuning, and,
thus, performs well on unseen data. Peeter and
Bizers’ study “Entity Matching using Large Lan-
guage Models” (Peeters and Bizer, 2024) shows
that GPT-4 (et al., 2024) especially performs well
in EM tasks.

3.1.1 Confidence Calibration of Large
Language Models

While in the early 2000s, simple neural networks
typically produced well-calibrated probabilities in
binary classification tasks (Niculescu-Mizil and
Caruana, 2005), recent studies have shown that this
is generally not the case for more modern neural
networks. In their 2017 paper “On the Calibration
of Modern Neural Networks” (Guo et al., 2017),
Guo et al. showed that state-of-the-art neural net-
works of that time (including ResNet (He et al.,
2016)), do not show a good confidence calibration
at all. The researchers also indicate that miscalibra-
tion worsens as the classification error is reduced.
Desai and Durrett (2020), as well as Xiao et al.
(2022) explored the confidence calibration of BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) in natural language inference, paraphrase de-
tection, sentiment analysis and commonsense rea-
soning tasks. While BERT and RoBERTa show less
miscalibration than the models that were evaluated
by Guo and colleagues, the confidence calibration
of the LLMs does show room for improvement. In
a study by Jiang et al. (2021), decoder-only LLMs
were also shown to be generally miscalibrated and
often overconfident (Jiang et al., 2021).

One of the reasons that LLMs do not seem to
produce well-calibrated predictions is that they are
not trained to do this as an explicit learning goal.
Instead, during training, these networks are encour-
aged to assign high confidences, in the form of
sigmoid scores, to the correct class, without regard
to nuances that prediction probabilities should ide-
ally have (Hendrycks and Gimpel, 2017).

However, various methods have been introduced
to improve the confidence calibration of LLMs.
These include Temperature Scaling (Guo et al.,
2017), Monte Carlo Dropout (Gal and Ghahramani,
2016) and Ensembles (Lakshminarayanan et al.,
2017).

4 Methods

4.1 Data

Six datasets are used in this study: Abt-
Buy, DBLP-ACM-Structured, DBLP-ACM-Dirty
(Köpcke et al., 2010), iTunes-Amazon-Structured,
iTunes-Amazon-Dirty, and Company (Konda et al.,
2016). For DBLP-ACM and iTunes-Amazon, the
structured and dirty versions of the datasets contain
the same entries, but for the dirty version, there is
a 50% chance that an attribute value is moved to a
different attribute. Table 1 presents the domains of
the datasets, as well as the number of pairs for each
dataset, for each split. In brackets is the percentage
of positive pairs.

4.2 Model

We use RoBERTa (Liu et al., 2019), pretrained
on English language, as target LLM for EM.
RoBERTa was one of the first LLMs to be used
for EM and performs among the best of all tested
non-decoder LLMs for EM, while not using any
additional optimisation techniques (Brunner and
Stockinger, 2020; Li et al., 2020). We utilise Hug-
gingface’s pre-trained RoBERTa base model1.

We adopt the setup by Li et al. (2020) to make
RoBERTa suitable for EM in the proposed datasets.
That is, a single fully connected layer and sig-
moid output layer are added after the final layer
of the pre-trained RoBERTa base model. These
two added layers, together with the RoBERTa base
model, constitute the EM model. The fully con-
nected layer’s parameters are randomly initialized.
The RoBERTa EM model is fed pairs of entries
and outputs whether or not the pairs of entries are

1https://huggingface.co/FacebookAI/roberta-base
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Dataset name Domain Training pairs Validation pairs Testing pairs
Abt-Buy Products 5743 (10.72%) 1916 (10.75%) 1916 (10.75%)
DBLP-ACM* Citations 7417 (17.96%) 2473 (17.96%) 2473 (17.96%)
iTunes-Amazon* Songs 321 (24.30%) 109 (27.78%) 109 (27.78%)
Company Companies 67 596 (24.94%) 22 533 (25.30%) 22 503 (25.06%)

Table 1: Overview of the dataset’s domains and data splits, along with the percentage of positive pairs per split
between brackets. *The splits and percentages are the same for both the structured and dirty versions.

predicted as a ‘match’ (label 1) or ‘no match’ (la-
bel 0). We adopt Li et al. (2020) method of data
serialization to convert structured EM data into se-
quences of text that can be fed to the RoBERTa
model. Hyper-parameters are also taken from the
paper of Li et al. (2020).

In order for the model to understand the task and
the data that it is given, fine-tuning is performed on
the RoBERTa base model along with the fully con-
nected and sigmoid layers using supervised training
with a binary cross-entropy loss

4.3 Confidence Calibration Methods
4.3.1 Temperature Scaling
Temperature Scaling was introduced by Guo et al.
(2017) as a single-parameter version of Platt Scal-
ing (Platt, 1999). The method is easy to realise and
understand, and is time-efficient and lightweight.
It has led to improvements in confidence calibra-
tion for both encoder-only and decoder-only LLMs
for sentiment analysis, natural language inference,
common sense reasoning, paraphrase detection,
and question-answering tasks. For some datasets
and tasks, the technique has resulted in ECEs that
are up to ten times smaller compared to those of
uncalibrated models (Guo et al., 2017; Desai and
Durrett, 2020; Jiang et al., 2021; Xiao et al., 2022).

4.3.2 Monte Carlo Dropout
Monte Carlo Dropout was introduced by Gal and
Ghahramani (2016) and applies dropout with prob-
ability p (Hinton et al., 2012) at inference time. It
has shown to, with its regularizing effect, improve
the confidence calibration of models in tasks such
as sentiment analysis, natural language inference,
commonsense reasoning, named entity recognition
and language modeling (Xiao and Wang, 2019;
Xiao et al., 2022).

In our implementation, dropout is applied to
the fully connected layer of the EM model. We
perform dropout for just this layer to make the
confidence calibration method implementation as
lightweight as possible.

4.3.3 Ensembles
Ensembles can be used for confidence calibration
by separately training multiple instances of a model
and using the mean probability outputs at inference
time (Lakshminarayanan et al., 2017). Through
their regularizing effect, Ensembles have shown
to improve the confidence calibration across vari-
ous tasks including sentiment analysis, natural lan-
guage inference and commonsense reasoning (Xiao
et al., 2022).

We apply Ensembles on the fully connected layer
and the sigmoid activation layer. In this way, we
minimize the number of times that entry pairs need
to pass through the RoBERTa base model.

4.3.4 Experimental Setup
First, the performance of the baseline RoBERTa
EM model is evaluated in terms of F1 score and
confidence calibration for all datasets. To this end,
we train and test on five independently randomly
initialized RoBERTa EM models. For each run, the
training data are shuffled. We adopt the number
of epochs specified in the code by Li et al. (2020)
for all datasets. This corresponds to 40 epochs.
The model checkpoint that generates the highest F1

score on the validation set is used for testing. The
sigmoid scores that the model produces for the test-
ing set are used as baseline predicted probabilities.

Secondly, Temperature Scaling, Monte Carlo
Dropout, and Ensembles are individually applied
and evaluated. They are compared against each
other and against the baseline.

In applying Temperature Scaling, we adopt the
approach by Mukhoti et al. (2020) to find the best
values for the temperature T . We use a similar ap-
proach to find the dropout value p for the Monte
Carlo Dropout method. For each dataset and exper-
iment run, T and p are determined by minimizing
the ECE on the validation set through a single pa-
rameter grid-search, while avoiding any decrease
in the F1 score.

For Temperature Scaling, we take, for each
trained RoBERTa model (i.e. one model per
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run per dataset), the sigmoid scores on the val-
idation set. These are scaled with temperatures
T ∈ {0.1, 0.2, 0.3, 0.4, ..., 9.9, 10.0}. Next, the
ECE is calculated over all of the scaled sigmoid
scores. For each dataset and run, the T is recorded
that results in the smallest ECE on the validation
set. Next, these values for T are used on the cor-
responding testing set sigmoid scores. The final
results consist of the temperatures and, most impor-
tantly, the ECEs of the test sets. Note that Temper-
ature Scaling does not change the F1 scores.

For Monte Carlo Dropout, we take
the best RoBERTa EM models from pre-
vious experiments for each dataset and
run, and apply Monte-Carlo Dropout with
p ∈ {0.05, 0.10, 0.15, 0.20, ..., 0.90, 0.95}. For
each dataset, experiment run and dropout value,
the model predicts over the validation set ten
times. The resulting sigmoid scores from these ten
sub-runs are averaged using the mean.

For all averaged sigmoid scores, the F1 score
and ECE are calculated. For each dataset and run,
the p is recorded that results in the smallest ECE on
the validation set, while maintaining an F1 score
not lower than the original score without dropout.
If all values of p decrease the F1 score, a dropout
value of 0.00 is recorded.

Next, for each dataset and run, these recorded
values for p are used while performing inference
on the corresponding test sets. Inference is per-
formed ten times for each dataset and run using
the recorded dropout probabilities. Afterwards, the
means of the resulting sigmoid scores are calcu-
lated, and the F1 scores and ECEs are computed
over these means.

For Ensembles, for each dataset and experiment
run, we randomly initialise the fully connected
layer weights five times. For each dataset and
experiment run, we then train, validate and test,
using these five differently initialised models. Af-
ter doing this, we compute the means over the five
ensemble runs’ test sets sigmoid scores. These av-
erage sigmoid scores are then used to derive the
final F1 scores and ECEs.

Evaluation for the baseline RoBERTa EM model
and the confidence calibration methods occurs in
terms of confidence histograms, reliability dia-
grams, F1 score, ECE, MCE, and RMSCE met-
rics, using a number of bins =

√
|D|, with D being

the dataset. A paired t-test is used to assess the
significance of differences between the baseline re-
sults for the Temperature Scaling and Monte Carlo

Dropout methods. An unpaired t-test is used to do
the same for the Ensembles method.

5 Results

Table 2 presents the mean F1 scores, ECEs, MCEs,
and RMSCEs of various confidence calibration
methods, over five runs, for all datasets. It also
presents the baseline confidence calibration using
the RoBERTa sigmoid scores without any confi-
dence calibration method applied.

Appendix A presents a more detailed overview
of the performance of the baseline RoBERTa model
in terms of F1 score, precision, recall and inference
time.

5.1 Baseline

We find that, for all datasets, the RoBERTa EM
model produces either very low or very high pre-
dicted probabilities, signifying a high overall con-
fidence (Appendix B). High confidence outputs
do not necessarily signify miscalibration. The
high baseline F1 scores in Table 2, especially for
the DBLP-ACM datasets, suggest that the model
makes few errors and can justifiably be confident in
its predictions. Still, however, we observe that the
model produces very high confidence levels even
for the datasets where the classification F1 scores
are around 90 or lower. Confidence histograms
that separately display the distributions of correct
and incorrect predictions for the datasets also sug-
gest a miscalibration. Two of these confidence his-
tograms are presented as examples in Figure 2. For
a well-calibrated pipeline, there should be minimal
overlap between the distributions of correct and
incorrect predictions in such histograms. Figure 2
shows that this is not the case.

As visible in Table 2, the baseline ECEs are
lowest for the DBLP-ACM datasets. These are
also the datasets for which the baseline RoBERTa
model achieves the highest F1 scores. The ECEs
are highest for the iTunes-Amazon, and Company
datasets. While the Company datasets’ ECEs may
in part be due to their challenging EM data, this
does not explain the iTunes-Amazon ECEs.

Since the ECE is a measure that is weighted by
the number of data points, it is most influenced
by the extreme prediction probabilities. After all,
these occur most often. The RMSCE is, compared
to the ECE, influenced more by large errors be-
tween the predicted probability and the empirical
probability. The reported values for this RMSCE
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Dataset ECE F1 MCE RMSCE
Baseline

Abt-Buy 0.0193 ± 0.0018 90.81 ± 0.85 0.9305 ± 0.0469 0.0558 ± 0.0032
DBLP-ACM-S 0.0041 ± 0.0010 98.78 ± 0.40 0.7800 ± 0.2900 0.0303 ± 0.0131
DBLP-ACM-D 0.0043 ± 0.0011 98.85 ± 0.18 0.6949 ± 0.1204 0.0287 ± 0.0104
iTunes-Amazon-S 0.0391 ± 0.0064 90.53 ± 1.64 0.3085 ± 0.2024 0.0506 ± 0.0113
iTunes-Amazon-D 0.0410 ± 0.0121 91.50 ± 1.90 0.3460 ± 0.2285 0.0683 ± 0.0181
Company 0.0552 ± 0.0099 82.75 ± 0.92 0.5449 ± 0.0855 0.0967 ± 0.0177

Temperature Scaling
Abt-Buy ↓0.0147 ± 0.0017 90.81 ± 0.85 ↓0.8539 ± 0.0882 ↑0.0632 ± 0.0046
DBLP-ACM-S ↓0.0036 ± 0.0011 98.78 ± 0.40 0.7580 ± 0.2031 0.0306 ± 0.0087
DBLP-ACM-D 0.0038 ± 0.0011 98.85 ± 0.18 0.7983 ± 0.2174 ↑0.0312 ± 0.0085
iTunes-Amazon-S ↓0.0352 ± 0.0118 90.53 ± 1.63 0.3394 ± 0.2089 0.0415 ± 0.0226
iTunes-Amazon-D 0.0377 ± 0.0102 91.50 ± 1.90 0.4036 ± 0.3247 0.0649 ± 0.0288
Company ↓0.0424 ± 0.0102 82.75 ± 0.92 0.4551 ± 0.1137 ↓0.0823 ± 0.0164

Monte Carlo Dropout
Abt-Buy 0.0193 ± 0.0016 ↓90.68 ± 0.92 0.9504 ± 0.0298 0.0574 ± 0.0037
DBLP-ACM-S 0.0038 ± 0.0010 98.83 ± 0.32 0.8716 ± 0.1538 0.0333 ± 0.0096
DBLP-ACM-D 0.0042 ± 0.0011 98.90 ± 0.21 0.7207 ± 0.1148 0.0286 ± 0.0096
iTunes-Amazon-S 0.0381 ± 0.0084 90.87 ± 1.37 0.3008 ± 0.1470 0.0495 ± 0.0096
iTunes-Amazon-D ↓0.0381 ± 0.0124 91.50 ± 1.90 0.4036 ± 0.3180 0.0718 ± 0.0235
Company 0.0543 ± 0.0085 82.75 ± 0.86 0.5137 ± 0.0928 0.0946 ± 0.0156

Ensembles
Abt-Buy ↓0.0173 ± 0.0005 90.78 ± 0.34 ↓0.8669 ± 0.0316 ↑0.0672 ± 0.0031
DBLP-ACM-S 0.0057 ± 0.0023 98.89 ± 0.20 0.7914 ± 0.2040 0.0370 ± 0.0096
DBLP-ACM-D 0.0052 ± 0.0007 ↓98.51 ± 0.15 ↑0.8557 ± 0.1063 ↑0.0439 ± 0.0026
iTunes-Amazon-S ↓0.0333 ± 0.0022 91.61 ± 0.95 ↑0.6869 ± 0.1421 ↑0.0948 ± 0.0176
iTunes-Amazon-D 0.0438 ± 0.0123 91.34 ± 2.52 ↑0.5904 ± 0.0296 ↑0.0950 ± 0.0143
Company * * * *

Table 2: The mean ECE, F1 score, MCE, and RMSCE results over five runs, for the confidence calibration methods
and for the baseline predictions, on all datasets, along with standard deviations. F1 scores are reported to two
decimal places. The other metrics are reported to four decimal places. Green cells signify that a result is better
compared to the result for the uncalibrated pipeline; red cells signify that a result is worse compared to the result
for the uncalibrated pipeline. Saturated colours indicate that the performance difference is significant (α = 0.05),
with arrows showing if the difference is negative or positive. *: Company dataset results were not gathered for the
Ensembles method due to computational constraints.

metric are consistently higher than the reported
ECEs. This is especially the case for the DBLP-
ACM, Company, and Abt-Buy datasets. The reli-
ability diagrams presented in Appendix C present
an explanation for the higher RMSCEs, showing
that there exist large errors between the predicted
probabilities and the empirical probabilities for all
datasets.

The MCE measures the maximum discrepancy
between predicted and empirical probabilities. Fig-
ure 5 in Appendix C shows that this difference is
large for most datasets, resulting in high MCEs.
However, these maximum discrepancies occur for
predicted probabilities with few data points, as the
figures in Appendix B show.

We find no correlation between the ECE, MCE,
or RMSCE metric values and the datasets’ F1

scores, sizes, or mean entry pair sizes.

5.2 Calibration Methods

5.2.1 Temperature Scaling
As Table 2 shows, for the Temperature Scal-
ing method, the ECE significantly decreases for
the Abt-Buy, DBLP-ACM-Structured, iTunes-
Amazon-Structured, and Company datasets when
compared to the baseline. For the other datasets,
the ECE decreases, but not significantly. The per-
centage decrease in ECE compared to the base-
line results across the public datasets ranges from
8.05% (for iTunes-Amazon-Dirty) to 23.83% (for
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(a) (b)

Figure 2: The mean confidence histograms over five runs for the Abt-Buy and Company datasets, using the baseline
RoBERTa model predictions, on a logarithmic scale. The distribution of correct prediction values are in green;
the distribution of incorrect prediction values are in red. The y-axis presents percentages of occurrences rather
than absolute numbers of occurrences. Error bars denote standard deviations. ECE, MCE, and RMSCE values
are reported to four decimal places. The same confidence histograms for the other four datasets are presented in
Appendix B.

Abt-Buy).
For the majority of datasets, however, the

changes in MCE and RMSCE are not significant.
This is likely because the temperature parameter
that is used for Temperature Scaling is optimised
using the ECE, and not the MCE or RMSCE. We
therefore suggest, for practical applications, to con-
sider whether to prioritize reducing the mean error,
larger errors, or the maximum error in calibration.
The temperature parameter can then be optimised
on respectively the ECE, RMSCE, or MCE.

Figure 6 in Appendix D shows that for every
dataset and run, there seems to be a clear optimum
in the temperature parameter value when optimis-
ing on the validation set. As shown in Table 4, the
optimal temperature values are typically greater
than 1.00. This means that the resulting sigmoid
scores are drawn closer to 0.5 compared to when no
temperature scaling is applied. This further demon-
strates that the baseline probability predictions of
the RoBERTa EM model tend to be overconfident.

5.2.2 Monte Carlo Dropout
For Monte Carlo Dropout, the ECE often decreases
compared to the baseline, though this difference is
almost always not significant. For Abt-Buy, Monte
Carlo Dropout leads to a significant decrease in the
F1 score.

Figure 7 in Appendix E shows that for none
of the trained models and datasets, there seems
to be a very clear optimal dropout probability pa-
rameter value when optimising on the validation

set. Only very high dropout values negatively im-
pact the ECE. The same pattern is observed in
Figure 8 of the Appendix E. This figure also sug-
gests that a considerable dropout probability can
be used on most datasets without weakening the
performance. Table 5 further demonstrates this,
as for most datasets, the optimal dropout proba-
bility lies between 0.5 and 1.0. For two datasets,
the optimal dropout probabilities are even above
0.8. Table 5 moreover shows that the mean opti-
mal dropout probabilities and standard deviations
can vary considerably among datasets, suggesting
a lack of generalisability for the dropout parameter.
On the other hand, again, Figure 7 shows that there
are no clear optima of the dropout probabilities per
dataset on the validation ECEs.

Monte Carlo Dropout causes no significant
changes in MCE or RMSCE. Like for Tempera-
ture Scaling, we suggest to optimise on the ECE,
RMSCE, or MCE depending on the desired confi-
dence calibration behaviour.

5.2.3 Ensembles
For the Ensembles calibration method, the ECE
decreases for the Abt-Buy and iTunes-Amazon-
Structured datasets. For the DBLP-ACM and
iTunes-Amazon-Dirty datasets, the change is not
significant. With regard to the F1 score, the results
are also often not significant, although the F1 score
for the DBLP-ACM-Dirty dataset does decrease
significantly.

Monte Carlo performs multiple sub-runs with
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dropout during inference. Ensembles train multiple
models using differently initialised weights. For
both methods, the predictions of respectively these
sub-runs and models are averaged and used as final
prediction probabilities. A possible reason for the
limited significant improvements in ECEs for the
Monte Carlo Dropout and Ensemble methods is
the similarity in the predictions of the sub-runs and
models. After all, the only difference in producing
these predictions is, for Monte Carlo Dropout, the
dropout in the final classification layer, or, for En-
sembles, the initialisation of this classification layer.
The inputs to this classification layer come from
the same pre-trained model checkpoint, resulting
in highly correlated sub-run or model predictions.
This strong correlation likely limits the effective-
ness of both Monte Carlo Dropout and Ensembles.
Xiao and colleagues also describe this drawback
for Ensembles (Xiao et al., 2022).

6 Conclusions

We compare the confidence calibration of base-
line RoBERTa probability predictions without any
use of confidence calibration methods, to the
confidence calibration using Temperature Scaling,
Monte Carlo Dropout and Ensembles as confidence
calibration methods for EM.

We find that the ECE performance and overall
confidence calibration performance for RoBERTa’s
performance on EM, without using any confidence
calibration methods, is reasonable, but often over-
confident, with ECE scores ranging from 0.0043 to
0.0552, leaving room for improvement.

We find Temperature Scaling to work best, com-
pared to Monte Carlo Dropout and Ensembles, in
improving a RoBERTa model’s ECEs for EM, re-
ducing ECE scores by up to 23.83%. This is a
simple method that can easily be implemented in
practical settings.

We find that neither Temperature Scaling, Monte
Carlo Dropout, nor Ensembles have consistently
significant effects on the F1 scores of the the
RoBERTa EM model.

Overall, the ECEs reported for the baseline
RoBERTa EM model results are slightly higher
than those reported for RoBERTa by Desai and Dur-
rett (Desai and Durrett, 2020) and slightly lower
to those reported for RoBERTa by Xiao and col-
leagues (Xiao et al., 2022). Both studies applied the
model to natural language processing tasks other
than EM. It would be interesting for future research

to investigate the cause of these differences in met-
ric values.

Another avenue for future research is to com-
bine confidence calibration methods for EM. For
example, Rahaman and Thiery (2021) found that
using Ensembles, and applying Temperature Scal-
ing to the averaged sigmoid scores can reduce ECE
scores by half compared to just using Ensembles,
on image classification tasks. Temperature Scaling
could be combined with Monte Carlo Dropout in
the same way.

Additionally, future work could leverage the in-
dividual variances in the sigmoid scores produced
by Monte Carlo Dropout and Ensembles. If these
variances are high, the confidence levels can be
lowered accordingly, potentially improving calibra-
tion. By incorporating variance-based adjustments,
it might be possible to create more reliable confi-
dence estimates and further enhance the overall per-
formance of the RoBERTa pipeline. Additionally,
entry pairs with large variances in their sigmoid
scores can be more closely analyzed to gain deeper
insights into the pipeline’s prediction patterns.

Limitations

Recent years have seen massive advances in
LLMs, yet this study focuses on a relatively small-
scale model compared to state-of-the-art architec-
tures. The academic community has extensively
researched derivatives of the BERT model, and
smaller models remain practical for deployment on
limited computational resources facilities. How-
ever, an important next step is to extend these
model calibration experiments to larger models
and evaluate their trustworthiness capabilities un-
der similar conditions.

It is worth noting that the ECE, MCE, and RM-
SCE metrics are not without limitations in accu-
rately capturing confidence calibration. To illus-
trate this, suppose there is an EM dataset with 50%
‘match’ labels and 50% ‘no-match’ labels. If a
model would only output predicted probabilities
of 0.5, the ECE, MCE and RMSCE would all be
zero, suggesting approximately perfect calibration.
Yet, the model’s predicted probabilities would be
entirely uninformative.

Acknowledgements

We would like to acknowledge that the research
presented in this paper was conducted while Iris
Kamsteeg, Gineke ten Holt and Floris Van Beers

127



were affiliated with WebIQ B.V., The Netherlands.
Also, we thank the Center for Information Tech-
nology of the University of Groningen for their
support and for providing access to the Hábrók
high performance computing cluster.

Broader Impact Statement

We recognize that while LLMs have proven to be
successful in EM tasks, these models also pose
risks. An example of this is the potential for bias
in LLM outputs, discussed in detail in the paper
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pre-trained on large amounts of data that reflect so-
cietal biases, these prejudices can be incorporated
into and potentially be amplified in EM predictions.
Moreover, LLMs operate as black-box models, pro-
viding little transparency on their decision-making
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A RoBERTa EM Performance

Table 3 presents the mean F1 score, precision, re-
call and inference time for the baseline RoBERTa
model.

B RoBERTa Confidence Histograms

The confidence histograms for all datasets, using
the baseline RoBERTa model predicted probabili-
ties and a number of bins =

√
|D|, are presented in

Figure 3.
Figure 4 shows confidence histograms that are

similar to those in Figure 3. Histograms are pre-
sented for all datasets, using the baseline RoBERTa
model predicted probabilities and a number of bins
=
√
|D|. For Figure 4, correct and incorrect pre-

dictions are plotted individually. Moreover, the
distribution of predicted values is plotted on a log-
arithmic scale, so that smaller effects are easier to
see. Confidence histograms for four out of the six
datasets are shown. The confidence histograms for
the Abt-Buy and Company datasets are presented
in Section 5.

C RoBERTa Reliability Diagrams

Figure 5 presents the mean reliability diagrams for
all datasets, using the baseline RoBERTa model
probability predictions and a number of bins, or
dots, =

√
|D|. When a dot is missing, this means

that there are no predictions within that predicted
probability bin. A diagonal line representing ap-
proximately perfect calibration is plotted as well.

D Detailed Temperature Scaling Results

Figure 6 presents the single parameter gridsearch
results for the temperature parameter on the valida-
tion sets, for all datasets.

The mean recorded temperature parameter val-
ues per dataset are shown in Table 4.

E Detailed Monte Carlo Dropout Results

Figure 7 and Figure 8 present the single parameter
gridsearch results for the dropout parameter on the
validation sets, for all datasets. Figure 7 specifically
reports the effect of the dropout probability value
on the ECE, while Figure 8 specifically reports the
effect of the dropout probability value on the F1

score.
The mean recorded dropout probability parame-

ter values per dataset are shown in Table 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The mean confidence histograms over five runs for all datasets, using the baseline RoBERTa model
predicted probabilities. The y-axis presents percentages of occurrences rather than absolute numbers of occurrences.
Error bars denote standard deviations. ECE, MCE, and RMSCE values are reported to four decimal places.
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(a) (b)

(c) (d)

Figure 4: The mean confidence histograms over five runs for the DBLP-ACM-Structured, DBLP-ACM-Dirty,
iTunes-Amazon-Structured and iTunes-Amazon-Dirty datasets, using the baseline RoBERTa model predictions, on
a logarithmic scale. The distribution of correct prediction values are in green; the distribution of incorrect prediction
values are in red. The y-axis presents percentages of occurrences rather than absolute numbers of occurrences. Error
bars denote standard deviations. ECE, MCE, and RMSCE values are reported to four decimal places.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The reliability diagrams using data from five runs for all datasets, using the baseline RoBERTA model
predictions. ECE, MCE, and RMSCE values are reported to four decimal digits. Note that for some of the datasets,
data is missing for certain predicted probability bins. This is because there were no predictions found within that
bin. A diagonal is plotted to represent approximately perfect calibration.
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Dataset F1 Precision Recall Inference time (ms)
Abt-Buy 90.81 ± 0.85 91.86 ± 0.55 89.81 ± 1.82 1.43 ± 0.01
DBLP-ACM-Structured 98.78 ± 0.40 98.83 ± 0.73 98.74 ± 0.12 2.04 ± 0.01
DBLP-ACM-Dirty 98.85 ± 0.18 98.88 ± 0.50 98.83 ± 0.25 2.06 ± 0.01
iTunes-Amazon-Structured 90.53 ± 1.64 93.22 ± 4.80 88.15 ± 1.66 0.32 ± 0.05
iTunes-Amazon-Dirty 91.50 ± 1.90 87.81 ± 2.83 95.56 ± 1.66 0.28 ± 0.07
Company 82.75 ± 0.92 82.20 ± 2.95 83.40 ± 1.53 2.51 ± 0.00

Table 3: The mean F1 score, precision, recall, and inference time (in milliseconds) for the RoBERTa EM model for
all datasets, along with the standard deviations. Metrics are taken over five randomly initialised runs and reported to
two decimal places.

Dataset Temperature
Abt-Buy 2.24 ± 0.47
DBLP-ACM-S 0.88 ± 0.50
DBLP-ACM-D 1.00 ± 0.67
iTunes-Amazon-S 1.74 ± 0.55
iTunes-Amazon-D 1.64 ± 0.91
Company 1.72 ± 0.51

Table 4: The mean temperature parameter value results, taken over five runs, for all datasets, along with the standard
deviations. Values are reported to two decimal digits.

Dataset Dropout probability
Abt-Buy 0.39 ± 0.22
DBLP-ACM-S 0.58 ± 0.40
DBLP-ACM-D 0.56 ± 0.35
iTunes-Amazon-S 0.85 ± 0.12
iTunes-Amazon-D 0.91 ± 0.07
Company 0.50 ± 0.35

Table 5: The mean dropout probability parameter value results, taken over five runs, for all datasets, using the
RoBERTa model, along with the standard deviations. Values are reported to two decimal digits.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: The effect of the temperature parameter on the ECE for the validation set, for all datasets. Each line
denotes one run. Note that the y-axis differs per plot.
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Figure 7: The effect of the dropout probability parameter on the ECE for the validation set, for all datasets. Each
line denotes one run. Note that the y-axis differs per plot.
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Figure 8: The effect of the dropout probability parameter on the F1 score for the validation set, for all datasets. Each
line denotes one run. Note that the y-axis differs per plot.
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