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Abstract
Pixel-based language models aim to solve the
vocabulary bottleneck problem in language
modeling, but the challenge of uncertainty
quantification remains open. The novelty of
this work consists of analysing uncertainty
and confidence in pixel-based language mod-
els across 18 languages and 7 scripts, all part
of 3 semantically challenging tasks. This
is achieved through several methods such as
Monte Carlo Dropout, Transformer Attention,
and Ensemble Learning. The results suggest
that pixel-based models underestimate uncer-
tainty when reconstructing patches. The un-
certainty is also influenced by the script, with
Latin languages displaying lower uncertainty.
The findings on ensemble learning show bet-
ter performance when applying hyperparameter
tuning during the named entity recognition and
question-answering tasks across 16 languages.

1 Introduction

After the release of ChatGPT in 2022, the number
of papers published every day on the topic of Large
Language Models (LLMs) has increased more than
20-fold (Zhao et al., 2023). The number of param-
eters in these models jumped from 340 millions
in implementations such as BERT (Devlin et al.,
2018) to billions of parameters in models like GPT-
3 (Brown et al., 2020) or LLaMA (Touvron et al.,
2023). Despite their obvious popularity, one of
the central limitations of LLMs remains their un-
certainty and lack of trustworthiness (Huang et al.,
2024). As these models are being applied more and
more to high-stakes scenarios, such as medicine
(Busch et al., 2025) or security (Gawlikowski et al.,
2023), it is critical that their predictions can be
trusted. Generally, the research on the explain-
ability and interpretability of LLMs is focused on
traditional tokenizer-based methods, that split text
into smaller units. They produce overconfident
responses even when the predictions are likely in-
correct (Xiong et al., 2023).

English Text Reconstruction
(PIXEL)

Multilingual Text Reconstruction with
Uncertainty (ours)

Figure 1.1: Example of text reconstruction using the
PIXEL model from Rust et al. (2022), and text recon-
struction with uncertainty for different languages.

For semantic NLP tasks such as extractive ques-
tion answering (QA), it is common to use models
that predict the start and end tokens of an answer
span and provide confidence scores based on the
softmax probabilities of these predictions (Devlin
et al., 2018; Lan et al., 2019). However, this ap-
proach offers no measure to quantify the uncer-
tainty of the prediction. Several works have been
proposed in the past years to solve this problem
(Xiao et al., 2022; Lin et al., 2023). Common solu-
tions include incorporating uncertainty directly into
the model using Bayesian Neural Networks (BNN)
(Blundell et al., 2015) or post-hoc methods such as
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Monte Carlo Dropout (Gal and Ghahramani, 2016),
Temperature Scaling (Guo et al., 2017) and En-
semble Learning (Lakshminarayanan et al., 2017).
However, these approaches have not been studied
in the context of more recent pixel-based models
that use visual representations of words, as opposed
to text representations.

The Pixel based Encoder of Language or PIXEL
proposed by (Rust et al., 2022) aims to transform
language modeling into a visual recognition task
with the help of small and square clusters of pix-
els, called patches. PIXEL does not rely on a
predefined vocabulary and it is trained to recon-
struct missing patches of text, by following a Vision
Transformer – Masked Autoencoder (ViT-MAE)
architecture. The Vision Transformer (ViT) uses
linear embeddings of fixed-sized patches of pix-
els which are encoded using a transformer. In the
context of computer vision, masked image encod-
ing works similarly to masked language modeling
(MLM), by masking regions of an image and then
learning to reconstruct the whole image.

PIXEL was pretrained on rendered versions of
the Wikipedia and BookCorpus datasets and it is
evaluated on 32 topologically diverse languages,
across 14 scripts. Supporting multiple languages
requires a larger vocabulary to cover diverse lin-
guistic features and scripts, which is often imprac-
tical within the constraints of a fixed vocabulary
size. Wu and Dredze (2019) noted that multilingual
models struggle with resource allocation across lan-
guages, leading to suboptimal performance in less
represented languages, during tasks like named
entity recognition, part-of-speech tagging, and de-
pendency parsing. Furthermore, imbalanced vo-
cabulary representation can exacerbate biases, re-
sulting in unfair treatment of certain languages
(Wan, 2021). The trade-off in vocabulary alloca-
tion means that models either inadequately repre
sent some languages or become too large in size
and computational requirements.

The main aim is to study uncertainty in pixel-
based language models focusing on semantic tasks.
Given the challenging nature of semantic process-
ing and the fewer studies dedicated to it, this re-
search will center on finetuning models to solve
tasks like named entity recognition, sequence clas-
sification, and question answering. Solving the vo-
cabulary bottleneck of traditional language models
which rely on a close vocabulary can be achieved
by using pixel-based models which do not require
a fixed vocabulary. Finally, to tackle the uncer-

tainty problem, this work will make use of existing
techniques for quantifying uncertainty, and apply
them to pixel-based models, which also represent
the biggest novelty of this study. This includes
uncertainty quantification at the pixel level using
Monte Carlo methods (Figure 1.1), ensemble learn-
ing applied to models finetuned on three semantic
tasks across 19 languages, but also an analysis of
the attention mechanism.

2 State of the Art

The first study to use visual features of text in or-
der to create embeddings was applied to Chinese
and used linearizing bitmaps of characters or words
(Aldón Mínguez et al., 2016). By using shared char-
acter components from Chinese or Korean, it be-
comes easier to generalize to new and less frequent
characters. Different studies (Dai and Cai, 2017;
Sun et al., 2018; Salesky et al., 2021) used ren-
dering techniques to obtain images of text. In this
context, text rendering involves converting charac-
ter codes into glyph indices, which are then used
to generate the corresponding glyph images, while
applying various styles, fonts, sizes, and colors. A
glyph often contains one character only, but it can
also represent accents or multiple characters in lan-
guages where ligatures are common, like Arabic.
Dai and Cai (2017) used text rendering in Chinese,
Japanese, and Korean, and extracted visual features
from a Convolutional Neural Network (CNN) to
perform text classification. Similarly, Sun et al.
(2018) applied convolutions to squared rendered
images to perform sentiment analysis in Chinese
and English.

In the context of machine translation, Salesky
et al. (2021) suggested a very robust approach
based on a variation of the ViT. The training data is
rendered into gray-scale images using the Pygame
backend and a slicing window is applied to create
patches, which act as tokens. Then, a 2D convolu-
tional block followed by linear projection is used
to create embeddings, which serve as input for the
transformer encoder. The translation happens di-
rectly from pixel representations, without any word
preprocessing. After training on seven language
pairs, the approach matches the performance of
traditional language models, with additional advan-
tages. It is more robust to character permutations
or substitutions, and it does not rely on text prepro-
cessing steps, such as tokenization or segmentation.

As of to date, systematic investigations into the
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uncertainty and calibration of pixel-based language
models remain limited. Rust et al. (2022) showed
that PIXEL is robust when it comes to character-
level perturbations and code-switching. In this anal-
ysis, relevancy heatmaps were used to depict visual
explanations of correct predictions, and there is evi-
dence to suggest that these outputs are interpretable
when identifying contradictions and entailment re-
lationships. However, during semantic tasks like
named entity recognition, sequence classification,
and question answering, PIXEL is struggling to
retain semantic knowledge and transfer it across
scripts. Reasons for this might include a lack of
multilingual pretraining, as well as a limited ability
to capture contextual information due to the use
of unigram patch embeddings. While raw perfor-
mance is desirable, it is crucial to have models that
are reliable and explainable.

3 Methods

3.1 Data

MasakhaNER 1.0 MasakhaNER 1.0 (Adelani
et al., 2021) is a Named Entity Recognition (NER)
benchmark, which includes data from 10 African
Languages obtained from local news sources
(Amharic, Hausa, Igbo, Kinyarwanda, Luganda,
Luo, Nigerian-Pidgin, Swahili, Wolof and Yorùbá),
as well as the ConLL-2003 English dataset. The
task involves classifying named entities into nine
pre-defined categories. The MasakhaNER dataset
contains labeled entities for each language.

GLUE The Sequence Classification (SC) task
relies on the The General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018). It involves nine sentence-level understand-
ing tasks (CoLA, SST-2, MRPC, QQP, STS-B
MNLI-M/MM, QNLI, RTE, WNLI) in English,
across three categories: single-sentence tasks, simi-
larity and paraphrase tasks, and inference tasks.

TyDiQA-GoldP To assess the ability of the
model to perform Question Answering (QA), the
TyDiQA-GoldP dataset was selected (Clark et al.,
2020). It contains nine typologically diverse lan-
guages (English, Arabic, Bengali, Finnish, Indone-
sian, Korean, Russian, Swahili, Telugu). The
dataset contains questions written by native speak-
ers, passages with relevant information, and an-
swers provided as short spans of text within the
passage. Unlike the primary task, the Gold Passage
task focuses more on locating the exact answer
within a given context.

3.2 Model Architecture

PIXEL processes text as images that are rendered
using the PyGame1 renderer to accommodate mul-
tiple scripts. Each rendered image is converted
into a sequence of patches, resulting in 529 non-
overlapping patches, with a size of 16∗16 pixels. A
ViT-based encoder encodes visible patches and the
CLS tokens through patch, positional, and CLS em-
beddings. During pretraining, the system applies
random masking to 25% of the patches and em-
ploys a decoder to reconstruct the masked regions
through a regression-like method. The decoder
is then finetuned on downstream tasks by replac-
ing the reconstruction objective with task-specific
heads.

The English PIXEL which serves as a base for
the experiments described in the next section is pre-
trained on a rendered version of English Wikipedia
and BookCorpus (Zhu et al., 2015). For more de-
tails about the PIXEL pretraining routine, refer to
the implementation2 of Rust et al. (2022).

3.3 Uncertainty Quantification

Monte Carlo Uncertainty The first method used
to quantify epistemic uncertainty at the patch level
is Monte Carlo (MC) Dropout. The input is a ren-
dered image ∈ R16×16×3 with a sequence length
of 256 pixels, and the goal is to obtain an uncer-
tainty map U ∈ R16×16×3, containing the uncer-
tainty for each patch. For this, the model is used in
100 forward passes to compute a series of predic-
tions P , which contain per-pixel logits. Then, the
mean prediction is created by averaging these log-
its, resulting in the reconstructed text. A standard
deviation (SD) image is obtained by computing
the SDs of the predictions for each pixel. Since
each patch has a dimension of 16× 16 pixels, the
per-patch uncertainty is defined by averaging the
predictions of all SD values inside a patch, and
each pixel inside the patch is assigned that value.
Finally, the uncertainty map U is a collection of
patches representing the overall uncertainty of its
pixels. For visualization purposes, the uncertainty
map is overlaid on top of the original image, as well
as on the reconstructed text. An overview of this
routine is presented in Algorithm 1 of Appendix C.

An overall mean uncertainty value (σ̄) is also
computed to measure uncertainty at the image level
(Equation 3.1), where H and W refer to the height

1https://www.pygame.org/
2https://github.com/xplip/pixel
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(a) Original rendered text using the
PyGame renderer.

(b) Original image with uncer-
tainty.

(c) Reconstructed text with uncer-
tainty.

Figure 2.1: Example of uncertainty quantification at the patch level for an image containing text from the introduction
of this paper. Brighter colors indicate more uncertainty.

and width of the image.

σ̄ =
1

H ×W

H∑

h=1

W∑

w=1

σ(h,w) (3.1)

Additionally, we compute two loss functions
during the MC inference: the normalized MSE
loss (Equation 3.2) used during pretraining and
the normalized Gaussian Negative Log-Likelihood
(GNLL) loss (Equation 3.3), where eps = 1e− 6
is a clamp value used for stability. Unlike the MSE,
the GNLL loss accounts for epistemic uncertainty,
by incorporating the variance of the predicted dis-
tribution.

MSE =
1

H ×W
(pred− img)2 (3.2)

GNLL = log(max(var, eps)) +
(pred− img)2

max(var, eps)
(3.3)

We study uncertainty across tasks: NER
(MasakhaNER 1.0), SC (GLUE), and QA
(TyDiQA-GoldP), and scripts – as one of the main
challenges in NLP is building reliable models that
can scale up to real-world applications where many
scripts are often encountered. Additionally, we
carry out a calibration analysis to examine the re-
lationship between model performance and uncer-
tainty across tasks. The performance is measured
using Root Mean Square Error (RMSE =

√
MSE,

Equation 3.2), while uncertainty is quantified using
MC standard deviation. The goal is to evaluate how

well the predicted uncertainty values align with ac-
tual performance errors across the different scripts
and languages.

Attention Visualization To visualize attention
in the PIXEL encoder, a square attention grid
A ∈ RL×H×Npatches

2
is created for the encoded

patches, where L is the number of attention lay-
ers and H is the number of heads in each layer.
An example is presented in Figure 3.1. This shows
model-level attention across all layers and heads for
a particular input image. Each cell A(l, h) in this
grid visualizes the neuron-level attention weights
for a specific head h and layer l. Then, each patch
in the attention cell attends to the other patches in
the sequence according to the dot product between
the query (of the attender patch) and the key (of
the attended patch). The weights are averaged over
100 Monte Carlo forward passes. Considering the
increased dimensionality of the attention cell, only
the first 16 patches are visualized, resulting in an
image with 16× 16 patches.

Ensemble Learning To solve the Extractive
Question-Answering task, four learner models
are finetuned on each of the 9 languages of the
TyDiQA-GoldP (Section 3.1) dataset, resulting in
36 total models. Each model is trained on the
train split of a language in the dataset and evalu-
ated on the validation split of the same language.
There are four main steps to be followed to com-
pute the final prediction for an input question. In
a regular non-ensemble setting, there is only one
finetuned model that dictates the output answer for
each example. In the ensemble learning framework,
each model Mi is applied to the input question q to
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CLS

CLS

                            INPUT:
 "Alchemy (from Arabic: al-kīmiyā; from"

Layer 2, Head 3

Attention Grid

Figure 3.1: Model-level (attention grid) and neuron-
level (layer 2, head 3) views of attention in the PIXEL
model for a short input text from the English Wikipedia.
The attention grid contains 12 attention layers with 12
attention heads each.

obtain the candidate answers with corresponding
confidence probability values. To reduce the pool
of candidates, only the predictions that appear in
all models are kept. The average confidence confc
is computed for each candidate across all models.
Finally, the candidate with the highest confidence
is selected.

In the Named Entity Recognition task, five
learner models are finetuned on each of the 10 lan-
guages of the MasakhaNER 1.0 dataset (Adelani
et al., 2021), resulting in 50 total models. Each
model is trained on the train split of a language
in the dataset and evaluated on the test split of the
same language. The task involves assigning a label
to each token from a list of 9 predefined classes.
Their predicted logits are averaged and combined
into one value for each class. The final label is
computed as shown in Equation 3.4, where L is
the set of labels (classes) and k is the number of
models.

label = argmax
l∈L

(
1

k

k∑

i=1

logitsi,l

)
(3.4)

During the ensemble experiment, only the values
of the batch size (BSZ), learning rate (LR), dropout
probability (DP), and the seed are changed. For
more details about the finetuning configuration and
routine, refer to Tables C.3 and C.2.

4 Results

4.1 Monte Carlo Uncertainty
Uncertainty Across Datasets The distribution of
MC uncertainty is presented in Figure 4.1 (left),
suggesting that GLUE achieves the highest overall
uncertainty, which indicates that pixel-level uncer-
tainty increases with text that has more semantic

complexity, as it is the case in sentiment classifi-
cation, semantic similarity or textual entailment
tasks.

In terms of the mask ratio R, the plot indicates
that lower values (0.1 to 0.3) generally correspond
to lower uncertainty across all datasets, hinting that
less masking leads to more certain predictions. In
this case, the largest part of the data is concentrated
between uncertainty values of 0.15 and 0.25. As
the mask ratio increases, the distribution becomes
more spread out.

The results from Figure 4.2 (left) indicate that
the loss increases with the mask ratio. This is
expected as the model was trained to reconstruct
the image patches with a mask ratio of R = 0.25.
There is also a wide performance gap between the
sequence classification task (GLUE) and the rest
of the tasks, which can be attributed to language.
The GLUE dataset contains English text, the lan-
guage the PIXEL model was pretrained on, while
TyDiQA-GoldP and MasakhaNER are multilingual
datasets.

Uncertainty Across Scripts The overall trends
(right) show that Ge’ez, Chinese Characters, Ara-
bic, and Korean scripts exhibit high uncertainty
(Figure 4.1, right) and high mean loss (Figure 4.2,
right), and the increase is more pronounced at mask
ratios above 0.6. The Latin and Cyrillic scripts are
increasing more gradually with a sharper uptick
around 0.8 – 0.9. The main script found in the
pre-training datasets (English Wikipedia and the
BookCorpus) is Latin, and there is a high overlap
between Latin and Cyrillic characters, given that
both scripts share Greek as a common ancestor.
However, the uncertainty in the Cyrillic script is
lower, compared to Latin. The scripts with the high-
est MC uncertainty are Ge’ez and Chinese Charac-
ters, both of which are visually quite distinct from
the Latin script.

Calibration Analysis To further study the re-
lationship between performance and uncertainty,
Figure 4.3 depicts a hexbin plot with marginal dis-
tributions, where the Root Mean Squared Error
(RMSE) loss is plotted against the SD uncertainty
from the MC experiments. The x-axis represents
the aggregated per-image standard deviation (uncer-
tainty) of the model after 100 Monte Carlo samples.
The RMSE measures the average of the actual er-
rors between the true pixel values and the predicted
values. Inside each hexagon, the color intensity
corresponds to the density of data points within
that hexagon. Therefore, darker regions indicate a

107



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Un

ce
rta

in
ty Dataset

MasakhaNER
TyDiQA-GoldP
GLUE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0.1

0.2

0.3

0.4

Un
ce

rta
in

ty

Script
Ge'ez
Latin
Chinese characters
Arabic
Cyrillic
Bengali
Telugu
Korean

Figure 4.1: The distribution of the MC Uncertainty across the different datasets (left) and scripts (right) for each
mask ratio value R.
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Figure 4.2: The MSE loss across the different datasets (left) and scripts (right) for each mask ratio value R.

higher density of data points. There is a high den-
sity of points in the top left corner, which suggests
that the model underestimates its performance. In
other words, many examples are associated with
high loss but low uncertainty.

The distribution of the points for all three
datasets (MasakhaNER, TyDiQA-GoldP, and
GLUE) is shown in the calibration plot from Figure
4.4. The highest level of overconfidence is associ-
ated with the question-answering task in TyDiQA-
GoldP. However, there seems to be a subgroup of
points for which the uncertainty is high. The points
in the MaskhaNER dataset fall under the category
of high uncertainty and high loss. The GLUE data
is located between 0.15 and 0.3 on the uncertainty
range and contains several examples showing de-
creased loss. While the model can be considered to
be underestimating uncertainty with this group, the
majority of the data still fall over the main diagonal,
indicating an underestimation of uncertainty.

Visualizing Uncertainty in Text Reconstruc-
tion Figure 2.1 shows (a) the original rendered En-
glish text generated with the PyGame text renderer,
(b) the original image overlaied with per-patch un-
certainty and (c) the reconstructed text overlaied
with per-patch uncertainty. Bright yellow patches
suggest larger variations in predictions. This can be
observed in the larger masked segments of patches
from the first 6 lines of the image, as well as in
lines 12 and 15. These segments also translate to
less accurate reconstructions, as seen on the corre-
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Figure 4.3: Calibration hexbin plot showing the RMSE
loss in terms of the MC uncertainty.

sponding rows of the reconstructed image. On the
other hand, smaller segments of patches (which ap-
pear darker in the image) are associated with lower
uncertainty and are reconstructed more accurately.
These patches often contain shorter sequences of
letters. In terms of the mistakes, the model fails to
reconstruct patches with numerals, such as 20-fold.
Still, it appears to understand that the most suit-
able prediction given the context is a number (the
model predicts 20,000). Moreover, longer and less
frequent words such as implementation and pub-
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Figure 4.4: Calibration kernel density estimate plot
showing the RMSE loss in terms of the MC uncertainty
across the three datasets.

lish, as well as punctuation marks (used in (LLMs))
appear to produce more variation in the prediction,
given the increased uncertainty.

4.2 Attention Visualization
Each cell in the attention grids (Figure 4.5) shows
the attention weights for the first 16 patches of a
specific head h and layer l in the selected examples.
The first four layers appear to encode the highest
amount of visual information, given the high activa-
tion of the patches. Across all heads and layers of
both examples, the attention weight corresponding
to the CLS patch is high, as it contains the aggre-
gate representation of the input patch sequence.
There is a clear difference in the distribution of at-
tention between the examples. The top 1 performer
(Nigerian Pidgin) exhibits high activation on the
diagonal at the neuron level, meaning that patches
are attending to themselves, possibly to retain posi-
tional and contextual information. The Igbo exam-
ple does not show the same pattern, rather a subset
of dominant patches attend to the remaining ones.

4.3 Ensemble Learning
Extractive Question Answering The results of
the ensemble QA model are presented in Table
4.1, which shows the weighted F1 score across all
languages in the TyDiQA-GoldP dataset. These
findings are compared with the results obtain by
Rust et al. (2022), following the same experimental
setting. Overall, the ensemble learning method im-
proves the performance in the extractive QA task
for 6 out of the 8 languages. The average F1 score
(excluding the ENG data) for the ensemble con-
figuration is higher with 1.7 points than in the case
of the regular PIXEL model. In terms of the indi-
vidual languages, there is a high improvement for

Indonesian (4.3 points), Russian (2.8 points), and
Arabic (2.2 points), suggesting that combining mul-
tiple learners can improve performance regardless
of script.

Figure 4.6 presents the confidence distribution
of the best answers in the ensemble model for all
languages in the dataset. In general, the confidence
is in the range 0.2− 0.4 across the majority of lan-
guages, with some distributions indicating slightly
higher confidence, as in the case of Finnish, In-
donesian, and Swahili. Lower confidence values
can be seen in Korean and Bengali. These obser-
vations are in line with the previous findings on
performance.

Named Entity Recognition The results of the
ensemble NER model are presented in Table
4.2, showing the weighted F1 score across the
MasakhaNER 1.0 dataset. Due to hardware limi-
tations at runtime, the ENG data is not included.
For comparison, the results are shown against the
values obtained by Rust et al. (2022). In general,
ensemble learning improves the performance sig-
nificantly for all 9 languages, resulting in scores
higher than 90. This is also the case for languages
that were previously associated with a low score,
such as Amharic (AMH). The F1 score gap is 24.3
points in favour of the ensemble method, suggest-
ing that ensemble learning improves the compre-
hension of long-term dependencies in NER tasks.

5 Discussion

This work showed that it is possible to integrate un-
certainty quantification methods and measure cali-
bration in the context of visual text models. These
methods include Monte Carlo Dropout at the patch
level, with the observation that more work should
be directed towards finding more effective ways
of aggregating and visualizing uncertainty across
longer patch sequences. Attention based methods
can also be used to gain insights into how these
models encode information, but there remains the
debate about whether or not attention counts as an
explanation (Bibal et al., 2022). Still, this debate
falls outside the scope of this research. Ensemble
learning with a low number of individual learn-
ers can also be used successfully to improve both
performance and confidence.

The results in the MC Uncertainty experiment
generally indicate high uncertainty for a high mask
ratio. Still, the most optimal value is a mask ratio of
50%, representing a reasonable trade-off between
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Figure 4.5: Model-level and neuron-level views of attention for the top 1 challenge (left, highest loss value) and
performer (right, lowest loss value) in terms of the GNLL loss across all datasets.

ARA BEN FIN IND KOR RUS SWA TEL ENG AVG
PIXEL 57.3 36.3 58.3 63.6 26.1 50.5 65.9 63.4 61.7 52.3

Ensemble 59.5 35.1 59.6 67.3 27.1 53.3 67.1 63.4 62.1 54.0

Table 4.1: The results of the QA task. The ensemble learning model finetuned on the TyDiQA-GoldP dataset is
compared with the values reported by (Rust et al., 2022). The metric shown is the F1 score, computed on the
validation split of the data. The AV G score excludes ENG, as required (Clark et al., 2020).
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Figure 4.6: Confidence distribution across all languages
in the TyDiQA-GoldP dataset for the ensemble model.

uncertainty and loss.
Scripts such as Latin are less uncertain, indi-

cating that multilingual pretraining is necessary.
Instead of language, one can focus on introducing
a new script, as evidence suggests that there exists
knowledge transfer between scripts like Latin and
Cyrillic. For example, finetuning on one language
such as Chinese might benefit performance in other
languages like Korean or Amharic. This approach
is more robust than traditional LLMs, where the
transfer of learning happens under stricter condi-
tions, for instance when languages share syntactic
structures or when there is a significant overlap
between vocabularies.

Ensemble learning can be applied successfully

to improve performance and calibration in pixel-
based language models. The evaluation shows
higher F1 scores for 17 of the 19 tested languages
across two tasks. The models become more ro-
bust and can overcome individual weaknesses by
aggregating predictions from multiple learners us-
ing hyperparameter tuning. Additionally, ensemble
learning improves calibration through better error
diversification and data representation.

6 Conclusions and Future Work

The findings of this study indicate that pixel-based
language models represent a viable and lightweight
solution to traditional language modeling, even for
tasks that require semantic understanding of text.
Their reliability and explainability can also be im-
proved through uncertainty quantification methods,
as shown during the experiments. Future research
should focus on perfecting the existing techniques
and exploring new ways of understanding the in-
ner workings of models that enccde text as visual
representation.

One point to be explored in future works on text
reconstruction is the idea of pixels-as-tokens in
the context of the Pixel Transformer (PiT) model,
introduced by (Nguyen et al., 2024). Instead of
training the model to perform patch reconstruction,
PiT treats each pixel as a token and the reconstruc-
tion happens at the pixel level. Evidence suggests
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AMH HAU IBO KIN LUG LUO PCM SWA WOL YOR AVG
PIXEL 47.7 82.4 79.9 64.2 76.5 66.6 78.7 79.8 59.7 70.7 70.7

Ensemble 90.2 97.1 96.1 93.9 95.5 93.1 97.1 96.1 95.8 95.2 95

Table 4.2: The results of the NER task. The ensemble learning model finetuned on the MasakhaNER 1.0 dataset is
compared with the values reported by (Rust et al., 2022). The metric shown is the F1 score, computed on the test
split of the data.

that this method completely removes locality as
in inductive bias. This can potentially improve
long-term context comprehension in the proposed
approach, as the current findings indicate that the
reconstruction of characters depends on neighbor-
ing pixels. Additionally, the finetuning pipeline
can be expanded to more complex semantic tasks,
such as summarization, open-ended question an-
swering where the answer is not always explicitly
mentioned in the context, and text generation (Li
et al. (2023) introduced a new method for text gen-
eration using GlyphDiffusion). To improve model
calibration, post-hoc methods like temperature scal-
ing can be used either separately or in combination
with Monte Carlo (Laves et al., 2019). During pre-
training, the Cross-Entropy loss can be replaced
by the Focal Loss, which is effective in calibration
models trained on imbalanced datasets (Wang et al.,
2022).

Ethical Considerations

The aim of this study is to shed light on how pixel-
based models encode uncertainty. We consider that
an explainability analysis should be a prerequisite
for any new language model, as this increases users’
trust that the technology works as intended and it
is not harmful.

In order for this research to exist, we made use
of the pretrained PIXEL model provided by Rust
et al. (2022). One of the datasets that PIXEL has
been pretrained on is the BookCorpus (Zhu et al.,
2015) which is well-known for its problematic con-
tent and copyright violantions (Bandy and Vincent,
2021). BookCorpus contains books self-published
by authors, which did not explicitly consent to
including their books in a LLM training dataset,
and were not compensated in any way. Moreover,
many books contain copyright restrictions which
forbid the redistribution of content. Senstive con-
tent has also been identified in the data, such as
books marked for adult audiences, containing terms
and phrases associated with gender discrimination.
We acknowledge that by using models trained on

problematic data, we risk to further propagate bi-
ases. However, these models and datasets are very
popular and they cannot be ignored. For this rea-
son, we consider that studying how they work and
attempting to explain and interpret them is a goal
worth pursuing.

Our paper has a strong focus on language va-
riety, as we explore uncertainty across 18 lan-
guages. However, the majority of our fine-tuning
data comes from English (as seen in Figure B.1
from Appendix B). This leads to lower performance
and less accurate representation in low-resource
languages. Once again, this issue boils down to
the data available for LLM training, which should
ideally be more balanced and representative across
diverse linguistic contexts.

Code

We provide the complete implementation for run-
ning our experiments on Github, at https://
github.com/stefania-radu/pixel-semantic.
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A Limitations

Some limitations of this method include the hardware and training time required to train multiple models.
Nevertheless, PIXEL has 20% fewer parameters than BERT, so an ensemble of PIXEL models remains
less complex than the BERT variant and significantly more lightweight than models like GPT.

The current study is subject to several limitations. Firstly, the way uncertainty is computed at the
image level during the MC experiments can be more reliable. At the moment, uncertainty is averaged
across all pixels in an image. However, this does not account for the difference in span length, as some
sequences of patches are longer than others. Quantifying uncertainty as an average for each span length
in the image could bring more insights into how the model encodes long-term dependencies. Secondly,
the information in the attention plots should be aggregated so that all patches are visible at once, while
keeping a reasonable image size. Using the current method, visualizing all 256 patches across the 144
attention structures would result in a very large and difficult to interpret image. Regarding the calibration
analysis, it is not completely clear that the two measurements of performance (loss vs. MC uncertainty
during the pretraining stage and F1 score vs. confidence during finetuning) are quantifying the same
underlying metric. For this reason, additional testing should be performed to establish the exact effect
size of ensemble learning on model calibration. Moreover, more insights are necessary to establish the
trade-off between computational cost, environmental impact and performance gains when training an
ensemble of learners compared to a single model.

While it is possible to visualize the attention mechanism in pixel-based language models, there are
some comments to be made about this. Unlike traditional language models like BERT where each token
represents a meaningful unit and the relationship between two tokens can be understood intuitively, the
patches in pixel-based language models cannot be mapped back to text chunks. This makes it more
challenging to interpret how attention is paid to the different patches and what are the implications of these
connections in the context of the entire model. Moreover, given the large number of attention structures
and the image dimensions, visualizing attention for all patches simultaneously becomes very difficult.

B Data Details

Figure B.1: Distribution of languages used throughout the experiments.

C Experiments Details
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Language ISO 639-3 Language Family Script
Amharic AMH Afro-Asiatic Ge’ez
Arabic ARA Afro-Asiatic Arabic
Bengali BEN Indo-European Bengali
English ENG Indo-European Latin
Finnish FIN Uralic Latin
Hausa HAU Afro-Asiatic Latin
Igbo IBO Niger-Congo Latin
Indonesian IND Austronesian Latin
Kinyarwanda KIN Niger-Congo Latin
Korean KOR Koreanic Korean
Luganda LUG Niger-Congo Latin
Naija Pidgin PCM English Creole Latin
Russian RUS Indo-European Cyrillic
Swahili SWA Niger-Congo Latin
Telugu TEL Dravidian Telugu
Wolof WOL Niger-Congo Latin
Yorùbá YOR Niger-Congo Latin

Table B.1: An overview of languages used during the experiments. The original PIXEL model is pretrained on
English only.

Experiment Data Hyperparameters Metrics
MCU Tasks NER (MasakhaNER 1.0), SC

(GLUE), QA (TyDiQA-GoldP)
R ∈ {0.1, 0.2, . . . , 0.9},
S ∈ {1, 2, . . . , 6}, W =
{0, 0, . . . , 0, 1}, |W | = |S|

MSE
GNLL
Uncertainty (σ̄)

MCU Scripts Latin, Ge’ez, Chinese Charac-
ters, Arabic, Cyrillic, Bengali,
Telugu, Korean

R ∈ {0.1, 0.2, . . . , 0.9},
S ∈ {1, 2, . . . , 6}, W =
{0, 0, . . . , 0, 1}, |W | = |S|

MSE
GNLL
Uncertainty (σ̄)

VU Nigerian Pidgin, Igbo R = 0.25, S = 6, W =
{0.2, 0.4, 0.6, 0.8, 0.9, 1}

GNLL
Uncertainty (σ̄)

CA NER (MasakhaNER 1.0), SC
(GLUE), QA (TyDiQA-GoldP)

R = 0.25, S = 6, W =
{0.2, 0.4, 0.6, 0.8, 0.9, 1}

RMSE
Uncertainty (σ̄)

Table C.1: Overview of the MC Uncertainty experiments. MCU = Monte Carlo Uncertainty; VU = Visualizing
Uncertainty; CA = Calibration Analysis.
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Figure C.1: Mean MSE Loss (left) and GNLL Loss (right) across the different scripts for each mask ratio value R.
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Algorithm 1 Patch-level Uncertainty with MC Dropout

Require: Rendered image I , model M , # MC samples NMC = 100, dropout rate p = 0.1, patch size
P = 16

Ensure: Uncertainty map U

1: Activate dropout in M
2: for i ∈ {1, . . . , N} do
3: Pi ←M(I, p) ▷ Compute predictions P with dropout
4: end for
5: Initialize µ and σ with the shape of I
6: for each pixel (x, y) do
7: µ(x, y)← 1

N

∑N
i=1 Pi(x, y)

8: σ(x, y)←
√

1
N

∑N
i=1(Pi(x, y)− µ(x, y))2

9: end for
10: Initialize U with the shape of I
11: for each patch (i, j) in σ do
12: σpatch ← 1

P 2

∑i+P−1
x=i

∑j+P−1
y=j σ(x, y) ▷ Compute σ per patch

13: for (x, y) ∈ {(i, j), . . . , (i+ P − 1, j + P − 1)} do
14: U(x, y)← σpatch ▷ Assign σpatch to all pixels in the patch
15: end for
16: end for
17: return U

Algorithm 2 Ensemble QA Prediction

Require: k models {M1,M2, . . . ,Mk}, input question q
Ensure: Final answer â for the question q

1: C ← ∅
2: for each model Mi in {M1,M2, . . . ,Mk} do
3: Ai ←Mi(q) ▷ Get candidate answers and their confidences
4: for each candidate aj in Ai do
5: C ← C ∪ {aj}
6: end for
7: end for
8: C ←

{
c |∑k

i=1 1c∈Ai = k
}

▷ Keep the candidates that appear in all models
9: for each candidate c in C do

10: confc ← 1
k

∑k
i=1 confidenceMi(c) ▷ Compute average confidence

11: end for
12: â← argmaxc∈C confc ▷ Select candidate with highest confidence
13: return â
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Figure C.2: Examples of uncertainty quantification at the patch-level for various languages.
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Parameter Value

Common Parameters

Dataset name tydiqa
Dataset config name secondary_task
Sequence length 400
Stride 160
Question max length 128
Gradient accumulation steps 1
Max steps 20000
Number of train epochs 10
Early stopping True
Early stopping patience 5
Evaluation metric F1 = 2×TP

2×TP+FP+FN
Doc stride 160
Number of best predictions 20

Model 1

Batch size 32
Learning rate 7× 10−4

Dropout probability 0.15
Seed 101

Model 2

Batch size 16
Learning rate 7× 10−5

Dropout probability 0.15
Seed 102

Model 3

Batch size 8
Learning rate 7× 10−5

Dropout probability 0.05
Seed 103

Model 4

Batch size 32
Learning rate 7× 10−6

Dropout probability 0.1
Seed 104

Table C.2: The finetuning configuration of the QA models, including the common parameters and those changed
among the 4 learners.
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Parameter Value

Common Parameters

Dataset name masakhane-ner
Sequence length 196
Gradient accumulation steps 1
Max steps 15000
Number of train epochs 10
Early stopping True
Early stopping patience 5
Evaluation metric F1 = 2×TP

2×TP+FP+FN

Model 1

Batch size 64
Learning rate 5× 10−5

Dropout probability 0.1
Seed 100

Model 2

Batch size 64
Learning rate 5× 10−6

Dropout probability 0.2
Seed 101

Model 3

Batch size 32
Learning rate 5× 10−5

Dropout probability 0.1
Seed 102

Model 4

Batch size 32
Learning rate 5× 10−6

Dropout probability 0.1
Seed 103

Model 5

Batch size 16
Learning rate 5× 10−5

Dropout probability 0.2
Seed 104

Table C.3: The finetuning configuration of the NER models, including the common parameters and those changed
among the 5 learners.
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