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Abstract
Plain Language Summaries (PLS) improve
health literacy and enable informed healthcare
decisions, but writing them requires domain
expertise and is time-consuming. Automated
methods often prioritize efficiency over com-
prehension, and medical documents’ unique
simplification requirements challenge generic
solutions. We present a multi-agent system for
generating PLS using Cochrane PLS as proof
of concept. The system uses specialized agents
for information extraction, writing, diagnosis,
and evaluation, integrating a medical glossary
and statistical analyzer to guide revisions. We
evaluated three architectural configurations on
100 Cochrane abstracts using six LLMs (both
proprietary and open-source). Results reveal
model-dependent trade-offs between factuality
and readability, with the multi-agent approach
showing improvements for smaller models and
providing operational advantages in control and
interpretability.

1 Introduction

Health literacy is the ability of an individual to
access, understand, and apply health information.
This is essential for informed decision-making and
effective navigation of healthcare systems. Inad-
equate health literacy remains a global challenge,
contributing to poor treatment adherence, higher
hospitalization rates, and health disparities (Berk-
man et al., 2011; Sørensen et al., 2015; Bahador
et al., 2020). Plain Language Summaries (PLS)
is a way to reduce health literacy gaps by translat-
ing medical texts into clear, accurate, and accessi-
ble language for non-technical audiences (Bahador
et al., 2020). However, producing high-quality PLS
manually is resource-intensive and requires exper-
tise in both medical content and health communi-
cation.

Recent advances in LLMs offer new opportuni-
ties to automate PLS generation. While early ef-
forts showed that LLMs can produce readable and

semantically faithful summaries, most approaches
relied on single-pass generation and lacked system-
atic guardrails for factuality, readability, and regu-
latory compliance (Turbitt et al., 2023; Van Veen
et al., 2024). The increasing complexity of biomed-
ical content and the need for domain-specific stan-
dards underscore the importance of structured,
multi-step workflows over monolithic generation.

This work builds on our previous research in
LLM-based PLS generation (Arias-Russi et al.,
2025), which showed the potential of single-prompt
models to translate Cochrane abstracts into PLS
and Clinical Trials into Protocol Plain Language
Summaries (PPLS). However, generating these
kind of structured PLS that meet professional stan-
dards differs from generic text simplification; it
needs adherence to specific templates and guide-
lines, diagnostic feedback, and systematic quality
control. Unlike general simplification tasks that
focus only on reducing complexity, structured PLS
generation requires writing documents with well-
defined structures that balance accessibility with
medical accuracy.

Current LLMs struggle to balance simplicity
with factual accuracy, often oversimplifying com-
plex medical content or preserving meaning at the
cost of readability (Li et al., 2024). Our prior work
revealed similar domain-specific challenges, requir-
ing distinct prompts for different document types
(Cochrane PLS and PPLS). Also, this approach
did not provide mechanisms to identify specific
problems in the generated PLS drafts or provide
targeted corrections.

Based on these limitations, this research aims
to: (1) develop tools that allow a better understand-
ing of what makes a text non-compliant with PLS
standards and how to systematically address these
issues, and (2) create a multi-agent framework sup-
ported by diagnostic tools that can both generate
structured PLS and evaluate their quality through
some iterative refinement.
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We propose a framework that decomposes PLS
generation into specialized subtasks, each handled
by dedicated agents: information extraction, writ-
ing, diagnostic, and evaluation (Figure 1). The
key component is a diagnostic feedback loop
where evaluation agents identify specific complex-
ity issues and guide targeted revisions using ver-
ifiable criteria. We instantiate this framework
for Cochrane PLS generation, as their guidelines
(Pitcher et al., 2022) provide an useful template
ideal for testing structured document generation.

2 Related Work

2.1 Plain Language Summaries

Recent work in biomedical text simplification ex-
plores different approaches. The BioLaySumm
shared task (Xiao et al., 2025) focuses on gen-
erating lay summaries from biomedical abstracts.
Participants showed various strategies: supervised
fine-tuning of T5 and LLaMA models (Zhang
et al., 2025); extract-then-summarize pipelines
with persona-based prompts and UMLS defini-
tions (Gupta and Krishnamurthy, 2025); struc-
tured prompting with dynamic few-shot selec-
tion and RAG (Lossio-Ventura et al., 2025); and
Tree-of-Thought prompting with hybrid meth-
ods (Sivagnanam et al., 2025). Fine-tuning ap-
proaches include QLoRA adaptation with itera-
tive refinement (Binti Moriazi and Sung, 2025)
and readability-controlled instruction tuning (Tran
et al., 2025). Others focus on preprocess-
ing (Dehkordi et al., 2025) or evaluation met-
rics (Lyu and Pergola, 2024a; Scholz and Wenzel,
2025). More related work can be found in our
previous work (Arias-Russi et al., 2025).

Our work addresses a complementary task: gen-
erating structured PLS following Cochrane’s estab-
lished template. Unlike lay summaries that priori-
tize readability alone, structured PLS must adhere
to specific section requirements (Title, Key Mes-
sages, Background, Methods, Results, Limitations,
Currency), maintain professional standards, and
balance accessibility with regulatory compliance.
We used some evaluation metrics from BioLay-
Summ and related work to assess both readability
and structural conformance.

2.2 Multi-agent Systems for Text
Simplification

Multi-agent systems have emerged as a promising
approach for text processing. The Society of Medi-

cal Simplifiers (Lyu and Pergola, 2024b) simplifies
biomedical literature into general plain language
text, using five agents in three interaction loops—a
Layperson Agent identifies technical terms, a Med-
ical Expert provides clarifications, and a Simplifier
Agent edits text, focusing on making content ac-
cessible without following specific templates or
guidelines. ExpertEase (Mo and Hu, 2024) gener-
ates grade-specific simplified documents for edu-
cational purposes, using Expert, Teacher, and Stu-
dent agents that calibrate text complexity for target
reading levels like 2nd-3rd grade. For diagnostic
applications, MedAgent-Pro (Wang et al., 2025)
produces evidence-based medical diagnoses with
supporting visual evidence rather than simplified
text, employing RAG, Planner, and Tool agents
to integrate clinical guidelines for diseases like
glaucoma. AgentSimp (Fang et al., 2025) creates
general simplified documents focusing on coher-
ence and metaphor handling, using nine agents
including a Metaphorical Analyst and Terminol-
ogy Interpreter, but without adherence to medical
communication standards or structured templates.

Rather than generating general simplified text,
we aim to create structured PLS that facilitate the
work of medical writers, helping to automate the
process to get high-quality PLS drafts. Multi-agent
systems are particularly suited for this task be-
cause structured documents can be decomposed
into separate subtasks (extraction, integration, eval-
uation, and refinement) that align naturally with
specialized agents (see the conceptual framework
in Figure 1). From this abstract idea of generat-
ing structured PLS, we designed a multi-agent ap-
proach specifically for Cochrane PLS, as their de-
tailed guidelines provide a well-defined template
that serves as an ideal test case for our framework
(Pitcher et al., 2022). Our primary approach uses an
on-demand evaluator tool that the editor agent calls
when needed. Inspired by Self-Refine (Madaan
et al., 2023), we also tested an alternative itera-
tive approach where the evaluator runs multiple
refinement cycles independently, instead of being
invoked by the editor agent.1

3 Methodology

We present the methodology for developing and
evaluating a multi-agent system for automatic gen-

1All materials including agent prompts, datasets, eval-
uation scripts, and workflow implementation are avail-
able at: https://github.com/feliperussi/tsar-2025-
medical-writing-agent-cochrane
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Figure 1: Conceptual framework for generating PLS. The system orchestrates specialized agents for information
extraction, writing, terminology simplification, and evaluation. A diagnostic feedback loop enables evaluation
agents to identify complexity issues and guide targeted revisions. This modular architecture supports structured,
accurate, and readable PLS aligned with Cochrane standards.

eration of PLS from Cochrane medical abstracts.
The approach leverages linguistic analysis, medi-
cal glossaries, domain-specific glossaries, and ad-
vanced language models to produce accessible med-
ical communication. The methodology follows six
main steps: (1) Data Collection and Processing, (2)
PLS Linguistic Feature Extraction, (3) Percentiles
for PLS Diagnosis, (4) Develop Diagnostic Tools,
(5) Define Specialization, and (6) Define Architec-
ture for the multi-agent system (see Appendix A
for the complete workflow diagram).

3.1 Data Collection and Processing
3.1.1 Data Source
We collected 9,469 Abstract-PLS pairs (18,938 doc-
uments) extracted from the Cochrane Database
of Systematic Reviews (1996-2025), spanning
nearly 30 years of evolving medical communica-
tion practices (Cochrane Library, 2025). Prior work
has highlighted significant content misalignment
between abstracts and their corresponding PLS,
where summaries often incorporate information
from full-text articles (Bakker and Kamps, 2024).
To address this issue, the authors proposed a new
dataset (Cochrane-auto) that ensures better align-
ment between abstracts and PLS. Although we rec-
ognize this problem, we preferred to use the origi-
nal Cochrane data to maintain the integrity of the
dataset, and ensure easier evaluations and compari-
son between different strategies.

3.1.2 Data Processing Pipeline
We filtered and split the dataset into reference and
test sets, applying minimum length thresholds (200
words for abstracts, 150 for PLS). After filtering,
we retained 16,308 documents from the original

18,938 documents. For our experiments, we used
only PLS texts from the reference corpus to com-
pute statistical thresholds for the evaluation agent
(ignoring their paired abstracts), and the test set
pairs for generation and evaluation. The test set
comprised recent publications (2023-2025) to align
with the 2022 Cochrane PLS guidelines. Table 1
shows the data used in our study (complete dataset
splits are available in the repository).

Data PLS Abstracts Total

Reference 6,754 – 6,754
Test 100 100 200

Total 6,854 100 6,954

Table 1: Dataset distribution. Reference corpus: PLS
texts for computing percentile thresholds. Test set:
Abstract-PLS pairs for evaluation.

3.2 PLS Linguistic Feature Analysis

3.2.1 Feature Extraction
We extracted 18 linguistic features from each docu-
ment (see Appendix B.1) comprising 9 readability
indices, 4 structural metrics, 3 vocabulary mea-
sures, and 2 content density indicators. These fea-
tures enable the multi-agent system to compare
any text against typical PLS patterns using per-
centile distributions. The Cochrane PLS guidelines
(Pitcher et al., 2022) recommend specific criteria:
maximum 850 words, active voice, personal pro-
nouns, and 20 words per sentence average.

These metrics answer concrete diagnostic ques-
tions: "Where does this text’s passive voice usage
fall compared to typical PLS?" or "Is this sentence
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length in the common range?" Using the percentile
thresholds from Section 3.2.2, the evaluator agent
identifies specific deviations and provides feedback
to the editor agent for improving the draft.

3.2.2 Percentiles for PLS Diagnosis
We computed statistical thresholds from our refer-
ence corpus of PLS texts based on percentiles to
create a reference baseline for evaluation. These
thresholds function as an interpretable diagnostic
tool for the multi-agent system (or a human evalu-
ator), providing explicit information about where
generated text falls within the distribution of each
linguistic feature. This approach enables specific
improvements based on concrete positional feed-
back rather than abstract quality scores. We chose
percentiles over machine learning approaches (e.g.,
gradient boosting, decision trees with feature im-
portance) because when communicating diagnostic
feedback to an evaluator, percentile distributions
provide the most natural and interpretable way to
identify which features have atypical values and
where they fall relative to typical patterns.

We use a dual percentile system that adapts to
each metric’s direction. For metrics where lower
values are preferred, we label the ranges as P25,
P50, P75, and P90, corresponding to the actual
percentiles. For metrics where higher values are
preferred, we maintain the same labels but apply
them to the inverse percentiles (P75, P50, P25,
and P10 respectively). This ensures P25 and P75
consistently identify the best quartile regardless of
metric direction.

The tool provides the evaluator agent with spe-
cific positional information (e.g., "passive voice
falls in P90 range") that directly translates to ac-
tionable feedback. While deviation from typical
patterns (beyond P10 or P90) suggests that a re-
vision may be warranted, such deviations do not
automatically indicate poor quality. For instance,
a text scoring in the P90 range for complex vo-
cabulary may still be considered plain language
if those terms are medically necessary and prop-
erly defined. Complex medical procedures may
require precise technical terminology that cannot
be simplified without losing essential meaning (a
limitation discussed in Section 7). The percentile
ranges serve as diagnostic indicators rather than
absolute quality judgments, guiding targeted im-
provements while preserving content accuracy. Ap-
pendix B.2 presents the complete thresholds used
as the diagnostic baseline. These thresholds are

then integrated into the PLS Evaluation Tool (Sec-
tion 3.3.2) to enable automated quality assessment.

3.3 Diagnostic Tools Development

We developed two deterministic tools that emu-
late the resources and decision-making process of
professional medical writers: a medical glossary
service and a PLS evaluation tool. These tools
provide the editor agent with the same type of guid-
ance a human medical writer would use, including
professionally-recommended terminology simplifi-
cations and rapid interpretable indicators to identify
atypical text patterns. By grounding our tools in
professional practices mentioned in the Cochrane
PLS guidelines, we enable systematic evaluation
and improvement of generated text.

3.3.1 Medical Glossary Tool
We collected 20,637 medical terms with plain
language alternatives from 11 professional dictio-
naries recommended by the Williams (2025) and
Cochrane Plain Language Summary Guidelines
(Pitcher et al., 2022, page 29, Appendix 1). Ta-
ble 2 shows the distribution of terms across sources,
spanning cancer terminology, public health, dia-
betes, genetics, clinical trials, and other healthcare
domains (see Appendix C for detailed source de-
scriptions). The tool uses a longest-match regex
algorithm to identify medical terms in submitted
text and returns structured JSON with the term,
its plain language alternative, and source; mirror-
ing how a medical writer would consult reference
materials during revision.

Source Focus Area Terms

NCI-C Cancer terminology 9,416
NCI-D Cancer drugs 9,144
CDC-T Public health 891
ADA-D Diabetes 247
NCI-G Genetics 242
UIowa General 242
MRCT Clinical trials 187
WA-PH Immunization 104
WebMD-A Asthma 75
CCIIO Insurance 59
Cochrane Systematic reviews 30

Total 20,637

Table 2: Medical glossary sources with term counts and
focus areas.

3.3.2 PLS Evaluation Tool
Using the percentile thresholds computed in Sec-
tion 3.2.2, the evaluation tool provides rapid, inter-
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pretable assessments that a medical writer would
typically perform manually. Given a text, it com-
putes 18 linguistic features using standard compu-
tational linguistics algorithms (no LLMs involved)
and maps each to its percentile range based on
the thresholds. The tool generates evaluation re-
ports showing word count compliance, metric-by-
metric analysis, percentile assignments, and revi-
sion suggestions for atypical patterns. This human-
interpretable output allows the editor agent to make
informed decisions about which deviations warrant
revision and which are contextually justified (see
Appendix B.3 for example output).

3.4 Multi-Agent System Architecture

We designed 14 specialized agents and their corre-
sponding prompts organized into four functional
groups: Information Extraction, Writer, Diagnostic,
and Evaluation. Each prompt was developed based
on the Cochrane PLS template (Pitcher et al., 2022),
iteratively refined through a combination of Gem-
ini 2.5 Pro and Claude Opus 4.1 generations with
human revision to ensure alignment with Cochrane
guidelines (see the repository for all the prompts).
Figure 2 illustrates the complete multi-agent archi-
tecture with all components and their interactions.
We first describe the core agent functionalities be-
low; the architectural variants (Baseline, V1, V2)
are presented in Section 3.4.4.

3.4.1 Information Extraction Agents
These agents work (mostly) in parallel to extract
different parts of the abstract simultaneously, with
each agent based on a specific section of the
Cochrane PLS template (Pitcher et al., 2022).

To begin, the Plain Titles Agent reformulates
technical review titles into patient-friendly ques-
tions, following Cochrane’s recommendation to use
question-based titles that directly address patient
concerns. When complex medical terms appear in
titles, they are either replaced with plain language
alternatives or clearly defined for patient under-
standing. Similarly, the Key Messages Agent ex-
tracts 2–3 main findings as bullet points, ensuring
technical terms are either avoided or explained.

For the introductory content, the Background
Agent creates 2–3 subsections with question-based
headings that explain what the health condition
is (“What is [condition]?”), why it matters, and
what the researchers wanted to find out (“What
did we want to find out?”). This output includes
the review aims, which are then referenced by the

Methods Agent. Building on these aims, the Meth-
ods Agent writes “What did we do?” in 1–2 sen-
tences, ensuring direct connection to the research
goals. It describes three key actions—searching for
studies, combining results, and rating confidence
in evidence—using standardized phrases like “We
searched for studies that compared. . . ” while avoid-
ing specific study design mentions unless essential.

The Results Agent generates “What did we
find?” by coordinating two specialized tool agents:
the Characteristics Agent extracts study details
(number of studies, participants, duration, coun-
tries), while the Findings Agent translates techni-
cal findings into plain language, simplifying narra-
tives and avoiding technical statistical terms.

To complete the extraction pipeline, the Limita-
tions Agent identifies constraints from the review
findings, and the Date Extraction Agent standard-
izes when the evidence was collected.

3.4.2 Writer Agents

The Assembly Agent takes all the pieces from the
extraction agents and combines them into one com-
plete summary. It follows the exact order required
by Cochrane: title, key messages, background sec-
tions, “What did we want to find out?”, “What did
we do?”, “What did we find?”, and so on.

The Editor Agent improves the assembled draft
through revision. It checks for problems like un-
explained medical terms, complicated sentences,
or forbidden elements (like acronyms or statisti-
cal data), working in coordination with evaluation
mechanisms to ensure quality standards are met.

3.4.3 Diagnostic and Evaluation Agents

These agents provide specialized diagnostic sup-
port and quality assessment throughout the writing
process. The Technical Terms Recognizer Agent
identifies remaining medical terms that require ex-
planation in plain language context.

The Evaluator Agent is a hybrid agent with dual
functionality. In its diagnostic capacity, it identi-
fies specific issues by leveraging the diagnostic
tools developed in the previous section. As an eval-
uator, it performs comprehensive quality checks
by verifying factual accuracy through comparing
drafts against original extraction outputs to detect
hallucinations, ensuring all required sections are
present, and using the PLS Evaluation Tool to as-
sess readability metrics against the thresholds from
Section 3.2.2.
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Figure 2: Multi-agent system architecture for PLS generation (V1). Information Extraction Agents (red) process the
abstract in parallel to extract different components. Writer Agents (green) assemble and refine content sequentially.
Diagnostic Agents (blue) provide specialized terminology support using deterministic tools (yellow). The hybrid
Diagnostic and Evaluation Agent (purple) performs both diagnostic analysis and final quality assessment. The
pipeline flows from extraction through assembly and iterative refinement until the PLS is approved.

3.4.4 Architectural Variants
We evaluated three system configurations to as-
sess different approaches to task decomposition
and quality control:

• Baseline: This configuration consolidates the
entire workflow of the agents viewed into
a single, complete prompt. This allows the
model to generate the complete PLS in a sin-
gle step, without the need for iterative refine-
ment or specialized agent roles.

• Version 1 (V1): The primary multi-agent ar-
chitecture shown in Figure 2 that integrates
all the agents and tools described in the previ-
ous sections. In this configuration, specialized
agents handle different subtasks as designed,
the Evaluator Agent operates as an on-demand
tool that the Editor can invoke when needed,
and the Medical Glossary Tool provides termi-
nology support through the Glossary Agent.

• Version 2 (V2): An iterative variant where
the Evaluator operates as a standalone agent
that systematically evaluates each draft and
provides feedback to the Editor. The pro-

cess terminates when either (1) the Evalua-
tor approves the draft based on quality crite-
ria, or (2) the maximum of 10 iterations is
reached. Additionally, V2 removes the Med-
ical Glossary Tool to assess whether explicit
medical dictionaries are necessary. For more
details, V2 iterative approach is presented in
Appendix A.1.

These variants allow us to compare monolithic
versus multi-agent approaches, tool-based versus
iterative evaluation strategies, and assess the impact
of explicit glossaries on generation quality.

4 Evaluation and Results

We evaluated the three architectural configurations
(Baseline, V1, V2) described in Section 3.4.4 across
multiple language models to assess the impact of
multi-agent decomposition and iterative refinement
on PLS generation quality.

4.1 Experimental Setup

We implemented the system using n8n (2025) work-
flow automation platform and evaluated on 100
Abstract-PLS pairs from 2023-2025. We tested
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six language models: Gemini 2.5 Pro (Google AI
for Developers, 2025), GPT-5 (OpenAI, 2025b)
via Azure OpenAI, GPT-OSS-120B and GPT-OSS-
20B (OpenAI, 2025a) via Together AI (2025),
Llama 3.3 70B, and Llama 3.2 3B.

All models were evaluated with the Baseline
configuration. V1 was tested with Gemini 2.5 Pro,
GPT-5, and GPT-OSS-120B. V2 was tested with
Gemini 2.5 Pro, GPT-OSS-120B, GPT-OSS-20B,
Llama 3.3 70B, and Llama 3.2 3B (GPT-5 could
not be run with V2 due to implementation con-
straints). Additionally, we tested a hybrid variant
where Llama 3.3 70B (V2) used Gemini 2.5 Flash
as the Evaluator Agent. All models used temper-
ature 0.0 except GPT-5 (temperature 1.0 due to
API constraints). For each run, all agents within a
configuration used the same underlying model.

4.2 Evaluation Metrics

Generated PLS texts were evaluated across three
dimensions:

1. Relevance: Measuring the semantic simi-
larity between the LLM-generated summaries and
human-written reference PLS using BERTScore
(Zhang et al., 2020), which computes token-level
similarity through contextual embeddings. We also
calculated similarity against original abstracts to
assess information retention.

2. Factuality: Evaluating the consistency of
generated content with source abstracts (ensuring
no contradictory information is introduced) using
AlignScore (Zha et al., 2023) and MeaningBERT
(Beauchemin et al., 2023), which measure factual
alignment and semantic equivalence respectively.

3. Readability: Assessing grammaticality and
ease of comprehension through computational met-
rics. Additionally, we computed percentile distri-
butions across all 18 linguistic features to measure
conformity with typical PLS patterns, with “Best
25%” representing the percentage of features in the
optimal quartile.

4.3 Results and Analysis

Our evaluation reveals inconclusive results with
mixed patterns across models and configurations
(Tables 3 and 4). No single architectural approach
consistently outperforms others across all quality
dimensions and model types, with results suggest-
ing fundamental trade-offs between factuality and
readability that manifest differently depending on
base model characteristics.

Gemini 2.5 Pro is the only model where we can
validly compare all three configurations (GPT-OSS-
120B V1 had implementation limitations where the
evaluator tool could only be invoked once, mak-
ing it unsuitable for valid comparison). Gemini
shows a clear trade-off pattern: the V2 configu-
ration achieves the best semantic similarity and
factuality scores to the reference corpus, but the
baseline produces more readable text across most
readability indices. The V1 configuration (with
medical glossary and evaluator as tool) achieves
readability metrics similar to baseline and better
than V2, suggesting that the medical glossary may
help balance factuality and simplicity in agentic
workflows, though we cannot confirm this conclu-
sively. This pattern reflects a general trend where
agentic configurations tend to improve relevance
and factuality metrics, while baseline configura-
tions often produce more readable outputs, though
this varies across models.

GPT-5 agentic (V1) underperforms its baseline
across most metrics, with the exception of Align-
Score to the original abstract. For GPT-OSS-120B,
the baseline outperforms both V1 and V2 variants
in factuality to reference and readability metrics,
though V2 shows improvements over V1.

Smaller models exhibit distinct behaviors. GPT-
OSS-20B demonstrates considerable improve-
ments with the V2 architecture in semantic sim-
ilarity and factuality compared to baseline, with
modest impact on readability. Llama 3.2 3B shows
an interesting pattern where both baseline and agen-
tic configurations achieve the highest AlignScore to
the original abstract among all tested models (with
baseline being globally highest), yet both produce
the least readable outputs, with the agentic version
particularly affected. This suggests smaller models
may compensate for limited capabilities by main-
taining strict alignment to source material while
struggling with linguistic transformation. The hy-
brid configuration (Llama 3.3 70B with Gemini 2.5
Flash as evaluator) achieves competitive semantic
quality while substantially improving readability
compared to standard Llama 3.3 70B, demonstrat-
ing that evaluator quality impacts generation qual-
ity.

Examining conformity to typical PLS patterns
(Best 25% in Table 4), results are inconclusive.
Gemini 2.5 Pro improves with agentic configura-
tions, but this does not generalize to other mod-
els. Most configurations achieve conformity lev-
els comparable to human reference patterns. Ap-
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Model Approach
VS. ORIGINAL ABSTRACT VS. REFERENCE PLS

BERTScore MeaningBERT AlignScore BERTScore MeaningBERT AlignScore
Reference (human) 0.8482 0.6825 0.7551 – – –

Gemini 2.5 Pro
Baseline 0.8352 0.5957 0.7820 0.8701 0.7162 0.7002

Agentic (V1) 0.8420 0.5928 0.7909 0.8708 0.6907 0.7157
Agentic (V2) 0.8469 0.6136 0.7992 0.8736 0.7153 0.7219

GPT-5
Baseline 0.8342 0.6075 0.7692 0.8619 0.6873 0.6598

Agentic (V1) 0.8278 0.5863 0.7887 0.8499 0.6718 0.6522

GPT-OSS-120B
Baseline 0.8407 0.6477 0.7696 0.8650 0.7346 0.6878

Agentic (V1) 0.8321 0.6468 0.7995 0.8562 0.7304 0.6708
Agentic (V2) 0.8464 0.6557 0.7953 0.8651 0.7393 0.6595

GPT-OSS-20B
Baseline 0.8327 0.5857 0.7396 0.8565 0.6697 0.6480

Agentic (V2) 0.8422 0.6680 0.8002 0.8615 0.7534 0.6590

Llama 3.3 70B
Baseline 0.8514 0.6985 0.7536 0.8679 0.7158 0.7076

Agentic (V2) 0.8549 0.6818 0.7823 0.8708 0.7446 0.7140
Agentic (V2 + Gemini 2.5 Flash) 0.8485 0.6514 0.7644 0.8711 0.7325 0.6982

Llama 3.2 3B
Baseline 0.8477 0.6566 0.8499 0.8467 0.6302 0.6982

Agentic (V2) 0.8551 0.6952 0.8403 0.8532 0.6672 0.6706

Table 3: Semantic similarity and factuality metrics for all tested models and approaches. Bold indicates best
performance within each model, underlined indicates worst within each model. Gray shading highlights best global
performance, red shading highlights worst global performance. Human reference excluded from comparisons. All
metrics averaged across 100 test samples.

Model Approach Words FKGL↓ ARI↓ CLI↓ FRE↑ GFI↓ LIX↓ SMOG↓ RIX↓ DCRS↓ Best 25% P25% P50% P75% P90% P10%
Original Abstract 868 13.85 14.07 11.11 42.12 20.39 59.26 17.37 8.60 8.75 27.61 7.39 11.89 20.22 15.89 1.00

Reference PLS (human) 655 11.38 11.46 11.21 49.23 16.21 50.35 14.23 6.07 7.37 52.50 25.89 17.89 26.61 14.78 0.22

Gemini 2.5 Pro
Baseline 661 8.26 8.01 9.07 64.45 12.38 41.21 12.74 4.02 6.53 78.44 45.33 5.28 33.11 12.89 0.00

Agentic (V1) 591 8.56 8.49 9.42 63.16 12.51 42.02 12.16 4.21 6.39 82.00 46.56 9.22 35.44 7.94 0.00
Agentic (V2) 567 9.40 9.47 10.16 58.78 13.54 44.64 12.42 4.74 6.65 83.22 44.67 9.11 38.56 7.06 0.00

GPT-5
Baseline 866 9.62 9.89 10.46 57.97 13.49 45.08 14.62 4.87 6.74 63.83 41.33 5.56 22.50 9.61 0.00

Agentic (V1) 879 10.97 11.59 11.71 51.14 15.12 48.34 15.50 5.61 7.71 49.33 26.67 14.00 22.67 8.22 0.00

GPT-OSS-120B
Baseline 623 9.82 9.94 9.74 59.10 14.76 45.98 12.96 5.15 6.77 73.44 39.39 10.56 34.06 13.22 0.00

Agentic (V1) 743 11.05 11.25 11.12 51.08 16.55 49.62 15.03 5.91 8.01 46.72 22.50 17.94 24.22 12.11 0.00
Agentic (V2) 623 10.83 11.00 10.82 52.66 16.32 49.21 13.87 5.82 7.75 83.22 44.67 9.11 38.56 7.06 0.00

GPT-OSS-20B
Baseline 541 10.17 8.89 7.08 58.28 13.85 44.24 11.84 5.04 6.32 71.88 40.11 15.80 31.76 8.85 0.11

Agentic (V2) 632 10.50 10.27 10.14 53.76 15.78 47.78 13.84 5.51 7.74 59.32 31.00 13.52 28.32 16.97 0.17

Llama 3.3 70B
Baseline 477 12.01 12.31 11.05 48.55 16.89 51.89 12.65 6.57 6.87 61.56 29.17 23.33 32.39 9.61 0.44

Agentic (V2) 497 12.23 12.46 12.59 42.72 16.91 53.08 13.41 6.60 7.54 57.28 26.17 17.61 31.11 16.78 0.00
Agentic (V2 + Gemini 2.5) 514 9.97 10.13 10.91 54.97 14.24 46.69 12.48 5.11 6.84 58.89 20.78 24.22 38.11 10.39 0.17

Llama 3.2 3B
Baseline 477 9.58 8.95 10.60 53.56 14.32 45.81 12.88 4.68 6.82 69.67 45.11 19.33 24.56 6.06 0.28

Agentic (V2) 536 12.93 12.72 12.65 37.95 17.57 54.41 14.06 6.95 7.96 45.69 19.98 21.93 25.71 14.30 1.50

Table 4: Readability metrics and percentile distribution for all tested models. Left: average readability scores
(arrows: ↓ lower is better, ↑ higher is better). Right: percentage of linguistic features in each percentile range
across 18 selected features. Best 25% represents percentage in optimal quartile. Bold indicates best performance
within each model, underlined indicates worst within each model. Gray shading highlights best global performance,
red shading highlights worst global performance. Original Abstract and Reference PLS (human) excluded from
comparisons. Averages computed across 100 test samples.

pendix A.2 presents a detailed example of the V2

iterative refinement process, illustrating how the
Evaluator Agent provides structured feedback that
guides draft improvements from 83.33% to 94.44%
best quartile conformity.

5 Discussion

Our evaluation reveals inconclusive results regard-
ing which approach is superior, with both baseline
and multi-agent configurations showing distinct ad-
vantages depending on use case requirements. The
baseline proves remarkably effective when properly
designed with comprehensive instructions based
on Cochrane guidelines, demonstrating that sys-
tematic prompt engineering grounded in domain
standards can produce high-quality PLS. The multi-
agent architecture, while not completely superior,
provides specific benefits in certain contexts.

For smaller models, the multi-agent approach
shows improvements in relevance and factuality
metrics. GPT-OSS-20B improves in semantic sim-
ilarity and factual alignment when using the V2

configuration, though with a slight deterioration
in readability. Notably, smaller models achieve
competitive or higher factuality scores compared
to larger models, something we noticed in our
prior work (Arias-Russi et al., 2025), suggesting
these models may be more conservative in adher-
ing to source material. A potential strategy to ad-
dress readability limitations would involve using
a smaller model for content extraction followed
by a larger model for final linguistic refinement,
potentially offering cost-effective generation while
preserving factual accuracy.

The multi-agent architecture provides opera-
tional advantages in terms of control and inter-
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pretability. Separating extraction, assembly, and
evaluation into distinct agents makes each com-
ponent transparent and independently modifiable.
While the baseline consolidates all instructions into
a single comprehensive prompt, the decomposed
approach allows for targeted refinement of specific
subtasks without affecting the entire pipeline. This
modularity also produces intermediate outputs for
each section, which are stored separately in our
repository and can be inspected individually for
diagnostic purposes.

However, the multi-agent approach incurs higher
token costs due to multiple agent invocations and
memory preservation through context repetition
across agents. The V1 configuration, which in-
cludes the medical glossary tool, is particularly
token-intensive, with processing costs reaching ap-
proximately 10M tokens (input + output combined)
per 100-abstract batch. Most tokens are input to-
kens, which are typically cheaper than output to-
kens, though iterative configurations may generate
similar text multiple times, increasing output costs.
The baseline, requiring only a single model invo-
cation per abstract, proves more cost-effective in
terms of API usage. This cost-benefit trade-off
must be considered when selecting an approach for
production deployment.

The effectiveness of smaller models like GPT-
OSS-20B with the multi-agent approach could en-
able local deployment in medical contexts where
data privacy is critical. While the current task
of simplifying published Cochrane reviews does
not involve sensitive information, other medical
text simplification scenarios could benefit from lo-
cal processing. For instance, healthcare providers
might need to simplify patient-specific medical re-
ports or treatment explanations without transmit-
ting sensitive data to external APIs. In such con-
texts, the ability to run smaller models locally while
maintaining reasonable quality through multi-agent
decomposition could provide a viable solution.

Beyond technical performance metrics, this
work addresses the practical need of facilitating
medical writers’ work and improving health in-
formation accessibility. Our framework provides
diagnostic tools and automated first drafts that meet
professional PLS standards, potentially reducing
the manual effort required to produce accessible
health communication materials.

6 Future Work

Future work could explore alternative evaluation
approaches beyond percentile-based diagnostics,
including different metrics and quality assessment
methods for iterative refinement. Multi-agent hy-
brid systems where different agents use specialized
models could balance cost and quality. Extending
the architecture to other plain language formats
such as PPLS or documents following the Fed-
eral Plain Language Guidelines (Williams, 2025)
would test its generalizability. Additionally, in-
corporating full-text papers as input sources rather
than abstracts alone could address content cover-
age limitations, potentially leveraging datasets like
Cochrane-auto for improved alignment between
source and simplified text.

7 Limitations

Our system may perpetuate suboptimal informa-
tion prioritization patterns from the training data
(Bakker and Kamps, 2024). Computational con-
straints and API rate limits restricted experimen-
tation scope, and we did not conduct formal sta-
tistical hypothesis testing. GPT-5 could not be
tested with V2 due to API rate limits, only supports
temperature 1.02 preventing deterministic gener-
ation, and exhibited inconsistent behavior (some-
times the model did not use the evaluation tool
for V1). GPT-OSS-120B V1 had implementation
issues with the evaluator tool. V1 intermediate out-
puts were lost due to storage issues; V2 outputs
are available in the repository. The V2 example
in Appendix A.2 represents a single cherry-picked
case. Our percentile-based evaluation framework
represents statistical conformity rather than abso-
lute quality, and strict percentile ranges could pe-
nalize innovative plain language strategies.

8 Lay Summary

Medical research papers often contain complex lan-
guage that makes them difficult for patients and
the general public to understand. Plain Language
Summaries help solve this problem by explaining
research findings using everyday words. Organiza-
tions like Cochrane create these summaries for their
systematic reviews, which combine results from
many studies to answer health questions. However,

2https://web.archive.org/web/20250903093505/
https://community.openai.com/t/temperature-in-
gpt-5-models/1337133/20
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writing plain language summaries requires med-
ical expertise and takes considerable time. This
creates a bottleneck in making health information
accessible to everyone.

We wanted to find out whether computer sys-
tems using AI could automatically generate high-
quality plain language summaries. Specifically,
we tested whether breaking down the writing task
into smaller steps handled by specialized AI agents
would work better than using a single comprehen-
sive instruction. We also wanted to know if this
approach would be more helpful for some AI mod-
els than others.

We built a system that divides summary writing
into four stages: extracting information from the
medical abstract, assembling it into a draft, check-
ing for medical terms that need simplification, and
evaluating readability. The system uses a medical
dictionary with over 20,000 terms and their plain
language alternatives. It also includes a statistical
analyzer that compares the generated text against
patterns found in human-written summaries. We
tested this system using 100 Cochrane medical ab-
stracts and six different AI models, ranging from
large commercial models to smaller open-source
ones.

Our results are mixed and there is no clear win-
ner among the designed architectures. The base-
line approach, which uses a single well-designed
instruction, performed surprisingly well. The
multi-agent system did not consistently outperform
the baseline, but it showed specific advantages.
Smaller AI models improved notably when using
the multi-agent approach, achieving better accu-
racy in preserving medical facts, though sometimes
at the cost of readability. We also found that the
multi-agent system provides greater control and
less black-box effect, allowing users to inspect and
modify individual steps separately.

Healthcare organizations and research institu-
tions working with limited computational resources
could benefit from these findings. The results sug-
gest that smaller, locally-run AI models combined
with the multi-agent approach could generate rea-
sonably accurate summaries while maintaining data
privacy. The modular design also makes it easier to
adapt the system for different types of medical writ-
ing beyond Cochrane summaries. However, more
work is needed to improve readability when using
smaller models and to reduce the computational
costs of the multi-agent approach.
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A System Architecture and Methodology
Workflow

Figure A1 illustrates the complete methodology
workflow for developing and evaluating the multi-
agent system.

A.1 Iterative Architecture

Initial experiments revealed that the baseline con-
figuration considerably outperformed the V1 ar-
chitecture in several metrics. This motivated the
development of V2 as an alternative approach to
test different architectural strategies and increase
result diversity. The V2 configuration (Figure A2)
addresses two key observations from preliminary
testing: (1) smaller models struggle to properly
utilize tools, performing significantly better with
iterative workflows rather than on-demand tool in-
vocation, and (2) the Medical Glossary Tool, while
conceptually useful, consumes substantial tokens
without proportional quality gains.

The V2 architecture maintains the same special-
ized agents as V1 but reorganizes their interaction
pattern. Instead of the Editor invoking the Evalua-
tor as a tool when needed, the Evaluator operates as
an independent agent that systematically reviews
each draft and provides structured feedback to the
Editor. This iterative loop continues for up to 10
cycles or until the Evaluator approves the output
based on quality criteria. When the maximum iter-
ation limit is reached without approval, we select
the iteration that achieves the highest percentage of
linguistic features in the optimal quartile. For each
generated text, the PLS Evaluation Tool computes
18 linguistic features and maps them to percentile
ranges (P25, P50, P75, P90).

The optimal quartile corresponds to P25 for
lower-is-better metrics and P75 for higher-is-better
metrics. We calculate what percentage of all fea-
tures fall within this optimal range and select the
iteration with the highest percentage. While met-
rics like AlignScore might provide more reliable
quality assessment, we opted for this percentile-
based approach due to computational efficiency
constraints, as computing AlignScore for each iter-
ation would significantly extend processing time.
The removal of the Medical Glossary Tool reduces
token consumption while testing whether explicit
medical dictionaries are necessary for quality PLS
generation.

This architectural variant allowed us to compare
monolithic (Baseline), tool-based (V1), and iter-

ative (V2) approaches using identical underlying
models and agents, providing insights into how in-
teraction patterns affect generation quality across
different model sizes.

A.2 Example V2 Iterative Refinement Process
This section illustrates the V2 iterative refinement
process using Cochrane review CD002120.PUB4
(“Combined oral contraceptive pill for primary dys-
menorrhoea”) as a representative example.

The Information Extraction Agents processed
the abstract and produced structured outputs for
each required PLS component:

Plain Title: What are the benefits and harms of
the combined birth control pill for treating painful
periods (primary dysmenorrhoea)?

Key Messages:

• For women with painful periods, the com-
bined birth control pill reduces pain more
than a placebo. However, it may cause un-
wanted effects such as irregular bleeding,
headaches, and nausea.

• Taking the pill continuously may be better
at reducing pain than taking it in the stan-
dard way.

• Because the studies were short, the long-
term effects are not known. It is also unclear
if the pill is more effective than other pain
medicines due to a lack of studies directly
comparing them.

Background: Many women experience painful
menstrual cramps, a condition known as dys-
menorrhoea. When these painful cramps are not
caused by another underlying medical condition
in the pelvis, it is called ‘primary dysmenorrhoea’.
Combined oral contraceptive pills are a common
treatment for this pain.

Methods: We searched for studies that compared
combined oral contraceptive pills with a placebo,
other contraceptive pills, or anti-inflammatory
drugs for treating painful periods. We then com-
bined the results and rated our confidence in the
evidence.

Results: This review included 21 randomised con-
trolled trials involving 3723 women. For women
with painful menstrual cramps, OCPs reduce pain
more effectively than placebo. However, OCPs
increase the risk of irregular bleeding. Continu-
ous use may reduce pain more effectively than the
standard schedule. . .

Limitations: Our confidence in the evidence is
only moderate because there are not enough stud-
ies to be certain about all outcomes. The evidence
does not cover long-term effects.

Currency: The evidence is up to date to March
2023.

The Assembly Agent constructed the initial draft
of 617 words, achieving 83.33% of features in
the best quartile. The Evaluator identified three
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Figure A1: Methodology for developing and evaluating a multi-agent system for automatic generation of PLS from
Cochrane medical abstracts.

Figure A2: V2 iterative architecture for PLS generation. Unlike V1 where the Editor invokes the Evaluator as a tool
on-demand, V2 establishes an independent iterative loop where the Evaluator systematically reviews drafts and
provides feedback to the Editor. The process continues for up to 10 iterations or until approval. This architecture
removes the Medical Glossary Tool and proves particularly effective for smaller models that struggle with tool
invocation.
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key issues: (1) a non-question subheading (“Main
results: oral contraceptives for painful menstrual
cramps”), (2) complex phrasing such as “When
these painful cramps are not caused by another un-
derlying medical condition in the pelvis. . . ”, and
(3) excessive passive voice constructions. Three
metrics fell in the P90 range: nouns (158), complex
words (241), and long words (165). The draft was
marked NOT_APPROVED.

What are the benefits and harms of the combined birth control
pill for treating painful periods. . .

Key messages [same as extracted]

What is primary dysmenorrhoea and what did this review
study?

What is primary dysmenorrhoea? Many women experience
painful menstrual cramps, a condition known as dysmenorrhoea.
It is a common and major cause of pain. When these painful
cramps are not caused by another underlying medical condi-
tion. . .

What did we want to find out? We wanted to find out about the
benefits and harms of using combined oral contraceptive pills. . .

How was the review conducted? We searched for studies
that compared combined oral contraceptive pills with a placebo,
other contraceptive pills, or anti-inflammatory drugs. . .

Main results: oral contraceptives for painful menstrual
cramps For women with painful menstrual cramps, the pill
reduces pain more effectively than a placebo. However, the pill
comes with unwanted effects. . .

How reliable is this evidence? Our confidence in the evidence
is only moderate because there are not enough studies to be
certain. . .

How up to date is this evidence? The evidence is up to date to
March 2023.

The Editor incorporated this feedback in Draft
2, reducing word count to 561 and improving the
best quartile percentage to 94.44%. The Editor con-
verted the non-question subheading to “What are
the main results of the review?”, simplified phras-
ing (e.g., “This is called ‘primary dysmenorrhoea’
when the pain is not caused by another medical
problem” instead of the more complex original
wording), and reduced passive voice from 17 to
13 instances. All linguistic metrics moved within
P75 or better, with no metrics remaining in the P90
range. The draft was marked PASS.

What are the benefits and harms of the combined birth control
pill for treating painful periods. . .

Key messages [same as extracted]

What is primary dysmenorrhoea? Many women experience
painful menstrual cramps, a condition known as dysmenorrhoea.
This is called ‘primary dysmenorrhoea’ when the pain is not
caused by another medical problem in the pelvis. . .

What did we want to find out? We wanted to find out about
the benefits and harms of using combined oral contraceptive
pills. . .

How did we conduct this review? We searched for studies that
compared combined oral contraceptive pills with a placebo. We
found 21 studies, known as randomised controlled trials, with
a total of 3723 women. In these studies, researchers randomly
put people into one of 2 or more treatment groups. . .

What are the main results of the review? For women with
painful menstrual cramps, the pill reduces pain more effectively

than a placebo. However, the pill comes with unwanted ef-
fects. . .

How reliable is this evidence? Our confidence in the evidence
is only moderate because there are not enough studies to be
certain about all health effects. . .

How up to date is this evidence? The evidence is up to date to
March 2023.

Table A1 quantifies the improvements between
iterations.

Metric Draft 1 Draft 2

Word count 617 561
FKGL 9.68 9.54
Passive voice 17 13
Nouns 158 142
Complex words (DC) 241 213
Long words 165 147

Best quartile (%) 83.33 94.44
P90 metrics 3 0
Decision FAIL PASS

Table A1: Metric improvements from Draft 1 to Draft 2
for CD002120.PUB4.

B Linguistic Analysis Framework

B.1 Linguistic Features
We computed 20 linguistic features for each doc-
ument using the Readability (2019) and SpaCy
(2025) libraries. Here we describe the 20 features
selected for quality assessment (see Table B1 for
the percentile thresholds):

1. Words: Total word count in the text.

2. Sentences: Total sentence count in the text.

3. Flesch Reading Ease (FRE): Produces a
score where higher values indicate easier read-
ability (Flesch, 1948; Kincaid et al., 1975).

4. Flesch-Kincaid Grade Level (FKGL): Esti-
mates the U.S. school grade level needed to
comprehend the text (Flesch, 1948; Kincaid
et al., 1975).

5. Gunning Fog Index (GFI): Estimates the
number of years of formal education needed
to understand the text (Gunning, 1952).

6. SMOG Readability Formula (SMOG): Es-
timates readability by counting polysyllabic
words (Mc Laughlin, 1969).

7. Dale-Chall Readability Score (DCRS): As-
sesses readability by comparing text words
against a list of familiar words (Chall and
Dale, 1995).
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8. Coleman-Liau Index (CLI): Measures read-
ability based on letter and word counts per
sentence (Coleman and Liau, 1975).

9. Automated Readability Index (ARI): Com-
putes readability using characters, words, and
sentences (Senter and Smith, 1967).

10. LIX: Calculates readability by analyzing the
proportion of long words in the text (Ander-
son, 1983).

11. RIX: Computes readability from the number
of long words per sentence (Anderson, 1983).

12. Words per Sentence: Average number of
words per sentence, computed as total words
divided by total sentences.

13. Passive Voice: Frequency of passive voice
constructions, determined via verb forms
tagged as VBN (e.g., “was given”).

14. Active Voice: Frequency of active voice con-
structions, counted as verbs not tagged as
VBN (e.g., “ran”, “decided”).

15. Nominalization: Count of nominalizations,
where verbs or adjectives are transformed into
nouns (e.g., “development” from “develop”).

16. Complex Words (DC): Count of complex
words according to the Dale-Chall method
(unknown polysyllabic words from a list of
basic words).

17. Long Words: Count of words exceeding 7
letters in length.

18. Complex Words: Count of words with three
or more syllables (e.g., “inconceivable”).

19. Pronouns: Count of pronouns in the text, de-
termined by tokens with the part-of-speech
PRON (e.g., “him”, “she”).

20. Nouns: Count of nouns in the text, de-
termined by tokens with the part-of-speech
NOUN (e.g., “book”, “concept”).

B.2 Percentile-Based Reference Thresholds
We derived these thresholds from the training cor-
pus of 6,754 Plain Language Summaries. The la-
beling system adapts to metric directionality as de-
scribed in Section 3.2.2: for lower-is-better metrics
(↓), the labels correspond to actual percentiles; for

higher-is-better metrics (↑), the same labels repre-
sent inverse percentiles. This ensures P25 and P75
consistently identify what we could consider the
"best" quartile across all metrics (having in mind
that not being in this quartile does not necessarily
mean that the text is bad/not plain).

B.3 Example PLS Evaluation Tool Output
The PLS Evaluation Tool generates structured text
output (both JSON and human-readable format)
that is directly provided to the LLM agents as in-
put. Table B2 illustrates the tool’s analysis of an
abstract-PLS pair from the same publication. The
original abstract deviates significantly from typi-
cal PLS patterns, while its professionally written
PLS achieves better conformity. For each metric
deviating from typical patterns (P90 or beyond),
the tool automatically generates specific feedback
suggesting reduction to median values. The actual
tool produces formatted text, but we present it here
in tabular form for clarity.

C Medical Glossary Sources

We compiled medical glossaries from eleven au-
thoritative sources to support plain language trans-
lation (Table 2 in the Methodology section presents
the source distribution and term counts). Most
of these resources are compiled in the University
of Maryland’s Williams (2025), which provides
comprehensive plain language resources for health
communication. Each source provides specialized
terminology translations for different healthcare
domains:

• NCI-C (National Cancer Institute, 2025a):
National Cancer Institute’s comprehensive
cancer dictionary covering types, treatments,
procedures, and side effects for patient educa-
tion.

• NCI-D (National Cancer Institute, 2025a):
National Cancer Institute’s drug database with
chemotherapy agents, targeted therapies, and
immunotherapy medications.

• CDC-T (Centers for Disease Control and Pre-
vention, 2011): CDC’s thesaurus providing
plain language alternatives for epidemiologi-
cal and public health terminology.

• ADA-D (American Diabetes Association,
2024): American Diabetes Association’s glos-
sary covering diabetes types, management,
complications, and monitoring terms.
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READABILITY INDICES

Feature P25/P75* P50 P75/P25* P90/P10*

FRE ↑ ≥ 48.17 ≥ 40.48 ≥ 32.68 < 25.27
FKGL ↓ ≤ 11.77 ≤ 13.16 ≤ 14.59 > 16.05
GFI ↓ ≤ 16.15 ≤ 17.79 ≤ 19.39 > 21.05
SMOG ↓ ≤ 10.68 ≤ 12.11 ≤ 13.58 > 14.87
DCRS ↓ ≤ 7.19 ≤ 7.65 ≤ 8.16 > 8.63
CLI ↓ ≤ 11.36 ≤ 12.66 ≤ 13.96 > 15.16
ARI ↓ ≤ 12.02 ≤ 13.60 ≤ 15.29 > 16.95
LIX ↓ ≤ 50.25 ≤ 54.32 ≤ 58.40 > 62.38
RIX ↓ ≤ 6.04 ≤ 7.04 ≤ 8.14 > 9.36

STRUCTURAL COMPLEXITY

Words/Sent. ↓ ≤ 19.81 ≤ 22.13 ≤ 24.76 > 27.60
Passive Voice ↓ ≤ 9 ≤ 13 ≤ 18 > 23
Active Voice ↑ ≥ 41 ≥ 29 ≥ 20 < 14
Nominalization ↓ ≤ 8 ≤ 13 ≤ 20 > 27

VOCABULARY COMPLEXITY

Complex Words (DC) ↓ ≤ 115 ≤ 160 ≤ 213 > 277
Long Words ↓ ≤ 88 ≤ 122 ≤ 164 > 208
Complex Words ↓ ≤ 60 ≤ 84 ≤ 115 > 145

CONTENT DENSITY

Pronouns ↑ ≥ 21 ≥ 13 ≥ 8 < 5
Nouns ↓ ≤ 83 ≤ 116 ≤ 157 > 202

Table B1: Percentile-based reference ranges for 18 linguistic features derived from 6,754 PLS texts. Column headers
show actual percentiles for lower-is-better metrics (↓) and with asterisk (*) for higher-is-better metrics (↑). For
example, P25/P75* means 25th percentile for ↓ metrics and 75th percentile for ↑ metrics, both representing the best
quartile.

• NCI-G (National Cancer Institute, 2025b):
National Cancer Institute’s genetics dictionary
explaining hereditary conditions, genetic test-
ing, and molecular biology concepts.

• UIowa (Human Subjects Office, University
of Iowa, 2021): University of Iowa’s gen-
eral medical term translations designed for
informed consent documents and patient com-
munication.

• MRCT (The Multi-Regional Clinical Trials
Center of Brigham and Women’s Hospital and
Harvard, 2025): Multi-Regional Clinical Tri-
als Center’s glossary for clinical research pro-
tocols, trial phases, and regulatory terminol-
ogy.

• WA-PH (Washington State Department of
Health, 2023): Washington State’s glossary fo-
cused on vaccine types, immunization sched-
ules, and disease prevention terminology.

• WebMD-A (WebMD, 2022): WebMD’s
asthma-specific dictionary covering triggers,
medications, devices, and respiratory symp-
toms.

• CCIIO (Center for Consumer Information &
Insurance Oversight, 2024): Health insurance
glossary explaining coverage terms, benefits,
deductibles, and healthcare plan types.

• Cochrane (Pitcher et al., 2022): Cochrane’s
guideline for writing systematic review sum-
maries with standardized plain language tem-
plates.

D Complete Linguistic Feature Analysis

Table D1 presents a comprehensive analysis of
all 20 linguistic features across all tested mod-
els, organized into three categories: Structure
(word/sentence metrics), Style (voice and pronoun
usage), and Readability & Complexity (traditional
readability indices and vocabulary measures).
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(a) Original abstract: 1019 words (b) Corresponding PLS: 672 words

Metric Value Target Rating Metric Value Target Rating

Within typical ranges Within typical ranges
FRE 38.55 ≥ 40.48 P25 Words/Sent. 19.76 ≤ 22.13 P25
Active Voice 83 ≥ 29 P75 FKGL 11.68 ≤ 13.16 P25
Pronouns 30 ≥ 13 P75 GFI 15.47 ≤ 17.79 P25
CLI 11.95 ≤ 12.66 P50 Active Voice 52 ≥ 29 P75

Pronouns 36 ≥ 13 P75
CLI 12.75 ≤ 13.96 P75
FRE 46.53 ≥ 40.48 P50
ARI 12.52 ≤ 13.60 P50
LIX 52.06 ≤ 54.32 P50
RIX 6.38 ≤ 7.04 P50
DCRS 7.30 ≤ 7.65 P50

Deviating from typical patterns Deviating from typical patterns
FKGL 15.11 ≤ 13.16 P90 Nominalization 22 ≤ 13 P90
ARI 16.17 ≤ 13.60 P90 Nouns 198 ≤ 116 P90
Words/Sent. 29.11 ≤ 22.13 Beyond P90 SMOG 14.18 ≤ 12.11 P90
Passive Voice 42 ≤ 13 Beyond P90 Complex Words (DC) 269 ≤ 160 P90
Nominalization 44 ≤ 13 Beyond P90 Complex Words 127 ≤ 84 P90
Nouns 326 ≤ 116 Beyond P90 Passive Voice 31 ≤ 13 Beyond P90
GFI 22.72 ≤ 17.79 Beyond P90 Long Words 217 ≤ 122 Beyond P90
LIX 64.15 ≤ 54.32 Beyond P90
RIX 10.20 ≤ 7.04 Beyond P90
SMOG 18.97 ≤ 12.11 Beyond P90
DCRS 9.30 ≤ 7.65 Beyond P90
Complex Words (DC) 507 ≤ 160 Beyond P90
Complex Words 282 ≤ 84 Beyond P90
Long Words 357 ≤ 122 Beyond P90

Table B2: Example of PLS Evaluation Tool output comparing an abstract-PLS pair. The original abstract (a)
exceeds the word limit and shows poor conformity with 14 of 18 metrics deviating from typical patterns. Its
corresponding PLS (b) meets the word limit and achieves moderate conformity with only 7 metrics deviating. The
tool automatically generates feedback suggesting median target values for all metrics at P90 or beyond.

Model Approach Structure Lexical Features
Words Sent. WPS Pass. Act. Pron. Nom. Nouns CW-DC CW LW

Original Abstract 868 33.82 26.04 24.56 49.85 20.42 43.35 278.62 411.69 215.47 285.83
Reference PLS (human) 655 33.08 20.08 19.64 57.95 35.01 25.02 187.50 263.36 133.12 197.00

Gemini 2.5 Pro
Baseline 661 41.64 16.05 14.75 66.43 45.52 19.05 171.80 240.15 98.59 166.07

Agentic (V1) 591 36.10 16.53 11.49 63.20 40.19 17.68 159.35 208.00 86.35 149.57
Agentic (V2) 567 32.73 17.48 12.05 59.57 35.07 17.92 153.56 207.12 92.02 152.80

GPT-5 Baseline 866 48.69 17.90 18.59 90.29 46.74 22.09 249.45 321.40 136.71 235.15
Agentic (V1) 879 45.60 19.49 21.67 92.90 44.73 25.89 278.74 375.02 160.88 253.35

GPT-OSS-120B
Baseline 623 32.47 19.34 14.17 63.93 35.52 19.92 160.30 229.30 109.29 165.78

Agentic (V1) 743 37.70 19.80 18.73 75.59 39.10 25.68 218.46 330.97 160.50 221.94
Agentic (V2) 623 31.62 19.80 14.37 64.15 33.24 21.29 177.80 266.55 130.59 182.99

GPT-OSS-20B Baseline 541 27.52 19.31 12.18 57.55 32.31 16.08 141.26 193.89 87.96 141.78
Agentic (V2) 632 33.41 18.88 15.47 65.61 32.76 20.92 179.55 275.15 131.01 183.65

Llama 3.3 70B
Baseline 477 21.65 22.23 9.51 44.43 29.26 19.56 130.86 173.90 95.13 141.06

Agentic (V2) 497 25.26 19.85 10.89 46.97 23.49 19.93 148.66 207.16 112.08 165.90
Agentic (V2 + Gemini 2.5 Flash) 514 29.37 17.62 9.57 54.74 32.64 17.86 143.63 194.28 92.17 148.95

Llama 3.2 3B Baseline 477 31.40 15.28 11.94 38.27 25.36 19.09 127.76 185.00 98.34 145.72
Agentic (V2) 536 27.83 19.79 15.73 40.84 17.42 25.17 162.41 239.07 130.42 187.85

Table D1: Linguistic feature analysis (Structure and Lexical Features) across all tested models and approaches.
Gray shading highlights original abstract and human reference baseline. Abbreviations: Words Per Sentence (WPS),
Passive voice (Pass.), Active voice (Act.), Pronouns (Pron.), Nominalization (Nom.), Complex Words Dale-Chall
(CW-DC), Complex Words (CW), Long Words (LW). Averages computed across 100 test samples.
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