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Abstract

Automatic readability assessment plays a key
role in ensuring effective and accessible written
communication. Despite significant progress,
the field is hindered by inconsistent definitions
of readability and measurements that rely on
surface-level text properties. In this work, we
investigate the factors shaping human percep-
tions of readability through the analysis of 897
judgments, finding that, beyond surface-level
cues, information content and topic strongly
shape text comprehensibility. Furthermore, we
evaluate 15 popular readability metrics across
five English datasets, contrasting them with
six more nuanced, model-based metrics. Our
results show that four model-based metrics con-
sistently place among the top four in rank cor-
relations with human judgments, while the best
performing traditional metric achieves an aver-
age rank of 8.6. These findings highlight a mis-
match between current readability metrics and
human perceptions, pointing to model-based
approaches as a more promising direction.

1 Introduction

Readability assessment can be used to deter-
mine the level of comprehension of a piece of
text (DuBay, 2004; Collins-Thompson, 2014). In
domains such as science communication (Kerwer
et al., 2021; August et al., 2023), health (Friedman
and Hoffman-Goetz, 2006; Hershenhouse et al.,
2024), law (Curtotti et al., 2015; Cheong et al.,
2024), and education (Vajjala and Lučić, 2018),
readability assessment plays a key role in mak-
ing information accessible to individuals regardless
of their background or cognitive needs (Collins-
Thompson, 2014). It is important for highly-
specialized fields characterized by dense jargon and
complex language (Friedman and Hoffman-Goetz,
2006; Han et al., 2024), as well as for applications

engaging with users of varied familiarity with the
domain (Joshi et al., 2025; Puech et al., 2025).

One challenge in advancing automatic read-
ability assessment is that readability is an over-
loaded term, measured in different ways by prior
work. Some studies treat readability as text diffi-
culty, using surface-level properties such as word
length, word frequency, and various word type
counts (Flesch, 1948; Kincaid et al., 1975; Leroy
et al., 2008). Others broaden the definition of read-
ability to consider syntactic and discourse-level
organization, including cohesion and coherence
properties (Graesser et al., 2004; Petersen, 2007;
Pitler and Nenkova, 2008; Feng et al., 2010; Es-
lami, 2014; Zhuang et al., 2025). A third line of
work views readability as a combination of text
characteristics and information content (Xia et al.,
2016; August et al., 2024).

Taken together, the diversity of interpretations
highlight the difficulty of pinning down readability,
and have led to the continued use of proxy metrics
that may not fit the task, domain, or are misaligned
with human comprehension judgments (Ahmed,
2023; Liu and Lee, 2023; Han et al., 2024).

2 Related Work

Readability Datasets. Despite growing interest
in readability assessment, high-quality datasets re-
main scarce (Xia et al., 2016). Existing document-
level datasets can be subdivided into parallel cor-
pora (Vajjala and Lučić, 2018; August et al., 2024;
Joshi et al., 2025) and non-parallel corpora (Lu
et al., 2022; Crossley et al., 2024) and span various
tasks and content type, including literary and infor-
mational (Crossley et al., 2024), academic (August
et al., 2024), or information-seeking content (Lu
et al., 2022; Joshi et al., 2025). Recently, sentence-
level datasets have also been introduced (Arase
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et al., 2022; Naous et al., 2024).

Readability Metrics. While human judgments
remain the gold standard for readability evaluation,
their collection is often time-consuming and ex-
pensive (Rooein et al., 2024). Automated metrics
have emerged as a cheaper and quicker alternative.
Examples include metrics relying on basic linguis-
tic features, including sentences, words, and sylla-
bles counts, average reading time (Demberg and
Keller, 2008), language model perplexity (Collins-
Thompson, 2014; Pitler and Nenkova, 2008), and
fraction of functional (Leroy et al., 2008, 2010) or
uncommon words (August et al., 2024). Surface-
form features have been further combined to form
readability tests, such as the Automatic Reading In-
dex (Senter and Smith, 1967), Dale-Chall Readabil-
ity Score (Dale and Chall, 1948), Flesch-Kincaid
Reading Ease (Flesch, 1948), and Linsear Write
Formula (Klare, 1974). Despite critiques of brittle-
ness (Rooein et al., 2024; Collins-Thompson, 2014)
and limited domain suitability (Leroy et al., 2010),
these formulas continue to be used. Recently, both
fine-tuning (Arase et al., 2022; Naous et al., 2024)
and LLM-as-a-judge approaches (Rooein et al.,
2024; Trott and Rivière, 2024) have been proposed
to capture more abstract and nuanced aspects of
readability. However, since these methods rely
on implicitly learned representations, they are re-
garded as less interpretable than those grounded in
surface-level textual features.

3 How Do Humans Perceive Readability?

Given the divergent definitions of readability and
continued reliance on surface-form metrics, we
take a human-centric perspective, asking: What
guides human perceptions of readability? To ad-
dress this question, we analyze a subset of the
ELI-WHY (GPT-4) (Joshi et al., 2025) dataset, de-
signed to study whether LLMs can generate expla-
nations tailored to various readability levels. The
dataset comprises GPT-4–generated explanations
for 299 “Why” questions, each annotated by hu-
mans into three readability levels— Elementary ,

High School , and Graduate —along with ac-
companying rationales justifying their judgments.
Each question–explanation pair was independently
rated by three annotators, and final labels were
determined via majority vote. For additional de-

tails, see the original paper. Table 11 (in Appendix)
shows randomly selected examples of human ratio-
nales for each readability level.

Exploring Human Rationales. Although Joshi
et al. (2025) collected human rationales support-
ing readability judgments, their analysis primarily
focuses on the labels themselves, offering limited
insight into the factors shaping human perceptions.
We complement their study by providing a quanti-
tative perspective on the key factors driving human
text comprehension through the analysis of human
rationales. Two authors of this paper annotated
the human-provided readability rationales for 90
ELI-Why question–answer pairs, balanced evenly
across classes. Building on the original human an-
notation instructions, each rationale was labeled
with one or more of the following categories:

• Wording/Terminology: presence of scientific
words, abbreviations, or complex synonyms;

• Sentence Structure: comments on sentence
length or the number of concepts;

• Examples/Analogies: mentions of examples
or analogies as key factors;

• Details and Depth: mentions of the presence
or absence of details;

• Curriculum-based: links the information con-
tent or topic to a specific education level.

Figure 1 shows the consensus vote across read-
ability classes. The average sample-level Jaccard
index for the obtained annotations is 0.91, indicat-
ing high agreement between the two annotators.
Wording/Terminology emerges as the predominant
rationale for readability judgments, with annota-
tors distinctions in lexical complexity (e.g., “Words
like adherence are too advanced for elementary
school”) or simplicity (“uses basic words”). The
Curriculum-based category is invoked far more
often to justify High School and Graduate judg-

ments than Elementary , with annotators noting
that “The scientific terms... require an introductory
background or some foundational knowledge” or
that “a concept that will be brought up in chem-
istry classes in undergrad.” Conversely, Exam-
ples/Analogies is disproportionately used to sup-
port Elementary judgments, with comments such
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Figure 1: Distribution of justification reasons across
90 examples in ELI-WHY (GPT-4). Counts are based
on the consensus over 2-way annotations.

as “Examples are... what you’d say to a toddler” or
“The analogies used... make it more accessible to
elementary level.”. Notably, both categories rely
on comprehension and common-sense reasoning
that go beyond surface-level textual properties.

4 Re-evaluating Readability Metrics

Motivated by the gap between surface-form tex-
tual cues and human perceptions of readability, we
investigate how well existing readability metrics
correlate with human judgments across five diverse
datasets (see statistics in Table 1).1

4.1 Datasets

SCIENTIFIC PAPERS (August et al., 2024) con-
sists of 180 total query-focused summaries about
10 different academic papers (e.g., What did the
paper do?) and cover topics from public policy to
nanotechnology. Summaries were carefully curated
by an expert science writer to reflect three levels of
complexity: Low , Medium , and High .

CLEAR (Crossley et al., 2024) contains 4.7k
text excerpts sourced from open digital libraries
including Project Gutenberg and Wikipedia. The
texts are self-contained and cover both cover lit-
erary and informational content. Approximately
111k pairwise readability judgments from 1.1k an-
notators were aggregated under a Bradley-Terry

1Additional dataset details are available in Appendix A.

model to obtain continuous readability scores.
ELI-WHY (GPT-4) (Joshi et al., 2025) in-

cludes 897 GPT-4–generated explanations tai-
lored to three readability levels— Elementary ,

High School , and Graduate —each annotated
with human-assigned labels and rationales. Like-
wise, ELI-WHY (HUMAN) is a smaller dataset
with 123 answers that were manually curated.

SCIENCEQA (Lu et al., 2022) is a multi-modal
science reasoning dataset consisting of 21k multi-
ple choice questions sourced from K-12 curriculum,
covering various subjects (e.g., natural science, lan-
guage science, and social science). Each example
is associated with a reference solution (or expla-
nation) and reference knowledge (or lecture), both
of which are written at the readability level of the
intended student audience. We randomly sample
200 text-only examples per grade for our analysis.

4.2 Metrics 2

Surface-form metrics consist of direct counts of
properties of the text, such as characters, syllables,
monosyllables, polysyllables, words, and sentences.
These also include other specialized variants such
as estimated reading time in seconds, number of
difficult words, and functional words.

Psycholinguistic metrics, known as readability
tests, are typically formulated as weighted sums
of ratios involving surface-form properties. For
instance, Automatic Readability Index is based
on characters-to-words and words-to-sentences ra-
tio (Senter and Smith, 1967), the Flesch Kincaid
Reading Ease on words-to-sentences and syllables-
to-words (Flesch, 1948), and Dale-Chall Readabil-
ity on the fraction of difficult words and words-
to-sentences ratio (Dale and Chall, 1948). An ex-
ception is the Linsear Write Formula, which dis-
tinguishes easy from hard words using syllable
counts and computes their frequencies in a text
sample (Klare, 1974). We additionally report val-
ues for other popular metrics (Coleman and Liau,
1975; Gunning, 1952; Harry and Laughlin, 1969).

Model-based metrics are categorized into two
main classes: fine-tuned metrics (Zhuang et al.,
2025) and LLM-as-a-judge metrics (Zheng et al.,
2023). In this work, we use two fine-tuned met-
rics based on ModernBERT (Warner et al., 2024) –

2We refer readers to Appendix B for additional details.
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Dataset Size Label Type Labels Avg.
#WORDS

Avg.
#SENTS

SCIENTIFIC PAPERS (August
et al., 2024)

180 categorical Low ≺ Medium ≺ High 65.93 2.22

CLEAR (Crossley et al., 2024) 1000 continuous N/A 199.23 9.45

ELI-WHY (GPT-4) (Joshi
et al., 2025)

897 categorical Elementary ≺ High School ≺ Graduate 144.21 6.97

ELI-WHY (HUMAN) (Joshi
et al., 2025)

117 categorical Elementary ≺ High School ≺ Graduate 99.03 4.22

SCIENCEQA (Lu et al., 2022) 2295 categorical Grade 1 ≺ Grade 2 ≺ ... ≺ Grade 12 183.08 13.26

Table 1: Dataset statistics, including dataset size, readability label type (continuous vs categorical), average number
of words and sentences across examples.

META RATER (READABILITY) and META RATER

(PROFESSIONALISM), which were recently intro-
duced to evaluate texts along readability and profes-
sionalism dimensions, respectively (Zhuang et al.,
2025). The former considers factors such as clar-
ity, coherence, vocabulary complexity, and sen-
tence structure with the goal of assessing whether
a reader can understand a written text, whereas the
latter relies on the depth and content accessibil-
ity to determine the degree of expertise or knowl-
edge required to comprehend a text. Additionally,
we include a complementary BERT-based metric—
README++ (Naous et al., 2024)—which predicts
readability in terms of language learning capabili-
ties through the use of the 6-point Common Euro-
pean Framework of Reference for Languages scale.

We test three different LLM-as-a-judge ap-
proaches, including the zero-shot continuous score
approach by Trott and Rivière (2024) (dubbed
LLM-AS-A-JUDGE CONTINUOUS 0-100). We
also test a categorical setting, in which a model
is tasked with predicting one of three read-
ability labels - Elementary , High School or

Graduate . We prompt the model with the
same instructions provided to human annotators
in Joshi et al. (2025) and, in the 5-shot set-
ting, include the five example annotations (two
Elementary , two Graduate , one High School ).

All LLM-as-a-judge approaches are performed us-
ing Llama-3.3-70B-Instruct with greedy decod-
ing (temperature=0).

4.3 Results & Discussion

An ideal metric should correlate strongly with hu-
man judgments of readability. To operationalize
this, and given that readability labels are ordinal,

we map the discrete labels to monotonically in-
creasing numeric values ranging from 0 to k − 1.
We apply a similar transformation to the outputs
of model-based metrics to obtain numerical values
and then compute the correlation between metric
outputs and human annotations using the Kendall
Tau-b coefficient (Kendall, 1938).34 To assess over-
all performance, we report the average rank order
across all datasets (Avg. Rank).

Table 2 shows that model-based metrics sys-
tematically achieve stronger correlations with hu-
man judgments, surpassing surface-form and psy-
cholinguistic metrics by up to 0.24 absolute points.
Notably, all three LLM-as-a-judge metrics consis-
tently rank in the top three (average ranks 2.4–3.2),
followed closely by the fine-tuned META RATER

(PROFESSIONALISM) and README++ models.
Looking at the disagreements between metrics, we
find LLM-as-a-judge metrics to be more sensitive
to specialized terminology and sentence structure,
whereas fine-tuned models like README++ are
more sensitive to information density and presence
of connectors and cohesive devices. Comparing
META RATER (PROFESSIONALISM) with META

RATER (READABILITY), the latter shows an av-
erage correlation rank of 21.0, falling below psy-
cholinguistic and surface-form metrics, where the
best traditional metric achieves 8.6. This may be
because examples are generally clear, grammati-
cally correct, and coherent, leading the model to
systematically assign the same readability class.
Conversely, because META RATER (PROFESSION-
ALISM) reflects the depth and expertise demanded

3We use the implementation available in scipy.stats.
4See Appendix B for details on the categorical-to-

numerical mappings used for each metric.
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Type Metric SCIENTIFIC PAPERS
(August et al., 2024)

CLEAR
(Crossley et al., 2024)

ELI-WHY (GPT-4)
(Joshi et al., 2025)

ELI-WHY (HUMAN)
(Joshi et al., 2025)

SCIENCEQA
(Lu et al., 2022)

Avg.
Rank

Surface-form

# Words 0.16∗ -0.06∗ 0.46∗ 0.15 0.28∗ 17.0
# Sentences 0.25∗ 0.23∗ 0.38∗ -0.07 0.09∗ 17.0
Avg. Sentence Length -0.15 -0.25∗ 0.21∗ 0.40∗ 0.39∗ 16.4
Avg. Reading Time (s) 0.20∗ -0.23∗ 0.47∗ 0.25∗ 0.32∗ 14.8
# Syllables 0.22∗ -0.28∗ 0.47∗ 0.28∗ 0.33∗ 13.2
# Monosyllables 0.08 0.16∗ 0.39∗ 0.01 0.22∗ 18.8
# Polysyllables 0.31∗ -0.33∗ 0.46∗ 0.47∗ 0.41∗ 9.6
# Difficult Words 0.26∗ -0.40∗ 0.45∗ 0.46∗ 0.48∗ 8.6
TE Score 0.35∗ -0.18∗ 0.34∗ 0.34∗ 0.06∗ 17.2

Psycholinguistics

Automatic Readability Index 0.07 -0.33∗ 0.36∗ 0.56∗ 0.40∗ 11.0
Coleman Liau Index 0.30∗ -0.32∗ 0.31∗ 0.54∗ 0.35∗ 16.8
Dalle Chall Readability Score 0.37∗ -0.37∗ 0.37∗ 0.52∗ 0.22∗ 12.4
Flesch Reading Grade 0.15 -0.36∗ 0.37∗ 0.58∗ 0.40∗ 11.6
Flesch-Kincaid Reading Ease -0.32∗ 0.37∗ -0.35∗ -0.58∗ -0.36∗ 11.8
Gunning Fog 0.15∗ -0.37∗ 0.39∗ 0.57∗ 0.37∗ 14.0
Linsear Write Formula -0.06 -0.31∗ 0.24∗ 0.45∗ 0.40∗ 14.2
SMOG Index 0.14 -0.38∗ 0.37∗ 0.59∗ 0.37∗ 12.2

Model-based

README++ 0.40∗ -0.45∗ 0.50∗ 0.50∗ 0.44∗ 6.2
Meta Rater (readability) -0.17 0.14∗ 0.00 0.00 0.09∗ 21.0
Meta Rater (professionalism) 0.49∗ -0.40∗ 0.51∗ 0.67∗ 0.44∗ 4.2
LLM-as-a-judge (0-shot) 0.57∗ -0.50∗ 0.49∗ 0.73∗ 0.60∗ 2.4
LLM-as-a-judge (5-shot) 0.61∗ -0.55∗ 0.43∗ 0.71∗ 0.61∗ 3.2
LLM-as-a-judge (continuous 0-100) -0.56∗ 0.59∗ -0.53∗ -0.68∗ -0.52∗ 2.4

Table 2: Rank correlations between readability metrics and human judgments of correctness across 5 datasets.
We report the Kendall Tau coefficient and boldface the four metrics exhibiting strongest correlations with human
judgments. ∗indicates correlation coefficients with p-value < 0.01.

by each input, we hypothesize it better aligns with
human perceptions of readability which go beyond
lexical and syntactic cues (see Section 3).

Together these results demonstrate the strong
performance of LLM-as-a-judge metrics. However,
we highlight the trade-off with inference cost, as
LLM-based evaluations typically require generat-
ing text for each instance, making them slower and
more resource-intensive approaches than fine-tuned
models. We also note that despite achieving the
strongest correlations with human judgments (up to
0.73), model-based metrics remain far from per-
fect alignment, suggesting room for improvement.

Overall, no single model-based metric consis-
tently dominates: while the continuous LLM-as-
a-judge metric achieves the highest correlations on
three datasets, it underperforms relative to LLM-
AS-A-JUDGE (0-SHOT) on ELI-WHY (HUMAN)
and SCIENCEQA. The two metrics differ consider-
ably: the continuous variant penalizes texts contain-
ing numbers and named entities (e.g., “The Barber
of Seville”), whereas the discriminative one is more
sensitive to scientific terminology (e.g., “hydropho-
bic effect”, “endergonicity”), complex sentence
structures, and equations. Despite its finer granular-
ity, the continuous approach shows marked score
saturation in SCIENCEQA (Li et al., 2025), with
81.30% of scores confined to three values.

Surface-form metrics outperform psycholin-

guistic metrics on 4 (out of 5) datasets. With the
exception of ELI-WHY (HUMAN) dataset, Table 2
shows that there is always a simpler surface-level
metric (e.g., # DIFFICULT WORDS, or #SYLLA-
BLES) that is on par or outperforms popular met-
rics, such as the Automatic Readability Index or the
Flesch Kincaid Reading Ease. Upon further analy-
sis, we find that the stronger correlation observed
for average sentence length in the ELI-WHY (GPT-
4) can be attributed to length bias in the genera-
tions, where perceived readability is linked to the
explanation’s length (see Figure 3).

5 Conclusion
This work tackles the inconsistency of readabil-
ity definitions (and metrics) in the literature by
showing that human perceptions of readability go
beyond lexical and syntactic features, also consider-
ing topic and information content. Furthermore, we
benchmark 20+ reference-less metrics–including
LLM-as-a-judge and fine-tuned models–across five
datasets. Our results show that model-based met-
rics correlate more strongly with human judgments
than popular readability metrics, suggesting they
capture more nuanced features. Together, these
findings call for clearer definitions of readability
and more rigorous validation of metrics, paving the
way for assessments that better reflect how humans
understand text.
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Limitations

The analysis conducted in this paper is limited to
the available datasets in the English language, there-
fore providing limited generalization to other lan-
guages. While we are partially motivated by the
lack of high quality labeled data in other languages,
a few exceptions exist namely in the French lan-
guage (François and Fairon, 2012). Future work
may consider expanding on this work through the
creation of additional readability datasets in other
languages or by expanding our analysis to other
languages.

Section 3 concerns the investigation of the
main factors shaping human readability judgments.
While our findings are intuitive and generally
aligned with prior discussion in the literature (Au-
gust et al., 2024; Klare, 1974), they are based on
information extracted from a single dataset in QA,
potentially leading to concerns about their gen-
eralizability. However, reasoning judgments are
not widely available in readability datasets, mak-
ing it non-trivial to extend this analysis to other
datasets. Future work could include building addi-
tional datasets, therefore, facilitating the expansion
of this analysis to other domains and tasks.

Lay Summary

Readability assessment helps ensure that informa-
tion can be understood by people with different
backgrounds and abilities. A key goal is to auto-
mate this process and reduce the need for human
evaluation.

Many datasets and methods have been developed
for automatic readability assessment, but they often
rely on different definitions of what makes text
readable. Even today, most approaches still use
basic measures, like the number of words, syllables,
or sentences, to estimate readability.

In this work, we show that people’s perceptions
of readability depend on more than simple text fea-
tures—they are strongly influenced by the content
and topic of the text. We compare traditional read-
ability measures with more advanced model-based
metrics across five datasets and find that conven-
tional measures often fail to capture what humans
consider readable. Our results emphasize the need
for clearer, standardized definitions of readability
and for moving beyond simple, surface-level met-

rics.
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A Additional Details: Datasets

In this section, we provide additional details about
the datasets. Table 1 summarizes the general statis-
tics about the five datasets considered in this study,
including the readability label type, the size of the
dataset, but also the average example length in
terms of word count and sentence count.

A.1 SCIENCEQA (Lu et al., 2022)
SCIENCEQA is collected from elementary and high
school science curricula sourced from IXL learn-
ing5 and with topics ranging from natural, social,

5https://www.ixl.com
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SCIENCEQA readability example

Lecture: {{lecture}}
Explanation: {{explanation}}

Figure 2: Formatting of each SCIENCEQA exam-
ple. Whenever examples miss the corresponding
{{lecture}} or {{explanation}} fields, we we omit
them from the template above.

and natural sciences. To ensure coverage across
grades 1–12, we sample from the full dataset. We
draw 200 examples per grade, except for 1st grade
where only 95 are available, yielding 2295 exam-
ples overall. Although primarily a multiple-choice
QA dataset, it also includes a lecture covering the
knowledge needed to answer each question and a
solution outlining how to use it to derive the answer.
For every question, we compute the readability by
concatenating the two fields as demonstrated in Fig-
ure 2. For some qualitative examples, see Table 3.
To compute the correlation with human judgments,
we use grades 1-12 as the readability judgments
(12-way classification), where a higher grade im-
plies added difficulty in comprehending a text.

A.2 CLEAR (Crossley et al., 2024)

CLEAR consists of 4.7k text excerpts sampled
from online digital libraries. Each example is cu-
rated to ensure the text is self-contained and com-
posed of full sentences. Unlike the other datasets,
the readability score in CLEAR is continuous and
represents the easiness of comprehension of a given
text (BT_easiness). We refer to the original paper
for additional details regarding the dataset. Table
5 illustrates a few examples from this dataset and
corresponding readability score. To balance effi-
ciency with generalization, we randomly sample
1k examples without replacement from the original
dataset and use them for our correlation analysis.
Table 6

A.3 SCIENTIFIC PAPERS (August et al., 2023)

SCIENTIFIC PAPERS dataset is a parallel corpus
for readability, comprising 3 human-edited variants
of the same summary for each example. Table 7
shows three human-curated versions of the question
“What did the paper find?” at different complexity
levels. The correlation analysis considers we all
examples and map the ordinal classes— Low ≺

Medium ≺ High —onto a 0–2 scale.

A.4 ELI-WHY (GPT-4) (Joshi et al., 2025)

Our analyses reveal the presence of length bias,
where there seems to exist a correlation between the
length of GPT4-generated explanations and human
perceived readability (see Figure 3). In fact, we
observe a propensity for responses deemed higher
readability to be longer, which can be explained by
the added detail and specificity often emphasized
by human experts. Future work could explore ways
of mitigating this bias by enforcing strict generation
lengths or, if a reference document with relevant
information is available by controlling the informa-
tion content within each generation (August et al.,
2024).

A.5 ELI-WHY (HUMAN) (Joshi et al., 2025)

Table 8 illustrates a few randomly selected exam-
ples for the ELI-WHY (HUMAN) datasets. These
explanations were manually curated by two authors
of the paper.

B Automated Metrics

This section discusses the implementation details
of the metrics evaluated in the main paper. All ex-
periments are implemented in Python: textstat6

is used to compute surface-form and psycholinguis-
tic metrics; transformers is used to implement
the model-based metrics, including fine-tuned and
LLM-as-a-judge approaches.

B.1 Psycholinguistics Metrics

The metrics listed below are commonly referred to
as readability tests and commonly used to gauge
the difficulty that human readers may have in un-
derstanding a given text.

Automatic Readability Index (ARI) (Senter
and Smith, 1967) estimates the US grade level
needed to comprehend a text. To do so, it uses
the ratio of characters-to-words and words-to-
sentences. Intuitively, these ratios capture the idea
that longer words and longer sentences are more
difficult to grasp. The character counts include both
numbers and letters. A score of 1 and 14 would
match that of a Kindergarten and a College student,

6https://pypi.org/project/textstat/
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Figure 3: Distribution of number of words (# WORDS) and sentences (# SENTENCES) per readability label in the
ELI-WHY (GPT-4) dataset.

respectively.
⌈
4.71

(
#chars
#words

)
+ 0.5

(
#words

#sentences

)
− 21.43

⌉

Coleman Liau Index (CLI) (Coleman and Liau,
1975) similarly to ARI, it also yields an estimate
of the minimum US grade level necessary to un-
derstand a piece of text. It is defined in terms of
the average counts of letters and sentences per 100
words in a text sample.

0.0588 · #letters− 0.296 · #sentences− 15.8

Dale Chall Readability (Dale and Chall, 1948)
leverages the fraction of difficult words in the doc-
ument, as well as the average word-to-sentence
count ratio to gauge the difficulty of a given text.
By design, the metric relies on a pre-defined subset
of 3k words that is empirically expected to be famil-
iar to the majority of 4th graders. The formula is
designed such that scores ≤ 4.9 match grade 4 and
below, and scores ≥ 10 match grades 16 and above.
Below we write the new Dale-Chall Formula:
⌊
64− 0.95

(
#difficult_words

#words

)
− 0.69

(
#words

#sentences

)⌋

Flesch-Kincaid Reading Ease (FKRE) and
Flesch-Kincaid Grade Level (FKGL) (Flesch,
1948) rely on the same core properties of language,
such as average word length and average sentence
length, differing only in the coefficients. The for-
mulas were defined by the US Navy to gauge
the readability of the technical material and later
adopted by a few US states to impose readability

requirements on various legal documents (e.g., in-
surance policies) (McClure, 1987). The FKRE is
defined in as follows:

206.835− 1.015
(

#words
#sentences

)
− 84.6

(
#syllables

#words

)

whereas the FKGL is defined as:

0.39
(

#words
#sentences

)
+ 11.8

(
#syllables

#words

)
− 15.59

Gunning Fog Index (GFI) (Gunning, 1952) pro-
vides an estimate of the number of formal education
required to understand the text on a first reading.
It works by first computing the average sentence
length, i.e., word-to-sentence ratio of a passage and
then computing the ratio of complex words in the
passage. In this formula, complex words are de-
fined as words with 3+ syllables that are not proper
nouns, familiar words, or compound words. Con-
ventionally, scores range between 6 and 17 which
indicate that 6th grade and College Graduate are
necessary to be able to understand a piece of text,
respectively.

0.4
[(

#words
#sentences

)
+ 100

(
#complex_words

#words

)]

Linsear Write Formula (LWF) (Klare, 1974)
counts the number of easy and hard words in a 100-
word sample. To distinguish easy from hard words,
it utilizes the number of syllables in each word:
polysyllable words are considered hard words,
whilst words with less than 3 syllables are con-
sidered easy. It was originally designed to gauge
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the readability of the technical manuals used in the
US Air Force.

r = 3·#hard_words+1·#easy_words
#words

where the final linsear write score is given by

LWF =

{
r/2 if r > 20

r/2− 1 else

SMOG grade (Harry and Laughlin, 1969) was
proposed as a more accurate and easier to compute
alternative to Gunning Fog Index. It is defined in
terms of polysyllable counts (words with 3+ sylla-
bles) across three 10-sentence long texts.

1.043
√

#polysyllables · 30
#sentences + 3.1291

B.2 Model-based Metrics
META RATER (PROFESSIONALISM) and META
RATER (READABILITY) (Zhuang et al., 2025) are
two fine-tuned based metrics, both operationalized
using a ModernBERT-base model. The models are
designed to evaluate the degree of required exper-
tise and ease of understanding in a 0-5 point scale,
respectively. To obtain the metric score associated
with a given text, each text is fed through the model
and the class with maximum probability is selected
(i.e., greedy prediction). This score is then used to
compute the correlation with human judgments.

README++ (Naous et al., 2024) is a model-
based metric that grounds readability assessment
in the capabilities of second-language learners.
Specifically, we use tareknaous/readabert-en,
a BERT-based model fine-tuned on the English por-
tion of the README++ corpus—a sentence-level
readability dataset spanning multiple domains (e.g.,
finance, economics, poetry, agriculture). Readabil-
ity scores are provided on a six-point scale aligned
with the Common European Framework of Refer-
ence for Languages (CEFR), where higher values
indicate greater language proficiency.

Since README++ was originally trained on sin-
gle sentences, we hypothesize that it may not gener-
alize well to multi-sentence inputs, such as those in
SCIENCEQA or ELI-WHY (GPT-4). To address
this limitation, we adopt a bottom-up approach: for
each document, we first compute the README++
score for each sentence, then average them to ob-
tain a document-level score (README++ (AVG)).

We also evaluate another variant, README++
(MAX), which reflects the hypothesis that ad-
vanced readers can understand simpler texts, but
not vice versa. Table 9 summarizes the results.
While both README++ and README++ (MAX)
exhibit the same average rank (1.8), we observe that
README++ exhibits stronger correlations with hu-
man judgments in 3 (out of 5) evaluated datasets.
Notably, README++ (AVG) exhibits a an average
rank of 2.4, suggesting that this variant system-
atically under performs the other two variants in
terms of correlating with human judgments. For
brevity, and because of its superior performance,
we restrict the analysis in the main paper to the
original method—README++.

LLM-AS-A-JUDGE (0-SHOT) and LLM-AS-
A-JUDGE (5-SHOT) are prompt-based strategies to
extract the readability level from any text. Specifi-
cally, we use Llama-3.3-70B-Instruct 7, a pop-
ular open-source instruction-following model. To
ensure that models’ predictions strongly align with
human readability judgments, we re-use instruc-
tions previously provided to humans (Joshi et al.,
2025). The prompt is discriminative in nature, be-
ing designed to extract 3-way readability labels
– Elementary , High School , Graduate . Origi-
nally, the prompt includes 5 examples of readabil-
ity judgments spanning the three classes, which
we refer to as LLM-AS-A-JUDGE (5-SHOT). Al-
though these examples improve alignment with hu-
man judgments and help constrain output structure,
they add runtime overhead. We therefore evaluate a
0-shot version that replaces examples with explicit
format instructions. Since our goal is to compute
correlations with human judgments, which can be
expressed as either categorical or continuous, we
map textual labels to numbers. Treating the la-
bels as ordinal ( Elementary ≺ High School ≺
Graduate ), we assign them a 0–2 scale for corre-

lation analysis.
LLM-AS-A-JUDGE (CONTINUOUS 0-100),

first proposed in Trott and Rivière (2024), elic-
its continuous 0-100 readability scores from
GPT-4-Turbo and GPT-4o-mini (Achiam et al.,
2024), with higher values denoting easier texts to
understand. We follow the same prompt as in the
original paper (Figure 4), but replace the model

7https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct
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LLM-AS-A-JUDGE (CONTINUOUS 0-100)

{
"content": "You are an experienced teacher
skilled at identifying the readability of
different texts.",
"role": "system"

}, {
"content": "Read the text below. Then
indicate the readability of the text, on a
scale from 1 (extremely challenging to
understand) to 100 (very easy to read and
understand). In your assessment, consider
factors such as sentence structure,
vocabulary complexity, and overall
clarity.\n<Text>{{text}}</Text>\nOn a scale
from 1 (extremely challenging to
understand) to 100 (very easy to read and
understand), how readable is this text?
Please answer with a single number.",
"role": "user"

}

Figure 4: Prompt used to extract a 0-100 continuous
score associated with the ease of readability of a given
text. The placeholder {{text}} is either the explana-
tion to a question or the text excerpts depending on the
dataset being evaluated.

with Llama-3.3-70B-Instruct to ensure compa-
rability among LLM-as-a-judge metrics.8

In the main paper, we ensure the reproducibil-
ity of LLM-as-a-judge evaluations by reporting
correlations obtained from greedy generations
(temperature=0).9 This decoding strategy is not
only deterministic but also commonly adopted in
prior work (Trott and Rivière, 2024; Gu et al.,
2025), being representative of the most likely (or
modal) behavior of the LLM.

C Human Perceptions of Readability

In the main paper, we examine the reasons driv-
ing the human’s annotations of various perceived
readability levels. To this end, we employ vari-
ous automatic pattern extraction techniques, includ-
ing frequency-based analysis (represented in the
form of wordclouds) and n-gram feature impor-
tance. The following sections provide additional
details about each of these experiments.

8Llama-3.3-70B-Instruct consistently generates a num-
ber between 1–100.

9Continuous LLM-as-a-judge approaches (LLM-AS-A-
JUDGE (CONTINUOUS 0-100)) are configured to generate at
most 3 tokens, whereas the discriminative approaches (LLM-
AS-A-JUDGE (0-SHOT) and LLM-AS-A-JUDGE (5-SHOT))
are configured to generate at most 20 tokens. We then extract
the corresponding readability label through the use of regular
expressions.

C.1 Frequency-based Analysis

As part of our analysis, we conduct a frequency-
based analysis of the rationales behind the readabil-
ity judgments provided by the human annotators in
the ELI-WHY (GPT-4) dataset.

Methodology. We conduct our analysis by first
separating the dataset into three subsets accord-
ing to the perceived readability level of the GPT4-
generated explanations. In doing so, we obtain a
total of 324, 694, and 182 examples corresponding
to the Elementary , High School , and Graduate ,
respectively. Subsequently, we merge the annota-
tors justification field for each subset, remove the
English stopwords (as provided by the NLTK li-
brary). To aggregate words with similar meanings,
we further lemmatize each word using the WORD-
NETLEMMATIZER10.

C.2 Predictive Analysis

We also conduct a model-based approach to deter-
mine the discriminative power of different phrases
for each readability class. In this analysis, each
annotator’s justification is considered to be an in-
dividual document and both term and document
frequencies are used to determine the readability
class of a annotators’ justifications.

Methodology. Similarly to the frequency-based
analysis, we first decompose the ELI-WHY (GPT-
4) dataset into three exclusive subsets based on
the human perceived readability label. Addition-
ally, we expand the justification field into individ-
ual documents, resulting in 707, 1665, and 416 to-
tal documents for Elementary , High School , and

Graduate , respectively. As preprocessing steps,
we remove the English stopwords using the NLTK

default list, lemmatize the text using the WORD-
NETLEMMATIZER, and lowercase the text. Finally,
we compute the term-to-document frequency ma-
trix using SKLEARN’s TFIDFVECTORIZER. To
ensure that we capture complex phrases and not
just individual words, we consider n-grams where
n ∈ {1, 2, 3, 4} and, to avoid overfitting to terms
that appear in a single document, set MIN_DF=2.

Having the term-to-document frequency matrix,
we adopt a one-vs-all approach, where we itera-

10https://www.nltk.org/api/nltk.stem.
WordNetLemmatizer.html
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(a) Elementary School (b) High School (c) Graduate School

Figure 5: Frequency-based analysis of the language expressions used by human annotators when judging the
perceived readability of various GPT4-generated explanations in ELI-WHY (GPT-4). These word clouds are
collected over 324, 694, and 182 examples annotated for Elementary , High School , and Graduate , respectively.

tively fit a linear model to discriminate justifica-
tions of one class (e.g., Elementary ) from justifica-

tions outside of this class (e.g., High School and

Graduate ). While focusing on linear models such
as logistic regression allow us to directly exam-
ine the predictive importance of different n-grams,
it pre-assumes that the most is a strong predictor.
With the intent of selecting a good predictive model,
we perform hyperparameter optimization using 10-
fold cross-validation while using predictive accu-
racy as the evaluation criteria. We consider the
following hyperparameters and employ grid search:

• estimator = LogisticRegression()

• max_iter = {100, 300}

• C = {0.01, 0.1, 1, 10, 100, 500}

• penalty = {l1, l2, elasticnet}

• solver = {liblinear, saga}

We list the best obtained models for each read-
ability class in Table 10. Across all readability
classes, we find that the fitted logistic regression
outperforms a simple baseline that predicts the ma-
jority class (MAJORITY ACCURACY) by at least
3% and up to 15% absolute points.

D Related Work

In this section, we extend the discussion of readabil-
ity metrics provided in the main paper. Specifically,

we elaborate on the limitations of the previously
proposed LLM-as-a-judge approaches and remain-
ing challenges.

Readability Assessment using LLMs. Rooein
et al. (2024) show that combining yes/no prompts
with conventional metrics yields stronger correla-
tions with human judgments than using either set of
metrics alone. Trott and Rivière (2024) use 0-shot
prompts to extract continuous readability scores
which correlate strongly with human judgments. In
spite of promising results, these approaches have
seen little adoption in practice. Their reliance on re-
peated prompting introduces significant inference
overhead, making them costly for large-scale evalu-
ation or use as reward functions. They also require
allocating part of the already limited readability
data to calibrate combinations or thresholds, fur-
ther limiting their practicality. Finally, although
prior work has explored continuous readability as-
sessments with LMs, to our knowledge their ability
to distinguish coarse-grained readability classes
remains unexplored.
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Figure 6: Regression analysis of the language expressions used by human annotators when judging the perceived
readability of various GPT4-generated explanations in ELI-WHY (GPT-4). These values clouds are collected over
324, 694, and 182 examples annotated for Elementary , High School , and Graduate , respectively.
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Table 3: Randomly selected ScienceQA examples across 6 different readability classes (grade).

Grade Subject
(Category)

Formatted Example

1 language science
(comprehension
strategies)

Explanation: A book is made of paper.\nA book tells a story.\nA teacher may read a book
out loud.

3 natural science
(weather and cli-
mate)

Lecture: The atmosphere is the layer of air that surrounds Earth. Both weather and
climate tell you about the atmosphere.\nWeather is what the atmosphere is like at a certain
place and time. Weather can change quickly. For example, the temperature outside your
house might get higher throughout the day.\nClimate is the pattern of weather in a certain
place. For example, summer temperatures in New York are usually higher than winter
temperatures.\n\nExplanation: Read the text carefully.\nWhere Sarah lives, winter is the
rainiest season of the year.\nThis passage tells you about the usual precipitation where
Sarah lives. It does not describe what the weather is like on a particular day. So, this
passage describes the climate.

5 natural science
(traits and heredity)

Lecture: Organisms, including people, have both inherited and acquired traits. Inherited
and acquired traits are gained in different ways.\nInherited traits are passed down through
families. Children gain these traits from their parents. Inherited traits do not need to be
learned.\nAcquired traits are gained during a person’s life. Some acquired traits, such as
riding a bicycle, are gained by learning. Other acquired traits, such as scars, are caused
by the environment. Children do not inherit their parents’ acquired traits.\n\nExplanation:
People are not born knowing how to cook. Instead, many people learn how to cook. So,
cooking is an acquired trait.

7 natural science
(designing experi-
ments)

Lecture: Experiments can be designed to answer specific questions. When designing an
experiment, you must identify the supplies that are necessary to answer your question. In
order to do this, you need to figure out what will be tested and what will be measured
during the experiment.\nImagine that you are wondering if plants grow to different heights
when planted in different types of soil. How might you decide what supplies are necessary
to conduct this experiment?\nFirst, you need to identify the part of the experiment that
will be tested, which is the independent variable. This is usually the part of the experiment
that is different or changed. In this case, you would like to know how plants grow in
different types of soil. So, you must have different types of soil available.\nNext, you
need to identify the part of the experiment that will be measured or observed, which is
the dependent variable. In this experiment, you would like to know if some plants grow
taller than others. So, you must be able to compare the plants’ heights. To do this, you can
observe which plants are taller by looking at them, or you can measure their exact heights
with a meterstick.\nSo, if you have different types of soil and can observe or measure the
heights of your plants, then you have the supplies you need to investigate your question
with an experiment!

9 language science
(literary devices)

Lecture: Figures of speech are words or phrases that use language in a nonliteral or
unusual way. They can make writing more expressive.\nA euphemism is a polite or
indirect expression that is used to de-emphasize an unpleasant topic.\nThe head of Human
Resources would never refer to firing people, only to laying them off.\nHyperbole is an
obvious exaggeration that is not meant to be taken literally.\nI ate so much that I think I
might explode!\nAn oxymoron is a joining of two seemingly contradictory terms.\nSome
reviewers are calling this book a new classic.\nA paradox is a statement that might at
first appear to be contradictory, but that may in fact contain some truth.\nAlways expect
the unexpected.\n\nExplanation: The text uses an oxymoron, a joining of two seemingly
contradictory terms.\nOpen secret is a contradiction, because open describes something
that is freely or publicly known, and a secret is hidden.
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Table 3: Randomly selected ScienceQA examples across 6 different readability classes (grade). (continued)

Grade Subject
(Category)

Formatted Example

11 language science
(word usage and
nuance)

Lecture: Words change in meaning when speakers begin using them in new ways. For
example, the word peruse once only meant to examine in detail, but it’s now also commonly
used to mean to look through in a casual manner.\nWhen a word changes in meaning, its
correct usage is often debated. Although a newer sense of the word may be more commonly
used, many people consider a word’s traditional definition to be the correct usage. Being
able to distinguish the different uses of a word can help you use it appropriately for different
audiences.\nBritney perused her notes, carefully preparing for her exam.\nThe traditional
usage above is considered more standard.\nDavid perused the magazine, absentmindedly
flipping through the pages.\nThe nontraditional usage above is now commonly used, but
traditional style guides generally advise against it.\n\nExplanation: The first text uses
travesty in its traditional sense: a ridiculous imitation; a parody.\nDoug’s ill-researched
essay about the Space Race received a poor grade because it presented such a travesty
of the actual historical events.\nThe second text uses travesty in its nontraditional sense:
a disappointment or a tragedy.\nDoug realized that his essay about the Space Race was
a bit inaccurate, but he still thought it a travesty that such an entertaining essay should
receive a poor grade.\nMost style guides recommend to use the traditional sense of the
word travesty because it is considered more standard.
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Table 4: Randomly selected examples from the CLEAR dataset. In contrast to other datasets, each example
is associated with a continuous readability score obtained by fitting a Bradley–Terry model on pairwise human
judgments of reading ease.

Readability
Score

Category Text

-2.91 Info It must not be supposed that, in setting forth the memories of this half-hour between the moment
my uncle left my room till we met again at dinner, I am losing sight of "Almayer’s Folly." Having
confessed that my first novel was begun in idleness–a holiday task–I think I have also given the
impression that it was a much-delayed book. It was never dismissed from my mind, even when the
hope of ever finishing it was very faint. Many things came in its way: daily duties, new impressions,
old memories. It was not the outcome of a need–the famous need of self-expression which artists
find in their search for motives. The necessity which impelled me was a hidden, obscure necessity, a
completely masked and unaccountable phenomenon. Or perhaps some idle and frivolous magician
(there must be magicians in London) had cast a spell over me through his parlour window as I
explored the maze of streets east and west in solitary leisurely walks without chart and compass.
Till I began to write that novel I had written nothing but letters, and not very many of these.

-1.44 Info In the second place, the Emperor is an exceedingly intelligent and highly cultivated man. His
mental processes are swift, but they go also very deep. He is a searching inquirer, and questions
and listens more than he talks. His fund of knowledge is immense and sometimes astonishing. He
manifests interest in everything, even to the smallest detail, which can have any bearing upon human
improvement. I remember a half hour’s conversation with him once over a cupping glass, which he
had gotten from an excavation in the Roman ruin called the Saalburg, near Homburg. He always
appeared to me most deeply concerned with the arts of peace. I have never heard him speak much
of war, and then always with abhorrence, nor much of military matters, but improved agriculture,
invention, and manufacture, and especially commerce and education in all their ramifications, were
the chief subjects of his thought and conversation. I have had the privilege of association with many
highly intelligent and profoundly learned men, but I have never acquired as much knowledge, in
the same time, from any man whom I have ever met, as from the German Emperor.

-1.21 Literary Moreover Grandmother Grant always dressed in one fashion; she had a calico dress for morning
and a black silk for the afternoon, made with an old-fashioned surplice waist, with a thick plaited
ruff about her throat; she sometimes tied a large white apron on, but only when she went into the
kitchen; and she wore a pocket as big as three of yours, Matilda, tied on underneath and reached
through a slit in her gown. Therein she kept her keys, her smelling-bottle, her pocket-book, her
handkerchief and her spectacles, a bit of flagroot and some liquorice stick. I mean when I say
this, that all these things belonged in her pocket, and she meant to keep them there; but it was
one peculiarity of the dear old lady, that she always lost her necessary conveniences, and lost
them every day.\n"Maria!" she would call out to her daughter in the next room, "have you seen
my spectacles?"\n"No, mother; when did you have them?"\n"Five minutes ago, darning Harryś
stockings; but never mind, thereś another pair in the basket."

-0.37 Literary The others were watching him closely. They guessed something of the nature of what must be
passing through Ned’s mind, for both Jack and Teddy followed his gaze up the uneven shore. Jimmy
had the glasses again, and was busily engaged in scrutinizing the blur on the distant horizon, which
all of them had agreed must be smoke hovering close to the water. Perhaps he half-believed the
fanciful suggestion made by Teddy, with reference to Captain Kidd, and was wildly hoping to
discover some positive sign that would stamp this fairy story with truth. All the previous adventures
that had befallen himself and chums would sink into utter insignificance, could they go back
home and show evidences of having made such a romantic discovery up there in the Hudson Bay
country.\n"See the feather they say he always wore in his hat, Jimmy?" asked Frank.

0.06 Literary The other day, as I was walking through a side street in one of our large cities, I heard these words
ringing out from a room so crowded with people that I could but just see the auctioneer’s face
and uplifted hammer above the heads of the crowd.\n"Going! Going! Going! Gone!" and down
came the hammer with a sharp rap.\nI do not know how or why it was, but the words struck me
with a new force and significance. I had heard them hundreds of times before, with only a sense
of amusement. This time they sounded solemn.\n"Going! Going! Gone!"\n"That is the way it is
with life," I said to myself - "with time." This world is a sort of auction room; we do not know
that we are buyers: we are, in fact, more like beggars; we have brought no money to exchange for
precious minutes, hours, days, or years; they are given to us. There is no calling out of terms, no
noisy auctioneer, no hammer; but nevertheless, the time is "going! going! gone!"
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Table 5: Randomly selected examples from the CLEAR dataset. In contrast to other datasets, each example
is associated with a continuous readability score obtained by fitting a Bradley–Terry model on pairwise human
judgments of reading ease. (continued)

Readability
Score

Category Text

0.19 Info There are various kinds of pitcher-plants. Some are shorter and broader than others; but they are
all green like true leaves, and hold water as securely as a jug or glass. They grow in Borneo and
Sumatra, hot islands in the East. The one shown in the drawing grows in Ceylon.\nSome grow in
America; but they are altogether different from those in Borneo and Ceylon. One beautiful little
pitcher-plant grows in Australia: but this is also very different from all the rest; for the pitchers,
instead of being at the end of the leaves, are clustered round the bottom of the plant, close to the
ground.\nAll these pitcher-plants, though very beautiful to look at, are very cruel enemies to insects:
for the pitchers nearly always have water in them; and flies and small insects are constantly falling
into them, and getting drowned.
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Table 6: Comparison of readability scores between the
original CLEAR (Original) and the 1k subsample used
to conduct the correlation analysis (Subsample).

Statistic Original Subsample

Count 4724 1000
Mean -0.96 -0.97
Std 1.03 1.06
Min -3.68 -3.68
25% -1.70 -1.74
50% -0.91 -0.89
75% -0.20 -0.20
Max 1.71 1.71
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Table 7: Randomly selected examples from the SCIENTIFIC PAPERS dataset, spanning all three readability classes.

Complexity Level Text

Low The researchers found that women who lived in countries that received less US foreign aid during
the policy used less contraceptives and had both more pregnancies and more abortions during
the years that the policy was in place. They also noted that the effects of the policy reversed once
it had been rescinded, further strengthening the researchers’ hypothesis that the Mexico City
Policy has an effect on a nation’s observed patterns of reproductive behavior.

Medium The researchers found that abortions and pregnancies increased when the Mexico City Policy
was in effect, which they correlate to a decreased availability in contraception during those years.
They also found that the effects varied by exposure to the policy, as women in high exposure
countries were more likely to experience abortion when the policy was enacted and less likely
when it wasn’t in effect. The alternating patterns of reproductive behavior depending on whether
the policy was enacted also strengthens the researchers’ hypothesis that it has a not insubstantial
effect on abortion rates in sub-Saharan Africa.

High When US support for international family planning organizations was conditioned on the policy,
coverage of modern contraception fell and the proportion of women reporting pregnancy and
abortions increased, in relative terms, among women in countries more reliant on US funding.
Although the degree to which abortions increase when contraceptive supply is curtailed is poorly
characterized, one analysis estimated that, depending on the total fertility of the population, a
10% decline in contraceptive use would lead to a 20-90% increase in abortions. The researchers
posit that the observed changes in abortion could be due to changing availability of modern
contraception, and that a change in the use of modern\̊ncontraception would be expected to
result in a change in pregnancy rates. Women in high-exposure countries experienced a relative
increase in abortion (and decrease in modern contraceptive use) when the policy was enacted
and a relative decrease in abortion (and increase in modern contraceptive use) when the policy
was rescinded.

Low Study looks at pushup capacity and heart health, finding that those who could do the most (over
40) push ups had the lowest risk of heart disease.

Medium Study examines the relationship between a person’s push up ability and their physical health,
finding that push ups are a good indicator of a person’s cardiovascular fitness.

High Association Between Pushup Exercise Capacity and Future Cardiovascular Events Among Active
Adult Men
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Table 8: Examples of different explanations for the ELI-WHY (HUMAN) for the questions “Why do we enjoy
horror movies or stories?” and “’Why does DNA have a double helix structure?”. Each set of three examples refers
to the same question.

Readability Topic Formatted Explanation

Elementary Psychology All the same reasons people like sad songs, Halloween, war documentaries, apocalyptic
fiction, etc. etc. It’s like any other film genre. Horror movies can be artistic; the
performances can be entertaining; the movies can be well-constructed or conceived; they
can be relatable or provide personal insight.

High School Psychology According to these researchers, stimulation is one of the driving forces behind the con-
sumption of horror. Exposure to terrifying acts like stories of demonic possession or
alien infestation can be stimulating both mentally and physically. These experiences can
give rise to both negative feelings, such as fear or anxiety, and positive feelings, such as
excitement or joy. And we tend to feel the most positive emotions when something makes
us feel the most negative ones.

Graduate Psychology “The horror film occupies in popular culture roughly comparable to that of horror literature.
That is to say, it is generally ignored, sometimes acknowledged with bemused tolerance,
and viewed with alarm when it irritates authority - rather like a child too spirited to follow
the rules that rendition has deemed acceptable” (p. ix), a view that is echoed elsewhere.
For example, Tudor (1997) noted that “a taste of horror is a taste for something seemingly
abnormal and is therefore deemed to require special attention” (p. 446). Part of the reason
for the disdain, apart from the broad and base nature of the content, may be the relative
cheapness of horror film: these are often much less expensive to create than are other
genre films such as westerns, comedies, or science fiction.

Elementary Biology DNA is made up of small components called nucleotides. A nucleotide is made up of 3
parts: a phosphate group, a sugar, and a base. The base can be 1 of 4 varieties: A, T, C, or
G. Simply put, because of their structures, A and T bond nicely with one another and C
and G bond nicely as well. As a result, a single strand of DNA will bond to a strand with
another strand with a "complimentary" sequence of bases. In other words, there will be
two strands with opposite, for lack of a better word, sequences of bases. The production
of strands that complement one another is a result of how DNA copies itself (known as
DNA replication). The second strand’s base sequence is ordered based on the first strandś
sequence.\n\nSo that answers the question of why DNA is a double helix instead of a
single helix. But why is it a helix at all? Why not a shaped like a ladder? In a cell, most of
the material present is water. Water is shaped in such a way where positive and negative
charges aren’t spread evenly throughout the waterś molecules. This is known as being a
polar molecule. Polar molecules "like" being around other polar molecules. Non-polar
molecules don’t "like" being around polar molecules like water. In DNA, the bases are
non-polar, but the phosphate groups are polar. As a result, the preferred shape puts the
phosphates in contact with the water and the bases are covered by being on the inside. The
twisting shape of DNA reduces the extent to which the bases are exposed to the water in
the outside environment.\n\nTL;DR: DNA is made of 3 components: bases, sugars, and
phosphates. The sugars bond with one another explaining the double-configuration of
DNA. To be stable, the bases need to stay in the inside of the molecule and phosphates
need to make up the moleculeś exterior, and a helical shape allows this to happen.

High School Biology The three-dimensional structure of DNA—the double helix—arises from the chemical and
structural features of its two polynucleotide chains. Because these two chains are held
together by hydrogen bonding between the bases on the different strands, all the bases are
on the inside of the double helix, and the sugar-phosphate backbones are on the outside.
To maximize the efficiency of base-pair packing, the two sugar-phosphate backbones wind
around each other to form a double helix, with one complete turn every ten base pairs.

Graduate Biology The stability of double-stranded DNA (dsDNA) at physiological temperature is due to the
hydrogen bonding between complementary bases and the stacking between neighboring
bases. However, these base-stacking interactions are of the order of magnitude of a
few k_B T thermal energy and the thermal fluctuations can lead (even at physiological
temperature) to local and transient unzipping of the double helix.
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Metric SCIENTIFIC PAPERS
(August et al., 2024)

CLEAR
(Crossley et al., 2024)

ELI-WHY (GPT-4)
(Joshi et al., 2025)

ELI-WHY (HUMAN)
(Joshi et al., 2025)

SCIENCEQA
(Lu et al., 2022)

Avg.
Rank

README++ 0.40 -0.45 0.50 0.50 0.44 1.8
README++ (AVG) 0.23 -0.49 0.26 0.68 0.38 2.4
README++ (MAX) 0.35 -0.51 0.43 0.57 0.42 1.8

Table 9: Rank correlations between variants of the README++ metric and human judgments of correctness across
5 datasets. We boldface the variant exhibiting strongest correlation with human judgments. We report the Kendall
Tau coefficient. All correlation coefficients are statistically significant with p-value < 0.01.

Table 10: Hyperparameter configurations of the Logistic Regression models fit for each readability class. We
use a grid search to find the optimal combination over the hyperparameters C, PENALTY, and SOLVER. The best
configuration is defined as the best achieving accuracy determined using 10-fold cross-validation.

Readability Class Hyperparameters Majority Accuracy (%) Best Accuracy (%)

Elementary

C = 100
max_iter = 300
penalty = l1
solver = saga

74.64 88.05

High School

C = 500
max_iter = 100
penalty = l1
solver = saga

59.72 75.11

Graduate

C = 100
max_iter = 300
penalty = l1
solver = saga

85.08 88.34
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Table 11: Human rationales underlying readability judgments across 3 different readability classes: Elementary ,

High School , Graduate . Each row refers to the analysis of the same “Why” question but different GPT-4
explanation, being sourced from ELI-WHY (GPT-4) (Joshi et al., 2025).

Elementary High School Graduate

- It’s probably too verbose for elemen-
tary levels, but I think people reading
at that level could understand this ex-
planation. The words are short enough.
- The explanation uses basic English
language to interpret why humans are
inclined towards social interactions.
There are not many technical or pro-
fessional terminologies, making it easy
to understand. The sentence structures
are simple, making it easy to follow.

- Pretty easy and straight forward to
understand. Not using complex words
or scientific words.
- The sentences are short in length and
easy to digest. It uses terms like “ele-
ments” and “conductivity and ductility”
which require deeper understanding of
elements and reactions.
- The explanation is written in a way
that is easy to understand, but the de-
tails and some of the words used such
as “corrosion” would make it difficult
for an elementary reader to compre-
hend. However, the material is not so
specialized that you would learn it on
the graduate level, meaning this falls
into the high school reading level.

- The terminology seems higher level
and more complicated than elementary
or high school;
- This is borderline HS/GS to me. But
the terms “parasocial” and “existential
fears” are a bit much for a typical high
school student. It should be simplified
a bit for an HS student.

- The details are very surface level and
it uses simple wording. - Simple sen-
tence structure with simple and short
explanations. Not detailed or in depth.
- They used simple wording and ex-
amples to make their point. - It uses
simple words like electricity, and can
be easily understood
- It gives clear examples like copper
being easy to stretch and not rusting,
the sentences are short and straightfor-
ward. It gives enough detail to under-
stand why copper is used in wires.

- The wording/terminology, examples,
and details suggest high school-level
engagement. It lacks the technicality
of graduate school while being too ad-
vanced for elementary school;
- Using terminology like “ritual”, “the-
ological” and “philosophical” which
requires basic knowledge of these
terms. Depth and detail are also moder-
ate levels but not quite a graduate level
understanding;
- Wording Terminology, Sentence
Structure, Details and depth

- No way most high school students
could follow this;
- The details and depth show of a grad-
uate school person answering this.

- Simple wording, a concept that most
students of elementary school age
should be able to grasp. Also not too
many details.
- The explanation uses simple and di-
rect language without complex termi-
nology, making it accessible to chil-
dren or adults with basic education.
- I think this text’s wording, exam-
ples, sentence structure, and amount
of detail are simple enough for an
elementary-age student to compre-
hend.

- This response includes references to
Alzheimer’s, which I think would be
outside the understanding of a typical
4th grader. It also references brain
waves, which I think is covered in high
school-level science courses.
- It uses more elevated vocabulary than
Elementary School, however the lack
of citations and more complex con-
cepts and narrative structure make it
less than Graduate School.

- The language is more advanced and
mentions more specific scientific theo-
ries.
- The amount of detail and specific ter-
minology make me think it is a gradu-
ate level.
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