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Abstract

Jargon identification is critical for improving
the accessibility of biomedical texts, yet mod-
els are often evaluated on isolated datasets,
leaving open questions about generalization.
After reproducing MedReadMe’s jargon de-
tection results and extending evaluation to
the PLABA dataset, we find that transfer
learning across datasets yields only modest
gains, largely due to divergent annotation ob-
jectives. Through manual re-annotation we
show that aligning labeling schemes improves
cross-dataset performance. Building on these
findings, we evaluate several jargon-aware
prompting strategies for LLM-based medical
text simplification. Explicitly highlighting
jargon in prompts does not consistently im-
prove simplification quality. When gains oc-
cur, they often trade off against readability and
are model-dependent. Human evaluation indi-
cates that simple prompting can be as effective
as more complex, jargon-aware instructions.
We release code to facilitate further research:
https://github.com/taikilazos/thesis_codebase.

1 Introduction

Medical text simplification is crucial for improving
health literacy by making technical content acces-
sible to lay readers, with jargon handling being a
central challenge. In this work, we define jargon as
any term or span of words that may be hard to un-
derstand for lay readers who are not in the medical
domain, such as technical abbreviations or com-
plex terminology requiring simplification. How-
ever, jargon detection models are often evaluated
on isolated datasets, leaving significant questions
about their generalization capabilities.

Recent resources like MedReadMe (Jiang and
Xu, 2024) and PLABA (Attal et al., 2023; On-
dov et al., 2025) provide valuable benchmarks for
jargon-centric research, but they employ different
annotation schemes, MedReadMe categorizes term
difficulty for lay readers, while PLABA identifies
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PLABA Dataset

We studied 36 drop seizures in 5 patients with
myoclonic astatic epilepsy of early childhood
(MAEE) with simultaneous split-screen video
recording and polygraph. Sixteen were falling
attacks and 20 were either less severe attacks
exhibiting only deep head nodding or seizures
equivalent to drop attacks in terms of ictal
pattern but recorded in the supine position. All
seizures except those that occurred in patients in
the supine position showed sudden momentary
head dropping or collapse of the whole body
downward.

MedReadMe Dataset

The long-acting bronchodilator tiotropium and
single-inhaler combination therapy of inhaled
corticosteroids and long-acting beta 2-agonists
(ICS/LABA) are commonly used for main-
tenance treatment of patients with chronic
obstructive pulmonary disease (COPD). Com-
bining these treatments, which have different
mechanisms of action, may be more effective
than administering the individual components.

Figure 1: Example annotations from PLABA and Med-
ReadMe datasets. Underlined terms indicate identified
jargon.

terms requiring simplification via expert adapta-
tions (see Figure 1). This discrepancy creates a
fundamental barrier to cross-dataset evaluation and
generalization.

To address this, we first reconstruct the Med-
ReadMe experimental setup and extend evaluation
to PLABA to probe cross-dataset generalization.
Second, we investigate whether explicitly surfacing
detected jargon in prompts improves LLM-based
simplification of medical abstracts.

Our contributions are:

* We replicate MedReadMe’s jargon identifica-
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tion and release our implementation, estab-
lishing baselines on PLABA and a relabeled
subset for cross-dataset evaluation.

* We assess cross-dataset generalization, show-
ing transfer learning is limited by annotation
mismatches and that aligning schemes im-
proves performance.

* We introduce and evaluate jargon-aware
prompting strategies for simplification, find-
ing benefits are model-dependent and often
trade off against readability.

We release code and data to sup-
port reproducibility and future work on
jargon-aware  medical text simplification:

https://github.com/taikilazos/thesis_codebase.

2 Related Work

Text simplification aims to make specialized con-
tent accessible without sacrificing meaning, a par-
ticular challenge in medicine where technical ter-
minology is dense (Agrawal and Carpuat, 2024).
Our work connects four areas: lexical complex-
ity detection, biomedical simplification resources,
LLM prompting strategies, and evaluation. Lexi-
cal complexity and jargon detection have evolved
from surface heuristics to contextual models like
BERT (Devlin et al., 2019), with MedReadMe pro-
viding fine-grained jargon categories for lay reader
difficulty analysis (Jiang and Xu, 2024).

Work on biomedical text simplification lever-
ages datasets such as PLABA, which offers expert-
authored adaptations with span-level links to tech-
nical terms (Attal et al., 2023; Ondov et al., 2025),
though Bakker and Kamps (2024) and others high-
light challenges in sentence-level alignment (De-
varaj et al., 2021; Goldsack et al., 2022; Guo et al.,
2024). There has been limited exploration of LLM
prompting strategies that explicitly surface jargon
to control simplification (Xia et al., 2025). For eval-
uation, we assess how automatic metrics like FKGL
and SARI (Kincaid et al., 1975; Xu et al., 2016)
align with human judgments in this jargon-aware
setting.

The PLABA dataset has enabled research into
more controlled simplification approaches. No-
tably, Xia et al. (2025) conducted a study on jargon-
aware simplification by using detected jargon spans
to structure prompts for large language models.
Their findings suggest that while explicitly surfac-
ing jargon can be beneficial, its effectiveness is not
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Dataset # Sentences # Jargon
PLABA Training 1,602 2,586
PLABA Validation 178 296
PLABA Testing 4,500 9,126
MedReadMe Training 2,587 5,207
MedReadMe Validation 784 1,789
MedReadMe Testing 1,140 2,112

Table 1: Number of examples and total jargon terms in
the PLABA and MedReadMe datasets.

Metric PLABA MedReadMe
FKGL 10.73 14.08
Jargon / sent 1.92 1.76
Jargon Length 2.98 3.35

Table 2: Comparison of metrics between the PLABA
and MedReadMe datasets.

consistent across models and often comes at the
cost of readability, highlighting the complexity of
integrating detection with generation.

3 Methodology

3.1 Dataset Analysis

We study two biomedical datasets with distinct ob-
jectives and annotation schemes. MedReadMe
comprises 4,520 sentences from 180 complex-
simple article pairs sampled from 15 medical sim-
plification resources (Guo et al., 2024; Goldsack
et al., 2022; Devaraj et al., 2021) and provides a hi-
erarchical jargon taxonomy (binary/3-class/7-class)
annotated by non-experts to approximate lay com-
prehension (Jiang and Xu, 2024). PLABA consists
of PubMed abstracts paired with expert-authored
plain-language adaptations and marks spans that
require simplification (Attal et al., 2023; Ondov
et al., 2025). As shown in Table 1, the datasets dif-
fer in the number of examples and annotated jargon
terms; we preprocess PLABA to a sentence-level
format to match MedReadMe. In difficulty char-
acteristics (Table 2), MedReadMe exhibits higher
lexical and grammatical complexity (FKGL 14.08
vs. 10.73). PLABA shows slightly higher jargon
density but shorter jargon terms. Only 276 jargon
terms exactly overlap across datasets, underscor-
ing divergent annotation goals and target audiences.
For examples of the differing annotation focus, see
Figure 1.
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Figure 2: Sentence length distribution for train set: the

We also analyzed quantitative metrics to com-
pare the two datasets. Figure 2 illustrates the sen-
tence length distribution in the training splits, with
MedReadMe sentences averaging 31.8 tokens com-
pared to PLABA’s 22.7 tokens.

3.2 Model Selection and Training

We use standard BIO tagging for span detection:
MedReadMe is labeled at binary/3-class/7-class
levels, while PLABA is binary-only. Subword to-
kenization is handled via tokenizer word_ids(),
assigning B- to the first subword and I- to sub-
sequent subwords; special tokens ([CLS], [SEP],
[PAD]) are masked with —100 in the loss. Both
datasets are processed at the sentence level with
a maximum sequence length of 250 and attention
masks to ignore padding.

We reproduced the MedReadMe experiment us-
ing BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), BioBERT (Lee et al., 2019), and Pub-
MedBERT (Tinn et al., 2023), testing both base and
large variants of each model. Since the original pa-
per only referenced the Hugging Face API without
specifying model versions for BioBERT and Pub-
MedBERT, our specific choices are documented in
Table 3.

We standardized fine-tuning across models: op-
timizer AdamW (Loshchilov and Hutter, 2019),
learning rate 2e-5 (MedReadMe) and le-5
(PLABA), batch size 32, up to 20 epochs with early
stopping (patience 3) on validation entity-level F1.

3.3 Transfer Learning

We evaluated transferability via two settings: (1)
direct transfer (train on MedReadMe — evalu-
ate on PLABA; train on PLABA — evaluate

mean value for MedReadMe is 31.8 and for PLABA 22.7

Family Type Model

BERT Base  bert-base-uncased
RoBERTa Base  roberta-base

BERT Large bert-large-uncased
RoBERTa Large roberta-large
BioBERT Base  biobert-base-v1.1f
PubMedBERT Base  biomed-base-uncased?
BioBERT Large biobert-large-v1.17
PubMedBERT Large biomed-large-uncased?

Table 3: HuggingFace models used in experiments:
generic model architectures (top half) and biomedical
variants (bottom half). TFrom dmis-lab, ¥From mi-
crosoft/BiomedNLP.

on MedReadMe) and (2) sequential fine-tuning
(PLABA—MedReadMe evaluated on MedReadMe
and PLABA; MedReadMe—PLABA evaluated on
MedReadMe and PLABA).

All models were based on RoBERTa-large, fine-
tuned with a learning rate of 1 x 10~°, batch size of
16, and early stopping with max epoch of 20. Since
MedReadMe contains multi-class annotations, we
standardized both datasets to a binary classifica-
tion setting (jargon vs. non-jargon) for consistency.
Performance was primarily measured using entity-
level F1.

3.4 Manual Annotation of PLABA Sentences
Using the MedReadMe Scheme

To ensure that any observed differences in model
performance when transferring between Med-
ReadMe and PLABA are not solely due to mis-
matches in annotation schemes, we manually
re-annotated 100 PLABA sentences using the
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@ Sentence Labeling Tool

Selected Text:
Jargon Type:

Sentence Complesity:
Add Label

Current Annotations:

foveal regeneration -> Google Easy
retinal restoration -> Google Easy

|Goog|e Easy
© Complex

MNext Sentence

Purpose: The purpose of this study was to evaluate fowveal regeneration and the
association between retinal restoration and following reattachment
surgery for rhegmatogenous retinal detachment (RRD).

visual acuity

O Simple

Save

Figure 3: Screenshot of the custom sentence labeling tool. The tool allows the annotator to highlight spans
corresponding to jargon terms and assign one of seven MedReadMe classes (e.g., Google Easy, Google Hard,
Medical Name, etc.). The annotator can also specify whether a sentence is considered complex or simple, with the
latter defined as sentences containing no jargon or only a single Google Easy term.

MedReadMe seven-class taxonomy: Google-Easy,
Google-Hard, Medical Named Entity, Medical Ab-
breviation, General Abbreviation, General Com-
plex Term, and Multi-sense Word (Jiang and Xu,
2024). This approach allows us to directly as-
sess the impact of annotation scheme alignment
on model performance.

A custom annotation tool (see Figure 3) was
developed to facilitate this process, allowing the
annotator to highlight jargon spans and assign the
appropriate class. Sentences were also labeled as
"complex" or "simple," with "simple" defined as
containing no jargon or only a single Google Easy
term, and all the other cases as "complex."

All annotations were performed by a single an-
notator (the main author), following MedReadMe
guidelines (Jiang and Xu, 2024).

This relabeled subset allows for a fairer evalua-
tion of model transfer: if model performance im-
proves on the MedReadMe-labeled PLABA data,
it suggests that the original drop in transfer per-
formance was primarily due to annotation scheme
mismatch and label distribution differences, rather
than a fundamental inability of the model to gener-
alize. Sentences were classified as "simple" if they
contained no jargon or only a single Google Easy
term (aligned with MedReadMe’s lower CEFR lev-
els); "complex" sentences included any with addi-
tional jargon (e.g., multiple Google Easy or Google
Hard/Medical terms), though this feature was not
used in classification. The class distribution of the
relabeled data can be seen in the Table 4.
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Class Count
Google Easy 203
Google Hard 187
Medical Name 15
Medical Abbreviation 16
General Abbreviation 0
General Complex 16
Multisense 0

Table 4: True label distribution (token-level) for each
class in the evaluation set.

3.5 PLABA Test Set for Simplification

The PLABA test set comprises 300 medical ab-
stracts with 3,315 sentences, of which 3,041
(91.7%) contain at least one jargon term (Attal
et al., 2023). Sentences contain between 1 and
18 jargon spans, with most (64.6%) containing
1-4. Each span is annotated with one or more
recommended simplification actions (e.g., substi-
tute, explain, generalize, omit, exemplify). On
average, abstracts contain 26.57 jargon terms. Ac-
tion distribution is skewed toward substitution
(65.62%), followed by explanation (17.59%), omis-
sion (10.25%), generalization (6.12%), and exem-
plification (0.43%). Average jargon length is 1.79
words.

Reference simplifications were 40% shorter at
the sentence level (26.18 to 15.94 words) and 6.5
grade levels easier (FKGL 13.55 to 7.04; Kincaid



Original Text:
The patient exhibited tachycardia and dyspnea
during examination.

Base Instructions (applied to all prompts):

1) Write a clear sentence; 2) Preserve distinc-
tions and numbers; 3) Replace medical terms
only if meaning stays exact; 4) No notes or mul-
tiple versions.

1. Simple Prompt: Provide one simplified sen-
tence for the input (focusing on lexical simplifi-
cation of jargon).

2. Jargon-aware Prompt: Highlight detected
terms (e.g., tachycardia, dyspnea) and simplify
cautiously.

3. Ground Truth Jargons Prompt (GT): Use
ground truth jargon terms as guidance.

4. Ground Truth Actions Prompt (GT ac-
tion): Specify per-term actions (e.g., substitute,
explain).

Figure 4: Prompting strategies for sentence-level med-
ical simplification. See Appendix B for detailed infor-
mation.

et al., 1975), yet they contained more sentences (19
vs. 11.05), indicating frequent sentence splitting.

3.6 Prompt Design

We evaluate four prompting strategies, from a sim-
ple instruction baseline to prompts that explicitly
surface jargon terms and, in the most guided vari-
ant, specify actions per term. Jargon spans are
obtained from our PLABA jargon detector. Simpli-
fication operates at the sentence level; simplified
sentences are concatenated for abstract-level evalu-
ation.

Ground-truth variants estimate the upper bound
of jargon-aware prompting: if gold-guided prompts
outperform detected-jargon prompts, the bottleneck
lies in detection rather than prompting.

3.7 LLM Models for Simplification

We compare a general-purpose model, Llama-3.1-
8B-Instruct!, with a domain-specialized alterna-
tive, Medicine-Llama3-8B2. We standardize output

"https://huggingface.co/meta-1lama/Llama-3.
1-8B-Instruct

thtps://huggingface.co/instruction—pretrain/
medicine-Llama3-8B
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cleaning to remove prefixes and meta-commentary,
retaining only the simplified sentence for evalua-
tion.

3.8 Evaluation Methods for Simplification

For Jargon Detection tasks, we report F1 due to
class imbalance in medical texts. Token-level F1
measures correct classification of individual tokens
while ignoring padding tokens (—100) and non-
entity (O) predictions. Entity-level F1 requires
exact matches between predicted and gold enti-
ties in both span boundaries and type. We run
generation with fixed decoding settings: temper-
ature = 0.2, top_p = 0.9, repetition penalty = 1.3,
no_repeat_ngram_size = 3, and max tokens = 512.
Experiments use NVIDIA A100 GPUs; models are
loaded from shared storage for throughput. Evalu-
ation is computed at the abstract level by concate-
nating sentence-level outputs.

As for the simplification task, we report read-
ability (FKGL) (Kincaid et al., 1975) and semantic
similarity with BERTScore?, and we use SARI and
BLEU (via EASSE)* to assess add/keep/delete op-
erations relative to original and reference.

To validate our automatic metrics, we conducted
a human evaluation study’. We evaluated at the
abstract level rather than sentence level to better
reflect real-world reading, where users consume
full abstracts; complex sentences aggregated at this
level provide a fairer assessment of overall diffi-
culty. Each original medical text was presented
alongside five simplified versions: four generated
by our models and one gold-standard reference
(PLABA’s expert-authored simplifications), ran-
domly ordered to prevent bias. We recruited N=5
annotators, all fluent English speakers with at least
a graduate-level background in Computer Science-
related fields from the University of Amsterdam.
Each annotator evaluated three different medical
abstracts. For each abstract, they rated the five sim-
plified versions on a 1-5 scale along three aspects:
meaning preservation (accuracy of medical infor-
mation), simplicity (lexical accessibility to non-
experts, focusing on jargon reduction), and fluency
(natural and coherent writing).

For an action-based perspective, annotators also
evaluated the model’s ability to perform specific

3https://github.com/feralvam/easse/blob/
master/easse/bertscore.py

4https://github.com/Feralvam/easse

5https://qualitativeexpthesis—biomed.
streamlit.app/
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Model

Token-Level

Entity-Level

Bin 3Cls 7Cls Bin 3Cls 7Cls
BERT 88.12 (85.4) 86.61 (80.4) 75.02 (66.3) 70.85 (77.0) 67.74 (72.5) 56.47 (63.3)
2 RoBERTa 89.89 (86.2) 88.72 (81.7) 76.72 (66.7) 57.83 (79.7) 69.29 (75.2) 53.23 (66.6)
og BioBERT 87.83 (84.2) 87.39 (79.6) 76.10 (66.4) 68.51 (77.1) 67.12 (72.8) 58.22 (64.1)
PubMedBERT 84.98 (85.2) 84.72(81.2) 76.71(67.7) 71.57 (75.8) 72.50 (74.8) 63.68 (66.3)
BERT 88.05 (86.1) 87.18 (80.9) 76.25(67.9) 67.70 (78.5) 68.93 (74.1) 58.71 (43.9)
gb RoBERTa 89.73 (86.8) 88.72 (82.3) 78.65 (68.6) 73.42 (80.2) 68.87 (75.9) 62.63 (67.9)
S BioBERT 87.80 (85.3) 86.33(80.7) 75.98 (67.0) 73.40 (78.4) 70.51(72.2) 60.19 (64.9)
PubMedBERT 86.39 (85.7) 85.67 (82.3) 75.31(68.3) 72.32 (79.0) 69.70 (75.2) 61.67 (66.5)

Table 5: F1 scores (%) on the MedReadMe dataset. Our results are shown with original results in parentheses. The

highest value per column is bolded.

text transformation operations (substitute, general-
ize) informed by PLABA action annotations (Attal
et al., 2023; Ondov et al., 2025). In this setting,
each annotator rated three action types across five
randomly selected sentences, using the same 1—
5 scale. Detailed examples are provided in Ap-
pendix B.

4 Results and Analysis

4.1 Jargon Detection Performance

We successfully replicated the MedReadMe
(MRM) experiment, though with notable differ-
ences. As shown in Table 5, our implementa-
tion achieved higher token-level F1 scores (e.g.,
89.89% vs. 86.8% for RoBERTa-base) but lower
entity-level F1 scores (e.g., 73.42% vs. 80.2% for
RoBERTa-large) compared to the original study.
This suggests our models were better at classify-
ing individual tokens but worse at identifying exact
span boundaries, potentially due to differences in
the evaluation pipeline.

Performance varied significantly across jargon
categories (Table 6). The RoBERTa model excelled
at identifying medical abbreviations (F1=0.869) but
struggled with nuanced distinctions, such as differ-
entiating Google-Hard from Google-Easy terms
(F1=0.514). It failed completely on rare classes
like multisense terms, highlighting the impact of
severe class imbalance.

On the PLABA dataset, all models performed
worse than on MRM, with RoBERTa-large achiev-
ing the highest entity-level F1 of 46.70% (Ta-
ble 7). Surprisingly, domain-specific models like
BioBERT showed no clear advantage. This perfor-
mance gap is likely due to PLABA’s smaller size
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Class Prec. Rec. F1 Supp.
G_EASY 0.697 0.828 0.756 3,939
G_HARD 0.748 0391 0.514 1,178
MED_ABBR 0.831 0910 0.869 933
MED_NAME 0.506 0.701 0.588 455
GEN_CPLX  0.695 0.628 0.660 489
GEN_ABBR 0.866 0.792 0.827 130
MULTI 0.000 0.000 0.000 28

Table 6: 7-class performance for RoOBERTa-large on
MedReadMe (MRM) dataset. G: Google, MED: Med-
ical, GEN: General, ABBR: Abbreviation, NAME:
Name Entity, CPLX: Complex, MULTI: Multisense.

Model F1 Precision Recall
BERT 44.17 39.74 49.70
RoBERTa 46.70 46.06 47.36
BioBERT 43.42 46.99 40.35
PubMedBERT 45.43 43.19 47.92

Table 7: Entity-level performance metrics across dif-
ferent language models (large version) on the PLABA
dataset.

and, crucially, its different annotation objective.

4.2 Transfer Learning and the Impact of
Annotation Schema

Cross-dataset transfer learning yielded only mod-
est gains, underscoring the challenge of general-
izing across differently annotated resources (Ta-
ble 8). For instance, a model trained on Med-
ReadMe achieved only 33.71% entity F1 when
evaluated directly on PLABA.

To test if this was due to annotation mismatch,



Experiment Token F1 Entity F1

Setting SARI{ BERTScoret FKGL, BLEU?

MRM — PLABA 61.22 33.71
PLABA+MRM — PLABA 62.94 37.01
MRM+PLABA — PLABA 66.84 37.71
PLABA — MRM 59.01 25.03
PLABA+MRM — MRM 89.80 73.84
MRM+PLABA — MRM 73.96 46.64

Table 8: F1 scores (%) for transfer learning experi-
ments. Sequential transfer refers to fine-tuning on a
second dataset after initial training. MRM stands for
MedReadMe.

Setting SARIT BERTScoref FKGL| BLEUT

Simple  29.87 19.91 13.53 234
Jargon 29.92 19.07 14.16 240
GT 30.62 20.51 14.16  3.03
GT action 32.26 11.55 15.36 4.06

Table 9: Performance metrics for Llama-3.1-8B-Instruct
across different prompts.

we manually relabeled a 100-sentence PLABA sub-
set with the MedReadMe schema. When evalu-
ated on this aligned data, the MedReadMe-trained
model’s performance improved markedly from
33.71% to 42.00% entity F1. This confirms that the
performance drop was primarily due to divergent
annotation schemes rather than a model limitation.
When labels are aligned, models generalize effec-
tively.

4.3 Jargon-Aware Text Simplification

We next investigated whether explicitly highlight-
ing jargon in prompts improves LLM-based simpli-
fication. We evaluated four prompting strategies of
increasing complexity on both a general-purpose
(Llama-3.1, Table 9) and a domain-specialized
(Medicine-Llama3, Table 10) model.

The results were model-dependent and revealed
a consistent trade-off. For Llama-3.1, more explicit
guidance (e.g., providing ground-truth actions) led
to the best performance on operation-based metrics
like SARI (32.26) but at the cost of readability,
yielding the highest FKGL (15.36). In contrast,
the simple prompt achieved the best readability
(FKGL=13.53).

Contrary to expectations, the Medicine-Llama3
model performed best across all metrics with the
simple prompt and its performance degraded with
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Simple  28.81 13.59 12.69 1.69
Jargon 28.64 12.66 12776 1.65
GT 28.70 11.00 13.67 1.60
GT action 28.57 8.90 13.87 142

Table 10: Performance metrics for Medicine-Llama3-
8B across different prompts.

Version/Task Type Mean Rating SD
Ground Truth 5.00 0.00
Simple 3.33 1.41
Jargon 2.34 0.94
GT 2.84 1.18
GT action 2.67 0.94
Action-based Tasks 4.60 0.57

Table 11: Average Ratings and Standard Deviations by
Version and Task Type

more complex, jargon-aware instructions. This
suggests that domain-specific pre-training does not
automatically translate into an ability to effectively
leverage explicit jargon instructions.

4.4 Human Evaluation

A qualitative human evaluation (Table 11) revealed
that while the reference simplifications received
perfect scores, all model outputs were perceived as
lower quality. The simple prompt was competitive
(Mean=3.33), while jargon-aware prompts did not
reliably improve perceived quality. Notably, the
high standard deviations indicate substantial dis-
agreement among raters. A key observation was
that sentence-level simplification often led to a loss
of context and information across the abstract, lim-
iting overall coherence. See Appendix C for exam-
ples of generated outputs for different prompting
strategies.

5 Discussion and Conclusions

In this work, we thoroughly evaluated the auto-
matic jargon detection methods for biomedical
texts. We reproduced MedReadMe experiments, es-
tablished PLABA baselines, and showed that cross-
dataset transfer is limited primarily by annotation
mismatches. We then experimented with jargon-
aware prompting strategies for the automatic sim-
plification of these texts.

On jargon detection, our replications achieved



higher token-level but lower entity-level F1 than the
original report, highlighting remaining challenges
in precise span boundary modeling. Category-wise
analyses showed strong performance on frequent,
well-formed classes (e.g., medical abbreviations)
and weaknesses on rarer or nuanced classes (e.g.,
Google-Hard, multisense), reflecting severe class
imbalance. Importantly, evaluating on a PLABA
subset re-annotated with the MedReadMe scheme
(100 sentences) improved entity-level F1 from
33.71% to 42.00%, demonstrating that schema
alignment substantially boosts transferability.

Turning to simplification, our experiments show
that the effect of jargon-aware prompting is model-
dependent rather than uniformly beneficial. The
general-purpose Llama-3.1-8B-Instruct benefited
from more explicit guidance (best SARI/BLEU
with ground-truth actions), but with reduced read-
ability (higher FKGL). In contrast, the domain-
specialized Medicine-Llama3-8B performed best
with simple prompts, suggesting that domain pre-
training does not automatically translate into better
handling of explicit jargon instructions. This depen-
dency may arise from how models process prompts:
general models require explicit jargon surfacing to
prioritize medical terms, while specialized models
implicitly handle them, making simple instructions
sufficient.

Across models, we observed a consistent
trade-off: more detailed prompting can im-
prove operation- and overlap-based metrics (SARI,
BLEU) while harming readability (FKGL). Qual-
itative judgments echoed this tension: references
set a clear upper bound; simple prompts were com-
petitive, whereas jargon-aware prompts did not reli-
ably improve perceived quality, and sentence-level
processing likely contributed to information loss
across abstracts.

Thus, explicitly including identified jargon in
prompts does not consistently improve LLM medi-
cal text simplification. Jargon matters, but surfac-
ing terms alone is insufficient; benefits depend on
the model and come with readability trade-offs.

Future work should (i) improve span boundary
modeling and mitigate class imbalance in detection,
(i) explore schema-aware or multi-task training for
cross-dataset robustness, and (iii) couple detection
with controllable, document-level generation and
evaluation that jointly captures medical fidelity and
accessibility. We release code and data to support
further research.
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6 Limitations

The lack of multiple annotators for manual re-
annotation is a limitation and should be addressed
in future work to improve reliability. The small-
scale human evaluation (only 5 annotators from a
computer science background, evaluating just 3 ab-
stracts each) and resulting high rater disagreement
may limit generalizability of perceived quality. Au-
tomatic metrics like SARI may not fully capture
jargon-specific changes, and the low BLEU scores
in simplification experiments indicate challenges
in generating high-quality outputs. While the eval-
uation was at the document level, generation was
at the sentence level, losing the global context. Fu-
ture work could explore better prompt engineering,
larger-scale evaluations with diverse annotators,
and document-level generation to address these is-
sues.

7 Lay Summary

Medical texts are full of complex terms that can
confuse people without a scientific background.
This makes it hard for patients and the general
public to understand health information. Our re-
search focuses on two key areas: identifying these
difficult terms (called "jargon") and simplifying
medical texts so they’re easier to read.

First, we studied how well computer models can
spot jargon in medical writing. We compared two
datasets: MedReadMe, which labels terms by how
hard they are for lay people to understand, and
PLABA, which marks terms that experts think need
simplifying. We found that models trained on one
dataset don’t work as well on the other because
the datasets have different goals. But when we
manually relabeled some PLABA data to match
MedReadMe’s style, the models improved a lot,
showing that aligning how we define jargon helps
cross-dataset learning.

Second, we tested ways to make large language
models (like Al chatbots) simplify medical texts.
We tried simple prompts and more complex ones
that highlight detected jargon. Surprisingly, the
simple prompts often worked just as well or better
than the jargon-focused ones. Results depended
on the model—general-purpose models liked more
guidance, but specialized medical models did better
with basics. This suggests that just telling an Al
to simplify might be enough, without needing to
point out every jargon term.

Our work shows that making medical info ac-



cessible is tricky, but better data alignment and
smarter prompting can help. We hope this leads to
tools that make health communication clearer for
everyone, improving patient understanding and out-
comes. All our code and data are publicly available
to support future research.
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A Data, code, and models

We release code and data to support reproducibility
and future work on jargon-aware medical text sim-
plification: https://github.com/taikilazos/
thesis_codebase.

Extensive further documentation can be found
in (Papandreou-Lazos, 2025).

Related experiments were reported at the TREC
2024 PLABA track (Bakker et al., 2024) and at the
CLEF 2025 SimpleText Track (Papandreou et al.,
2025).

B Prompt Design
Original Text

The patient exhibited tachycardia and dyspnea
< during examination.

Base Instructions (applied to all prompts)

IMPORTANT: Follow these rules exactly:

Write a clear sentence

Keep ALL medical distinctions and patterns
Keep exact numbers and measurements

Replace medical terms with plain words ONLY if
meaning stays exactly the same

Keep medical terms if simplifying would lose
precision

No explanations or notes

No multiple versions

Nogpogphwne

1. Simple Prompt

Text to simplify: The patient exhibited
— tachycardia and dyspnea during examination.
Write one simplified sentence.
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2. Jargon-aware Prompt

Replace these terms ONLY if you can keep their
< exact medical meaning:

- tachycardia

- dyspnea

Text to simplify: The patient exhibited

< tachycardia and dyspnea during examination.
Write one simplified sentence.

3. Ground Truth Jargons Prompt

You must simplify the following terms in the

< sentence below (if present):

- tachycardia

- dyspnea

Text to simplify: The patient exhibited

< tachycardia and dyspnea during examination.
Write one simplified sentence.

4. Ground Truth Actions Prompt

For each marked term in the sentence below, take
— the specified action:

- tachycardia: substitute

- dyspnea: explain

Text to simplify: The patient exhibited

< tachycardia and dyspnea during examination.
Write one simplified sentence:

C Generated Text Examples

To illustrate the differences in simplification quality
across prompting strategies, we provide excerpts
from one test abstract. We selected two key sen-
tences with medical jargon and show how each
version handles them. Figure 5 shows the source,
reference (Ground truth human simplification), and
prediction based on either the Simple prompt, the
Jargon-aware prompt, the Ground truth jargons
prompt, and the Ground truth actions prompt

These examples highlight how simpler prompts
can be fluent but sometimes inaccurate, while
jargon-aware prompts vary in readability and fi-
delity.
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Original Sentence 1

Background: The purpose of the study was to examine
whether early repeated infections due to Trichomonas vagi-
nalis among human immunuodeficiency virus (HIV)-positive
and HIV-negative women are reinfections, new infections, or
cases of treatment failure.

Original Sentence 1

Ground Truth human simplification

Methods: Women attending an HIV outpatient clinic and a
family planning clinic in New Orleans, Louisiana, who had
culture results positive for T. vaginalis were treated with 2 g
of metronidazole under directly observed therapy.

For the study’s background, the study’s aim was to find
whether early repeated infections of Trichomonas vaginalis (a
parasite that can cause a sexually transmitted infection or STI)
among women with human immunuodeficiency virus (HIV)
and without HIV are reinfections, new infections, or cases of
treatment failing.

Ground Truth human simplification

For the study’s methods, women attending an HIV clinic and
family planning clinic in New Orleans, Louisiana, who had
tests detecting T. vaginalis, were treated with 2 grams (g)
of metronidazole (an antibiotic for infections) under directly
observed treatment.

Simple prompt

Simple prompt

The goal of this research is to figure out what happens when
many people get infected again by an STI called trichomonia-
sis in both those who have AIDS and do not have it.

Jargon-aware prompt

Women from two clinics received treatment at this place be-
cause they tested positive for Trichomonas vaginalis using
cultures; each woman was given 2000 milligrams of Metron-
idazol while being watched by healthcare workers during their
visit.

The goal is to figure out what happens when people get in-
fected again by this type of bacteria called trachomona’s vagi-
nallis, which can happen even after they have gotten better
because either it came back through there sexual partener as a
re-infection from them,or got another infeciton on its own, or
maybe the cure didnt work for some reason so now we need
to find out why.

Jargon-aware prompt

Women from clinics attended by people living with AIDS and
those seeking birth control services received treatment after
testing positive for a parasite causing STDs; this included
taking two grams of antibiotics while being watched as you
swallow them.

Ground Truth Jargons Prompt

Ground Truth Jargons Prompt

The goal of this research is to determine why some people
infected by Trichamonias get reinfected again after being
treated for it.

Ground Truth Actions Prompt

Women from two clinics received treatment after testing pos-
itive for Trichomonas infection; they took 2000 milligrams
of antibiotic medication while being watched by healthcare
workers during their visits.

The goal of this research is to determine what causes frequent
repeat occurrences of an infection caused by Trichamonias
vaginallis among both HIV-positive and negative females -
either they get it again after being treated previously, contract
it for the first time despite previous treatments, or their current
condition does not respond well to medication.

Ground Truth Actions Prompt

Women from two clinics in New York received treatment
after testing positive for Trichomonas infection; they took
2000 milligrams of antibiotic medication while being closely
monitored by healthcare workers during their visits.

Figure 5: Examples: Effect of prompt variation on the output.
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