taskGen at TSAR 2025 Shared Task Exploring prompt strategies with linguistic knowledge
Juan Cruz Oviedo, Elisabet Comelles Pujadas, Laura Alonso Alemany, Jordi Atserias Batalla
Abstract
TaskGen ranked as 6th best team in the TSAR 2025 shared task for English text adaptation to a target CEFR level. Our experiments consisted of prompting a Llama-3.1-8B-Instruct model with linguistic descriptors of the target level, examples of adaptations and multi-step approaches. Our best run, 13th in the overall ranking, applied an ensemble strategy using a voting mechanism to find the most adequate among 10 texts, each produced by a different prompting strategy.- Anthology ID:
- 2025.tsar-1.13
- Volume:
- Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Matthew Shardlow, Fernando Alva-Manchego, Kai North, Regina Stodden, Horacio Saggion, Nouran Khallaf, Akio Hayakawa
- Venues:
- TSAR | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 160–172
- Language:
- URL:
- https://preview.aclanthology.org/ingest-emnlp/2025.tsar-1.13/
- DOI:
- Cite (ACL):
- Juan Cruz Oviedo, Elisabet Comelles Pujadas, Laura Alonso Alemany, and Jordi Atserias Batalla. 2025. taskGen at TSAR 2025 Shared Task Exploring prompt strategies with linguistic knowledge. In Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025), pages 160–172, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- taskGen at TSAR 2025 Shared Task Exploring prompt strategies with linguistic knowledge (Oviedo et al., TSAR 2025)
- PDF:
- https://preview.aclanthology.org/ingest-emnlp/2025.tsar-1.13.pdf