taskGen at TSAR 2025 Shared Task Exploring prompt strategies with linguistic knowledge

Juan Cruz Oviedo, Elisabet Comelles Pujadas, Laura Alonso Alemany, Jordi Atserias Batalla


Abstract
TaskGen ranked as 6th best team in the TSAR 2025 shared task for English text adaptation to a target CEFR level. Our experiments consisted of prompting a Llama-3.1-8B-Instruct model with linguistic descriptors of the target level, examples of adaptations and multi-step approaches. Our best run, 13th in the overall ranking, applied an ensemble strategy using a voting mechanism to find the most adequate among 10 texts, each produced by a different prompting strategy.
Anthology ID:
2025.tsar-1.13
Volume:
Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025)
Month:
November
Year:
2025
Address:
Suzhou, China
Editors:
Matthew Shardlow, Fernando Alva-Manchego, Kai North, Regina Stodden, Horacio Saggion, Nouran Khallaf, Akio Hayakawa
Venues:
TSAR | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
160–172
Language:
URL:
https://preview.aclanthology.org/ingest-emnlp/2025.tsar-1.13/
DOI:
Bibkey:
Cite (ACL):
Juan Cruz Oviedo, Elisabet Comelles Pujadas, Laura Alonso Alemany, and Jordi Atserias Batalla. 2025. taskGen at TSAR 2025 Shared Task Exploring prompt strategies with linguistic knowledge. In Proceedings of the Fourth Workshop on Text Simplification, Accessibility and Readability (TSAR 2025), pages 160–172, Suzhou, China. Association for Computational Linguistics.
Cite (Informal):
taskGen at TSAR 2025 Shared Task Exploring prompt strategies with linguistic knowledge (Oviedo et al., TSAR 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-emnlp/2025.tsar-1.13.pdf