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Abstract

A fundamental aspect of the semantics of nat-
ural language is that novel meanings can be
formed from the composition of previously
known parts. Vision-language models (VLMs)
have made significant progress in recent years,
however, there is evidence that they are unable
to perform this kind of composition. For exam-
ple, given an image of a red cube and a blue
cylinder, a VLM such as CLIP is likely to in-
correctly label the image as a red cylinder or
a blue cube, indicating it represents the image
as a ‘bag-of-words’ and fails to capture com-
positional semantics. Diffusion models have
gained significant attention for their impres-
sive generative abilities, and zero-shot clas-
sifiers based on diffusion models have been
shown to perform competitively with CLIP
in certain compositional tasks. In this work
we explore whether the generative Diffusion
Classifier has improved compositional gener-
alisation abilities compared to discriminative
models. We assess three models—Diffusion
Classifier, CLIP, and ViLT—on their ability
to bind objects with attributes and relations in
both zero-shot learning (ZSL) and generalised
zero-shot learning (GZSL) settings. Our results
show that the Diffusion Classifier and ViLT
perform well at concept binding tasks, but that
all models struggle significantly with the re-
lational GZSL task, underscoring the broader
challenges VLMs face with relational reason-
ing. Analysis of CLIP embeddings suggests
that the difficulty may stem from overly similar
representations of relational concepts such as
left and right. Code and dataset are available at:
github.com/otmive/diffusion_classifier_clip

1 Introduction

Compositionality is a fundamental part of how hu-
mans learn (Chomsky, 1957; Janssen and Partee,
1997). It allows us to take familiar concepts and
combine them in new ways to interpret novel situ-
ations, learn from limited examples, and build in-
creasingly complex ideas. Within formal semantics
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Figure 1: We evaluate the compositional generalisa-
tion of Vision-Language Models (VLMs) by assessing
their ability to bind colours to objects and relations to
objects in both zero-shot and generalised zero-shot set-
tings across single-object, two-object, and relational
scenarios

as in e.g. (Montague, 1973), compositionality is as-
sumed in the formalism. However, vision-language
models (VLMs) fall short in tasks requiring com-
positional understanding (Diwan et al., 2022; Yuk-
sekgonul et al., 2022; Lewis et al., 2024). Even
with advances in attention mechanisms (Vani et al.,
2024) and positional encoding (Su et al., 2024),
VLMs are unable to match the compositional rea-
soning skills of humans (Sinha et al., 2024; Hua
et al., 2024b). VLMs such as CLIP (Radford et al.,
2021) have been shown to treat captions as a bag-
of-words (Thrush et al., 2022) and are not able to
bind concepts to objects in the same way humans
can. For example, given an image of a red cube
and a blue cylinder, a VLM may misinterpret the
image as containing a blue cube or a red cylinder
(see Figure 1). Additionally, a VLM should be
able to generalise learned concepts to new unseen
combinations of attributes and objects: if a model
learns the colour cyan through images of cyan cone
and the shape cube through images of green cubes,
it should also be able to recognise images of cyan
cubes or green cones. In formal semantics, given
correct representations of the words green, cyan,
cube, and cone, this property would naturally oc-
cur.
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https://github.com/otmive/diffusion_classifier_clip

Diffusion Models have gained significant inter-
est in recent years for their state-of-the-art per-
formance on image generation (Ramesh et al.,
2022; Dhariwal and Nichol, 2021) and editing
tasks (Brooks et al., 2023). Their performance
as zero-shot classifiers in vision tasks is a recent
topic of exploration (Clark and Jaini, 2023; Krojer
et al., 2023). On compositional benchmarks such
as Winoground (Thrush et al., 2022) or the Con-
cept Binding Benchmark from Lewis et al. (2024),
their performance has been shown to be compara-
ble to that of CLIP (Li et al., 2023; Clark and Jaini,
2023). However, Winoground has been argued to
require commonsense and world knowledge rather
than purely testing for compositional abilities (Di-
wan et al., 2022), and performance on the Concept
Binding Benchmark can be at chance.

In this paper, we contribute to the understanding
of the compositional abilities of diffusion model-
based classifiers by comparing with transformer-
based classifiers on compositional tasks. Specifi-
cally, we explore how these two types of models
are able to compose attributes and relations—tasks
VLMs particularly struggle with. We aim to assess
whether Diffusion Classifier can offer new insights
or improvements in handling these challenging as-
pects of compositional semantics.

We consider two settings for our experiments—
zero-shot learning (ZSL) and generalised zero-shot
learning (GZSL). In ZSL, the aim is to recognise
only unseen classes whereas GZSL aims to train
models that are able to discriminate between both
seen and unseen classes during test time (Pour-
panah et al., 2022; Xian et al., 2017). The GZSL
setting is particularly important for real world sce-
narios as there may only be labelled data for a
small number of classes and capturing every pos-
sible class in the training set is often impossible.
Therefore, it is important for models to be able
to generalise to unseen classes in the presence of
labels that have previously been seen.

To probe these abilities, we extend the Con-
cept Binding Benchmark from Lewis et al. (2024),
which evaluates model performance on attribute-
object binding and relational composition. We
evaluate the performance of Diffusion Classifier—
a classifier built from Stable Diffusion (Rom-
bach et al., 2022)—comparing it with CLIP and
ViLT (Kim et al., 2021). Despite the dataset be-
ing lightweight, it still proves challenging for the
models, particularly in the important GZSL setting.

The main contributions of this work are three-

fold: (1) We compare Diffusion Classifier, CLIP,
and ViLT on compositional tasks. Diffusion Classi-
fier generalises best in single-object settings, how-
ever, ViLT has by far the best two-object perfor-
mance. All models struggle to reliably compose
relations with objects. (2) To provide a more ro-
bust evaluation of compositional generalisation,
we present our extension of the Concept Binding
Benchmark from Lewis et al. (2024). This extended
benchmark consists of three datasets to test VLMs
in both zero-shot learning (ZSL) and generalised
zero-shot learning (GZSL) scenarios. (3) We anal-
yse the effects of fine-tuning on compositional se-
mantic understanding, showing that models fail to
form correct representations for spatial relations.

2 Related Work

Benchmarking Compositionality in VLMs
There is a growing interest in the ability of VLMs to
reason compositionally, with several benchmarks
being proposed in recent years (Yuksekgonul et al.,
2022; Ma et al., 2023; Hsieh et al., 2024; Dumpala
et al., 2024; Ray et al., 2024; Zhao et al., 2022;
Huang et al., 2024; Thrush et al., 2022; Hua et al.,
2024a). Compositional generalisation is an im-
portant ability for VLMs to have because it en-
courages the interpretability and data efficiency
of models (Bommasani et al., 2021). However, it
has been argued (Lewis et al., 2024; Hsieh et al.,
2024) that various compositionality benchmarks
are ‘hackable’, showing that in some cases it is
possible to solve the benchmark simply by com-
paring prompts (Wu et al., 2023) and ignoring the
image. SugarCrepe (Hsieh et al., 2024) is designed
to deal with this problem, but is still prone to the
issue that the correct caption is statistically more
likely in the training corpus. Unlike benchmarks
that use complex real-world images, we use simple,
synthetic images to ensure no spurious correlations
and to directly test compositional understanding.
We argue that VLMs should be able to handle these
simpler reasoning tasks before advancing to more
complex, real-world images.

Improving Compositionality in VLMs Meth-
ods have been proposed to improve the composi-
tional abilities of VLMs (Cascante-Bonilla et al.,
2023; Doveh et al., 2023). Several works use hard
negative sampling to fine-tune CLIP on batches
of similar images e.g. “a black cat sitting on a
desk” and “a black desk sitting on a cat” which
force the model to learn more detailed representa-
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tions of the data (Yuksekgonul et al., 2022; Shou
and Lin, 2024; Sahin et al., 2024). Other meth-
ods include different representations for objects
within images such as trees or graphs (Singh et al.,
2023; Yellinek et al., 2025) and adaptations to the
contrastive loss function of CLIP to include more
compositional supervision (Pandey et al., 2023;
Zhang et al., 2024). Despite advancements, VLMs
still struggle with compositional reasoning (Hsieh
et al., 2024; Dumpala et al., 2024). Our bench-
mark aims to investigate why VLMs struggle with
compositional tasks by testing in GZSL settings
using in-distribution and out-of-distribution images
to identify potential biases.

Diffusion Model Classifiers Recently, methods
have been proposed to leverage diffusion models
as zero-shot classifiers (Chen et al., 2023; Li et al.,
2023; Krojer et al., 2023; Clark and Jaini, 2023).
Li et al. (2023) propose Diffusion Classifier, a
model built from Stable Diffusion, which achieves
a higher accuracy than CLIP on tasks requiring
compositional reasoning such as concept binding.
Krojer et al. (2023) use a similar method for us-
ing Stable Diffusion (Rombach et al., 2022) as a
classifier but include a normalising value based
on the noise prediction error calculated with no
text guidance. He et al. (2023) use the attention
scores between the image and text representations
of Stable Diffusion to adapt it for image-text match-
ing tasks. Clark and Jaini (2023) also propose a
zero-shot classifier created from Google’s Imagen,
which shows some ability to bind attributes such as
shape, size and colour where CLIP fails to do so.
For our experiments we use the Diffusion Classifier
from Li et al. (2023) as Stable Diffusion is open
source with easily accessible fine-tuning methods.

3 Experiments

We base the design of our benchmark on the ex-
periments from Lewis et al. (2024) where three
datasets were created for exploring composition
of attributes and relations with objects. While this
setup reveals that models often struggle even with
simple object compositions, our aim is to extend
this evaluation to include both Zero-Shot Learning
(ZSL) and Generalised Zero-Shot Learning (GZSL)
settings. To enable this, we adapt and expand the
original benchmark to support systematic and rig-
orous testing in both settings.

The images are generated using the genera-
tion script for the CLEVR dataset (Johnson et al.,

2017)—using a Blender script (Community, 2018)
to render 3D shapes. The original code included
only three shapes cubes, cylinders, and spheres
which we extend with an additional shape, cones,
to increase the diversity across the dataset splits.
For the single and two-object datasets, we consider
the following colours: blue, brown, cyan, gray,
green, purple, red, and yellow. We define the la-
bel sets for the single and two-object datasets as
follows:

Let C' be the set of colours and S the set of
shapes. For object classification, each object is
identified by its colour—shape pair, and the label set
is defined as:

Y=A{(c,s) | ceC, se S}

Each element of ) represents a unique object
(e.g., red square, blue circle). In the two-object
dataset, labels consist of two such tuples, e.g.,
((c1,81), (c2,82)). For the relational dataset, we
define a set of spatial relations R = {left, right}.
We exclude the relations front and behind which
were included in Lewis et al. (Lewis et al.,
2024) as we found these to be too ambiguous—
distinguishing which shape is further forward is
often difficult even for humans. The relational la-
bel set is then defined as:

yre] == {<3i7r7 S]) ‘ Si78j S Sa Si 7& Sj7 T e R}7

where each triple describes a relation between two
distinct shapes—for example, (circle, left, square).
All datasets are partitioned into five subsets:
training (Y'rainy - in-distribution validation/test
(YPval yibtesty - and  out-of-distribution valida-
tion/test (YOOPval )OODtesty - Tn_djstribution sub-
sets use the same label space as the training set, i.e.
yuain — pibval _ yIDiest - ywhile OOD splits are
defined such that:

train OODval __
yerny =0,
yOODval N yOODtest —_ @

ytram N yOODtest _ @7

This setup enables evaluation both within the train-
ing distribution and on novel combinations, to as-
sess generalisation. We give the structure of our
single and two-object datasets within Figure 2. The
label red cube is in the test set, meaning that it is
not seen during training, but red (e.g. in red sphere)
and cube (e.g. in gray cube) have both been seen
during training in other combinations. The struc-
ture of the relational dataset is given in Figure 3.
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Figure 2: Single and Two-Object dataset design. Class
labels belonging to each dataset split: train and in-
distribution are highlighted in green, OOD validation in
yellow, and OOD test in red.

Train ID Val ID Test OOD Val OOD Test
Single-Object 1360 340 340 400 1100
Two-Object 7440 1860 1860 600 3700
Relational 440 110 110 250 400

Table 1: Our extended benchmark statistics for the three
datasets showcasing the number of images within each
of the splits.

For both ZSL and GZSL tasks, models are fine-
tuned on images and labels from the training split
of the data. In the ZSL setting, at test time, mod-
els must pick the correct label for an image from
a set S of unseen labels, i.e. S C YOODwest 1y
the GZSL task, at test time, models must pick the
correct label for an image from a set of both seen
and unseen labels, ie. S C Y or S C Y. This
setup evaluates the ability of models to generalise
colours or relations learned during fine-tuning to
new unseen shape combinations. Because of this,
the single and two-object train split contains at least
one class containing each shape and each colour.
Similarly, the relational train split contains at least
one of each shape.

We only use positive examples when fine-tuning
CLIP rather than both positive and negative ex-
amples to keep consistent with the DreamBooth
fine-tuning method for Stable Diffusion which only
accepts positive training examples. In addition, to
further align with DreamBooth, we fine-tune CLIP
with a small number of samples from each class
(20-40 per class).

3.1 Single-Object

The single-object task tests the ability of mod-
els to recognise attribute-object pairs and is used
as a baseline for analysing which combinations
the models can recognise before experimenting in
a two-object setting. Examples from the single-
object dataset are shown in Figure 4 a) and b). In
the single-object setting, we evaluate only on the
GZSL task, and require models to select the correct
label for the image from all possible label com-
binations, i.e. from the whole of ). Following

convention, the class labels are given in the form
of a prompt “a photo of a <class>".

3.2 Two-Object

The two-object dataset contains images of exactly
two-objects which differ in both shape and colour.
For example, the dataset contains images of a blue
cube and a red sphere but not of a blue cube and
a blue sphere. We follow Lewis et al. (2024) and
present the model with labels for individual objects
whereby the true label correctly describes one of
the objects in the image and the others are incorrect.
In comparison to giving the model a full description
of the image (e.g. green cone and purple cylinder),
this is a challenging setup which minimises the use
of shortcuts by the model, for example if the model
can recognise green cones correctly but not purple
cylinders. As an example, the images in Figure 4
¢) may have the true label green cylinder and hard
negatives green cone and purple cylinder.

In the ZSL setting, models are given one correct
label and two distractors from the same (unseen)
split. For example, an image of a yellow cube may
be paired with gray cylinder and brown sphere as
distractors (see Figure 4 column d)).

In the GZSL setting, models choose from five
labels: the true label, two standard distractors, and
two hard negatives created by swapping attributes
and shapes (e.g., yellow cone, cyan cube for Figure
4 d)). This makes the task more challenging and
tests whether models prefer familiar (seen) classes
over novel ones.

3.3 Relational

The relational dataset tests compositions of the re-
lations left and right between two-objects in an
image. The two-objects are always two distinct
shapes, that is, we don’t consider cases such as
sphere left sphere. As with the two-object dataset,
each image has two possible true labels. For in-
stance, the images in Figure 4 column e) would
have the true labels cube left sphere and sphere
right cube. Again, we consider a ZSL and GZSL
setting. In the GZSL setting, models choose from
five options: the true label, two randomly selected
labels, and two hard negatives. One hard negative
alters the spatial relation (e.g., cube left sphere —
cube right sphere), while the other swaps object or-
der (e.g., cube left sphere — sphere left cube). The
hard negatives require the model to recognise the
specific relation in the image and not just recognise
which two shapes are present—a task at which a
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bag-of-words model would fail.

cube cylinder cone

sphere

sphere sphere leftcube | sphere left cylinder |  sphere left cone

cube left cone

cube cube left sphere cube left cylinder

cylinder cylinder left sphere | cylinder left cube cylinder left cone

cone cone left sphere cone left cube cone left cylinder

cube cylinder cone

right sphere

sphere cube right sphere | cylinder right sphere |~ cone right sphere

cube sphere right cube cylinder right cube | cone right cube

cylinder sphere right cylinder | cube right cylinder cone right cylinder

cone sphereright cone | cuberight cone | cylinder right cone

Figure 3: Relational dataset design. Class labels be-
longing to each dataset split: train and in-distribution
are highlighted in green, OOD validation in yellow, and
OOD test in red.

4 Results

We conduct experiments comparing frozen and fine-
tuned CLIP, ViLT, and Diffusion Classifier (DC)
on three datasets: single-object, two-object, and
relational. Experiments are carried out in a Linux
environment using an RTX 2080 GPU for both
training and inference.

4.1 Single-Object

We test models’ ability to compose single attribute-
noun pairs. For each of the models we fine-tune
with three different seeds and report the mean and
standard deviation of each. Fine-tuning details and
hyperparameters for each dataset are provided in
Appendix A.

Model ID Validation ID Test OOD Validation OOD Test
Frozen CLIP 85.290:00 80.590-00 67.75000 87.360-00
CLIP-FT 95.29301 95.59292 93.5738! 91.2164
Frozen VILT ~ 51.470%° 50.000 34,5000 44.91000
VIiLT-FT 95.880.00 94,71000 63.5000 77.18000
Frozen DC 40.80089 40.98037 58,0030 60.0'08
DC-FT 97.7416 97.1678 99.500-12 99.470-87

Table 2: Accuracy of models on the single-object task.

Results We see in Table 2 that CLIP has the
best accuracy of the frozen models on this task.
However, after fine-tuning, DC has the best over-
all accuracy. Both CLIP and DC show a strong
performance on ID and OOD splits indicating that
in the simple single-object setting they are able to
generalise to unseen colour-shape combinations.
In contrast, fine-tuned ViLT showcases strong per-
formance only on the ID splits and shows a drop
in accuracy to 63.5% and 77.18% on the OOD

splits. ViLT frequently makes errors such as pre-
dicting blue cone for cyan cone or gray cube for
gray cylinder—failing to generalise from famil-
iar components seen during training (such as the
colour cyan with a sphere, or the shape cylinder
with other colours like red, green, or purple). Fine-
tuned CLIP and DC are able to generalise in the
single-object setting but ViLT’s lower OOD perfor-
mance shows even in simple settings composing
unseen combinations can be difficult for VLMs.

4.2 Two-Object Zero-Shot

The two-object experiment tests whether models
can correctly bind attributes to their correspond-
ing objects, rather than simply recognising which
shapes and colours are present. We report the av-
erage accuracy with the standard deviation for all
models as shown in Table 3.

Model ID Validation ID Test OOD Validation OOD Test
Frozen CLIP 83.710:00 85.27000 93,0000 69.51000
CLIP-FT 90.1305 90.3900! 99.39075 80.151!1
Frozen VIiLT 72.780%6 73.80073 70.0000 66.82032
ViLT-FT 99.780-00 99.890.08 99,5000 99.260-18
Frozen DC 61.180-00 64.530-00 91.83000 58.30:00
DC-FT 82.59334 83.213% 93.89249 72.80200

Table 3: Accuracy of models on the ZSL two-object
task.

ViLT-FT has the highest accuracy achieving over
99% on all dataset splits. This is particularly sur-
prising given its lower performance in the single-
object task. ViLT may benefit from the reduced
label space in the two-object ZSL experiment com-
pared to having the full range of prompts in the
single-object setting. CLIP-FT and DC-FT both
show a decrease in performance on OOD test but
not on OOD val. We believe the high OOD val ac-
curacies are due to the reduced size of the OOD val
split meaning there are only 4 very distinct prompts
to choose from. The drop in performance of all
models on the OOD test split further highlights
that VLMs lack robust compositional understand-
ing, even for the simpler zero-shot case. Current
pre-training strategies rarely require models to ex-
plicitly learn compositional knowledge, suggesting
that adjustments to pre-training may be necessary.

4.3 Two-Object Generalised Zero-Shot

In the GZSL two-object task, models must com-
pose attributes with objects while also handling
previously seen labels, providing a more rigorous
test of generalisability. We report the accuracies
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Single Object

a) red sphere b) cyan cube

c) green cylinder

Two Object

Relational

d) yellow cube e) sphere right cube f) cylinder left cone

Figure 4: Samples from our extended benchmark with two example classes displayed from each dataset—single,

two-object, and relational.

and standard deviations for the two-object GZSL
experiment in Table 4.

Model ID Validation ID Test OOD Validation OOD Test
Frozen CLIP 23.330.00 21.56000 35.33000 3427000
CLIP-FT 78.82305 76.40086 55.50%2 23.38%28
Frozen ViLT 31.56%12 32.710% 47.830.00 29.1021
ViLT-FT 99.710:07 99.860-03 91.67000 83.460:00
Frozen DC 33.580:00 34.64000 38.46000 39.320:00
DC-FT 53.06%20 51.86%4! 57.06%0 72.97205

Table 4: Accuracy of models on GZSL two-object.

Again VIiLT-FT has the strongest performance
for all dataset splits significantly outperforming
other models. This suggests it is less biased to-
wards seen labels as evidenced by the relatively sta-
ble performance across ZSL and GZSL. However,
it does still exhibit a small drop in performance
on the OOD splits indicating some limitations in
generalising. CLIP-FT experiences a substantial
drop in performance on the OOD splits especially
OOD test, showing it has overfit to the training
data. DC-FT interestingly shows the reverse pat-
tern to the other models and has the highest ac-
curacy on OOD. We hypothesise that this is due
to the composition of the test split—for example,
challenging colours like yellow and brown, which
DC frequently confuses, constitute a smaller pro-
portion of the OOD labels. While the high OOD
test accuracy is particularly notable in the chal-
lenging GZSL setting, DC’s lower accuracy on the
ID splits (53.06% and 51.86%) suggests it lacks
consistent attribute-object binding ability. Even
ViLT-FT, the best-performing model overall, has a
reduced performance on the OOD splits, highlight-
ing limitations in the way models represent and
combine attributes and objects.

In table 5 we show the percentage of total predic-
tions made by the models which fall into each error
category on the GZSL two-object task for the ID

and OOD test splits. The Colour column is the per-
centage of predictions where the model correctly
identifies the shape but chooses the colour of the
second object in the image, the Shape column is
the percentage of predictions correctly guessing the
colour but choosing the second object’s shape. The
Other column is the predictions from the other two
non-hard negatives.

Model ID test OOD Test

Colour Shape Other Colour Shape Other
Frozen CLIP 359700 374200 506°° 22,050 30.03°0 13.65%0
CLIP-FT 7.158 830053 8.16'28  34.17364 34,7829 77212
Frozen VILT ~ 35.57°4  26.54%47 518051 3598005 2856019  6.350.02
VIiLT-FT 0.03004 0,000 0.0%0 8.76%02 754002 (17004
Frozen DC 21.46%0 262590 17.64%0 14700 18.18°0 27.8100
DC-FT 18.530%  16.79'2*  12.81'%  16.51°7"  10.53!7 0.0%0

Table 5: Breakdown of errors in two-object GZSL.

Both frozen and fine-tuned CLIP have a roughly
even distribution of errors on colour and shape
mistakes showing both types of composition are
equally challenging. Frozen ViLT makes slightly
more errors on colour, but after fine-tuning, er-
rors across all categories drop to near zero with
a slight tendency for colour errors remaining in
OQOD. Frozen DC makes slightly more mistakes
on shape but after fine-tuning finds colour slightly
more difficult especially in OOD. All incorrect pre-
dictions made by DC-FT in the OOD split cor-
respond to hard negative labels, highlighting that
binding colours to the correct objects is particularly
challenging.

4.4 Relational Zero-Shot

The relational experiment tests how well models
can compose spatial relations with objects, specifi-
cally we test the composition of the relations ‘left’
and ‘right’ with the object’s shape eg. ‘cube’. We
show the relational ZSL results in Table 6.
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Model ID Validation ID Test OOD Validation OOD Test
Frozen CLIP 56.36000 56.600-00 38.40000 68.00000
CLIP-FT 99.39086 99.31057 68.001391 94.08336
Frozen ViLT 74.55'48 68.520-87 42.40000 64.6703!
ViLT-FT 78.18257 76.041-98 70.53019 65.003
Frozen DC 68.18000 69.440.00 30.700:00 65.25000
DC-FT 89.09464 92.941-18 51.8623! 87.1818

Table 6: Accuracy of models on the ZSL relational task.

All models except ViLT-FT have a lower accu-
racy on OOD validation than OOD test. This could
be due to the smaller size of the validation split,
which limits prompt diversity making the distractor
labels more likely to share shapes with the shapes in
the true label. Both DC and CLIP only show slight
drops in performance between OOD test and the
ID splits demonstrating the capacity to recognise
unseen object-relation combinations in ZSL set-
tings. ViLT, while having overall lower accuracies,
shows less variation across dataset splits, showing
some capacity to generalise. All models show a
substantial drop in performance in the relational
ZSL compared with the two-object ZSL showing
that systematically combining objects with rela-
tions is harder for these models than combining
colour-object pairs. The difficulty the models have
with relational information suggests they are fo-
cusing on recognising objects in the image rather
than compositions between objects. While VLMs
can often rely on these shortcuts and still achieve
a strong performance, tasks that require relational
reasoning reveal that they lack a full understanding
of visual scenes.

a photo of a blue cube

Frozen

Fine-Tuned

a photo of a green cubekand a blue cylinder

Frozen

Fine-Tuned

a photo of a green sphere and a purple cone

4.5 Relational Generalised Zero-Shot

In the relational GZSL experiment, models must
bind spatial relations to objects and predict previ-
ously unseen combinations of relations and objects
in the presence of previously seen labels. We show
the performance of the models on the GZSL re-
lational task in Table 7 reporting the mean and
standard deviation for the fine-tuned models.

Model ID Validation ID Test OOD Validation OOD Test
Frozen CLIP 27.27000 27.43000 18.000-00 25,0000
CLIP-FT 62.1204 72.22397 42.80'83 3475033
Frozen ViLT 13.94043 16.55065 2253019 26.50-3
ViLT-FT 16.55065 22.53019 26.5033 25.501-08
Frozen DC 2455000 21.530.00 10.000-00 24.500:00
DC-FT 32.73%%7 3472260 41.20%57 38.25402

Table 7: Accuracy of models on relational GZSL.

In the GZSL relational setting, CLIP-FT per-
forms reasonably well on the ID splits with 62.12%
and 72.22%, however, there is a significant drop in
performance for the OOD splits with 42.80% and
34.75% on validation and test respectively. CLIP
therefore seems to overfit to the training data and
is not able to generalise to unseen labels. ViLT
struggles with this task, with even the fine-tuned
model hardly performing better than chance at 20%.
Interestingly, DC has a lower accuracy on the ID
splits than the OOD splits. Given DC’s reasonable
accuracies of 89.09% and 92.94% in the ID ZSL
experiment, it appears DC is particularly confused
by the presence of hard negative labels showing
it is lacking fine-grained understanding. All mod-
els have a drop in performance from the ZSL task
showing they struggle to compose relational con-

a photo of a ¢ Ilnder to the Ieft of a cone

__a photo of a cyllnder to the right of a cone

Figure 5: Images generated by Frozen and Fine-Tuned Diffusion-Classifier using prompts from the single, two-
object and relational, shown from left to right. The top two rows are generated by labels from the train set and the

bottom two from the test set.
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cepts and especially cannot distinguish between
hard negatives in the GZSL setting such as sphere
left cube and sphere right cube. This suggests that
the models are relying on object recognition rather
than understanding relational positions.

We show the percentage of total predictions
made by the models which fall into each error cat-
egory for the ID and OOD test splits in Table 8.
The column Left/Right shows the percentage of
predictions which choose the hard negative where
only the relation is incorrect e.g. cube left sphere
instead of cube right sphere. The Shape column
displays the percentage of predictions where the
shapes are correct but in the incorrect order e.g.
sphere left cube instead of cube left sphere. The
Other column is the predictions from the other two
non-hard negative labels.

Model ID test OOD Test

Left/Right  Shape Other  Left/Right ~ Shape Other
Frozen CLIP  26.04°0  28.13%0 18410  20.0%0 25.500 29.500
CLIP-FT 10.07"°  17.5934¢ 012016 30,5005 29,0075 575413
Frozen VILT ~ 31.25075  36.34005  1586!28 8.002 40.67'0  24.83105
VIiLT-FT 2587019 24.40%75 272033 9,080 36.42'0% 2883072
Frozen DC 25000 30.56%0 22,9200 222500 22,500 307500
DC-FT 24,08 36,9213 428278 2233148 2892560 105430

Table 8: Breakdown of errors in relational GZSL.

Frozen CLIP and DC have fairly evenly dis-
tributed errors across the 3 categories while ViLT
on the OOD test split has a larger proportion of
shape errors. After fine-tuning, DC and CLIP have
a reduced proportion of errors in the other category
however ViLT still makes a considerable number of
predictions where the two shapes in the image are
not correctly identified. For fine-tuned CLIP and
DC, the hard negative captions present the most
difficulty with both types of hard negative being
frequently predicted instead of the true label.

5 Model Understanding

Stable Diffusion Images We compare images
generated by frozen and fine-tuned Stable Diffu-
sion to evaluate what features Diffusion Classifier
is able to learn from fine-tuning on each dataset.
We use a guidance scale of 7 and 50 inference
steps. Examples using prompts from each dataset
are shown in Figure 5. Frozen Stable Diffusion is
generally very poor at generating images in align-
ment with the specified prompt, except in the single-
object case. Interestingly, the two-object and re-
lational fine-tuned Stable Diffusion generate three
objects fairly frequently showing some pre-training
bias and knowledge is still preserved. The rela-

tional fine-tuned model fails to understand the dif-
ference between the left and right relations with
the prompts “a cylinder to the left of a cone” and
“a cylinder to the right of a cone” both resulting
in images of a cylinder on the left—the class seen
during training.

CLIP embeddings We show t-SNE visualisa-
tions of image and text embeddings from relational
dataset examples for frozen and fine-tuned CLIP.
For images, we show the embeddings of 5 sam-
ples from each class and only consider classes con-
taining left since corresponding classes containing
right use the same images.

Figure 6a shows the text embeddings which are
clearly clustered into quadruples corresponding to
prompts where the object shapes are the same, with
no clear separation between prompts correspond-
ing to different arrangements of objects. For ex-
ample, the closest neighbours of cube left sphere
are sphere left cube, cube right sphere and sphere
right cube. Fine-tuning (right-hand plot) fails in
most cases to overcome this clustering of similar
prompts. An exception is the cluster of prompts
containing sphere left cube and cube right sphere,
which have been moved closer together, and are
visibly distinct from sphere right cube and cube
left sphere. Other groups of prompts tend to cluster
according to ordering of nouns (e.g. cube left cone
and cube right cone), or by bag-of-words similarity
(e.g. cube left cylinder and cylinder left cube). This
inability to distinguish prompts corresponding to
different arrangements of objects likely contributes
towards CLIP’s inability to correctly caption im-
ages with the same shapes but different relations.

The t-SNE visualisation of image embeddings
presented in Figure 6b shows that images belong-
ing to the same class are mostly well-clustered.
However, there are a few instances of classes in
the wrong cluster e.g. a cube left cylinder sample
appears within the sphere left cube cluster. No-
tably, we observe that embeddings of images with
reversed relational structures tend to occupy simi-
lar regions in the space—for instance, cylinder left
cone and cone left cylinder appear close together
at the bottom of the plot, while cylinder left sphere
and sphere left cylinder are both near the left side
of the plot. This spatial overlap may contribute to
CLIP’s difficulty with relational reasoning. OOD
classes such as cube left cylinder and sphere left
cylinder, which are not directly fine-tuned, appear
slightly less well clustered.
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Frozen Text Fine-Tuned Text

Class Labels
sphere left cylinder
sphere right cylinder sphere right cube
cone left cylinder sphere right cone

cone right cylinder °
°
°

cone right sphere B cube left cylinder
+*
+

cone left sphere +  cylinder left cone
cone left cube © sphere left cube
cylinder right cone ~ ®  cube right cone
cube right sphere © sphere left cone
cone right cube cylinder right sphere -]

=

cylinder right cube

cylinder left cube cube left sphere
cylinder left sphere cube left cone

e 0>
$ e B>

cube right cylinder

(a) t-SNE visualisation of frozen and fine-tuned CLIP text
embeddings for relational prompts. Best viewed electronically
or in colour.

Frozen Image Fine-Tuned Image

oOA
4a°,

Class Labels
B cube left cone © sphere left cone A cone left cube
@ cubeleftcylinder @ sphere left cube 4 cone left cylinder
@ cube left sphere © sphere left cylinder &  cone left sphere

4+ cylinder left cone
4+ cylinder left cube
#  cylinder left sphere

(b) t-SNE visualisation of frozen and fine-tuned CLIP image
embeddings for relational prompts. Best viewed electronically
or in colour.

Figure 6: t-SNE visualisations of CLIP text and image embeddings for relational prompts after fine-tuning.

6 Discussion

We extend the Concept Binding Benchmark
from Lewis et al. (2024) to assess concept bind-
ing in zero-shot (ZSL) and generalised zero-shot
(GZSL) settings. Using this extended framework,
we compare the performance of the discriminative
models CLIP and ViLT against a generative model,
Diffusion Classifier, on single-object, two-object,
and relational compositional tasks. Diffusion Clas-
sifier shows the highest generalisation accuracy on
the single-object task. ViLT achieves state-of-the-
art performance on both ZSL and GZSL two-object
tasks, demonstrating strong compositional ability
in binding attributes to objects even in GZSL set-
tings. Diffusion Classifier shows some capacity to
generalise in the two-object GZSL setting, however,
it falls short of ViLT’s performance.

On the relational composition task, all models
perform poorly, showing considerable drops in per-
formance on the GZSL from the ZSL task showing
that hard distractors such as cube left sphere versus
cube right sphere are a particular problem. Despite
initial hopes that Diffusion Classifier’s generative
approach might better handle compositionality, re-
lational reasoning remains a major challenge for
all models tested.

On all our experiments, our fine-tuned CLIP
model consistently outperforms the model from
Lewis et al. on the OOD splits (Lewis et al., 2024).
We attribute this to our fine-tuning strategy of only
using positive examples unlike Lewis et al. who use
both positive and negative examples. We hypothe-
sise that the inclusion of negative examples exacer-
bates overfitting. This is due to prompts appearing
as negative training examples which then appear
as positive examples in the OOD splits, causing

CLIP to suppress their prediction. Therefore our
positive-only approach appears to lead to better
generalisation and reduced overfitting.

The low performance on the GZSL relational
task suggests current VLMs may rely too heavily
on shortcuts such as object recognition rather than
developing structured, compositional representa-
tions. Our analysis of image and text embeddings
in CLIP further supports this: relational concepts
(e.g., left vs. right) are not sufficiently disentan-
gled, especially in the text embedding space, lim-
iting the models’ capacity to reason about spatial
relationships. Potential avenues to address this are
training on datasets with more explicit composi-
tional objectives and developing better prompting
or fine-tuning strategies that encourage attribute
and relation disentanglement. Further work in this
area also includes analysis of where exactly the
models fail: do they fail in forming correct repre-
sentations of individual words, or do they fail in
how these words are combined? This could be tack-
led using a formal semantic approach that has been
integrated with a vector-based semantics, such as
in Coecke et al. (2010) or Baroni and Zamparelli
(2010).

However, while these routes to improved com-
positional understanding are important, we argue
that our results highlight an important limitation
of the tested models as they stand: at present com-
positional understanding is clearly limited. Since
there may be a number of aspects of composition
that we require models to perform, these should
be considered at the pre-training stage rather than
expecting users to fine-tune for these fundamental
semantic abilities.
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Limitations

While our benchmark uses synthetic, simplistic im-
ages, we chose this design specifically to reduce
the risk of spurious correlations (Wu et al., 2023)
and enable precise compositional structures to be
tested for. We view this benchmark as a diagnostic
test for probing specific compositional generalisa-
tion properties in VLMs that may be masked in
more complex, real-world scenarios. Future work
could include expanding these experiments to test
other attributes such as material or size. Another
interesting avenue for future research would be to
expand the experiments to include more than two
objects.
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A Fine-tuning Details

Optimal hyper-parameters were selected by per-
forming a search for each model. We consider the
parameters: learning rate, images per class, epochs
and LoRA parameters where applicable. We select
final parameters based on averaged performance
on the ID val and OOD val dataset splits.

Single-Object CLIP was fine-tuned using 40 im-
ages per class for 30 epochs, using an Adam op-
timiser with a learning rate of 1 - 1075, a batch
size of 16, and a contrastive loss. For DC, we used
DreamBooth to fine-tune Stable Diffusion’s U-Net
and text-encoder. We use 30 images per class for
4000 steps with a learning rate of 5 - 107¢ and a
batch size of 1. All inferences were performed us-
ing 200 noise samples. ViLT was fine-tuned on 80
images per class using LoRA with a learning rate
of 1-107° setting the LoRA rank (r) to 16 and the
scaling factor (alpha) to 32.

Two-Object CLIP was fine-tuned using 40 im-
ages per class for 30 epochs, using an Adam op-
timiser with a learning rate of 1 - 1075, a batch
size of 16, and a contrastive loss. For DC, we
fine-tuned using 30 images per class for 4000 steps
with a learning rate of 5 - 1075 and a batch size of
1. All inferences were performed using 200 noise
samples. ViLT was fine-tuned using LoRA with a
learning rate of 1 - 1077 setting the LoRA rank (r)
to 16 and the scaling factor (alpha) to 32.

Relational CLIP uses the same parameters as
the single-object model except using 20 images
per class for 50 epochs. DC is fine-tuned on 40
images per class for 5000 steps with the remaining
parameters the same as the previous two models.
ViLT is fine-tuned on 40 images per class using
LoRA with a learning rate of 1 - 1070 setting the
LoRA rank (r) to 8 and the scaling factor (alpha) to
16.
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