
Proceedings of the 14th Joint Conference on Lexical and Computational Semantics (*SEM 2025), pages 409–429
November 8-9, 2025 ©2025 Association for Computational Linguistics

Connecting Concept Layers and Rationales to Enhance Language Model
Interpretability

Thomas Bailleux,1, Tanmoy Mukherjee1, Pierre Marquis1, Zied Bouraoui1

1 CRIL, Univ. Artois & CNRS, France
{bailleux,mukherjee,marquis,bouraoui}@cril.fr

Abstract

With the introduction of large language mod-
els, NLP has undergone a paradigm shift where
these models now serve as the backbone of
most developed systems. However, while
highly effective, they remain opaque and diffi-
cult to interpret, which limits their adoption in
critical applications that require transparency
and trust. Two major approaches aim to ad-
dress this: rationale extraction, which high-
lights input spans that justify predictions, and
concept bottleneck models, which make de-
cisions through human-interpretable concepts.
Yet each has limitations—rationales lack se-
mantic abstraction while concepts miss fine-
grained linguistic grounding. Crucially, current
models lack a unified framework that connects
where a model looks (rationales) with why it
makes a decision (concepts). We introduce
CLARITY, a model that first selects key in-
put spans, maps them to interpretable concepts
grounded in linguistic semantics, and then pre-
dicts using only those concepts. This design re-
veals how surface-level linguistic patterns map
to abstract semantic representations, supporting
faithful, multi-level explanations and allowing
users to intervene at both the rationale and con-
cept levels. CLARITY achieves competitive
accuracy while offering improved transparency
and semantic interpretability. The source code
can be accessed at this link: CLARITY.

1 Introduction

Language models like BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) have transformed
NLP, forming the basis of many systems and ex-
celling in various tasks such as sentiment analy-
sis and document classification. Despite their im-
pact, these models are black boxes, with complex,
opaque outputs, posing challenges in sectors where
transparency is crucial, like healthcare and law. To
address interpretability, NLP has focused on two
main approaches: rationale extraction and con-

cept bottleneck models. Rationale extraction identi-
fies input text segments that justify model predic-
tions Lei et al. (2016), promoting interpretability
by highlighting essential evidence while using spar-
sity and regularization for accuracy Paranjape et al.
(2020). These explanations, however, are often lim-
ited to token-level insights and lack broader seman-
tic context. In contrast, concept bottleneck models
(CBMs) encourage the model to make predictions
via interpretable intermediate representations, often
aligned with human-defined concepts (Koh et al.,
2020). CBMs offer several advantages, including
the ability to intervene on model reasoning and
support post-hoc debugging. However, these mod-
els typically assume that the relevant concepts are
already known or provided, and they operate on
whole examples, without leveraging fine-grained
input regions that support those concepts. As a
result, they often lack fine-grained textual ground-
ing, making it unclear where in the input a concept
arises. Despite their complementary strengths, ra-
tionale extraction and CBMs have largely evolved
in isolation. Rationale-based approaches offer tex-
tual grounding but lack semantic abstraction, while
CBMs provide interpretable reasoning structures
without linking them to specific input regions. This
separation is particularly problematic for seman-
tic understanding, where surface forms and deep
meanings are intrinsically connected. Understand-
ing how linguistic expressions contribute to what
semantic concepts is crucial for advancing inter-
pretable semantic processing. Crucially, current
models lack a unified framework that connects
where a model looks (rationales) with why it makes
a decision (concepts).

To bridge this gap, we propose CLARITY, a uni-
fied framework that tightly integrates fine-grained
rationale extraction with concept-based reasoning.
By explicitly mapping selected input spans to in-
termediate concepts before classification, CLAR-
ITY produces multi-level explanations that are both
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textually grounded and semantically meaningful.
This approach directly addresses a key challenge
in computational semantics: understanding how
surface linguistic patterns realize abstract semantic
categories. Specifically, CLARITY decomposes
prediction into a three-stage process: (1) it iden-
tifies sparse, contiguous rationales from the input
that correspond to semantically coherent units; (2)
it maps these rationales to a low-dimensional vec-
tor of interpretable concepts that capture semantic
dimensions; and (3) it predicts the final output label
using only these activated concepts. The contribu-
tions we have made can be described as follows:

• An architecture that unifies rationale extrac-
tion and CBMs for multi-level interpretability.

• A sparse-attention-based rationale extractor
that selects concise, coherent evidence spans.

• A concept bottleneck layer that supports con-
cept interventions and semantic abstraction.

• Extensive empirical validation across five
datasets, demonstrating competitive perfor-
mance and faithful, structured explanations.

2 Related Works

Interpretability in NLP has advanced rapidly in
recent years, moving from simple feature attri-
butions to structured, multi-level interpretability
frameworks. We review major work on rationale
extraction, CBMs, and hierarchical interpretability.

Rationale Extraction Rationale-based methods
aim to identify input spans that are sufficient to
justify predictions. It has advanced significantly
since (Lei et al., 2016) and the information bot-
tleneck from (Paranjape et al., 2020). UNIREX
(Chan et al., 2022) offers a unified learning frame-
work balancing faithfulness, plausibility, and per-
formance, with a 32.9% improvement in Nor-
malized Relative Gain across five datasets. FiD-
Ex (Lakhotia et al., 2021) addresses sequence-to-
sequence model issues by using sentence mark-
ers to encourage extractive explanations. REFER
(Ghasemi Madani and Minervini, 2023) created
a rationale extraction framework with a differen-
tiable extractor to enhance task and explanation
fidelity through concurrent training. Recent work
increasingly blends causal reasoning with rationale
extraction, addressing confounding factors in ratio-
nale models (Ghoshal et al., 2022). However, these

models operate purely at the token level, lacking
abstraction or semantic generalization.

Concept Bottleneck Models CBMs guide
predictions through a bottleneck of human-
interpretable concepts, first proposed by Koh et al.
(2020) for image classification and later adapted to
NLP. Text Bottleneck Models (Ludan et al., 2023)
use CBMs for text classification, providing global
and local explanations via LLMs discovering con-
cepts without human input. CB-LLMs (Sun et al.,
2025) introduced inherently interpretable neurons
in LLMs for text tasks, aligning neuron activations
with concept scores for classification and combin-
ing interpretable and unsupervised neurons for gen-
eration. CT-LLMs (Bhan et al., 2025) resolved
concept completeness and classification leakage
by generating concept labels unsupervised with
small language models, removing the need for pre-
defined concepts. While CBMs provide global in-
terpretability and allow concept-level interventions,
they typically assume concept supervision and op-
erate on entire inputs, making them less suitable
for tasks requiring localized justifications.

Hierarchical Interpretability Methods Several
methods attempt to bridge the gap between local
explanation mechanisms (rationales) and overarch-
ing global explanations (concepts). HEDGE (Chen
et al., 2020) was the first to introduce hierarchi-
cal explanations for text classification by detecting
feature interactions. Instead of solely highlight-
ing key tokens, HEDGE illustrates how words and
phrases combine across different hierarchical lev-
els, effectively connecting token-level details to
broader conceptual insights. T-EBAnO (Ventura
et al., 2021) provides explanations specific to pre-
dictions by identifying impactful text regions and
offering model-wide explanations through the ag-
gregation and examination of these local insights
across various inputs. This framework links spe-
cific parts of the input to overarching patterns seen
throughout the dataset. HINT (Yan et al., 2022)
shifted the focus of model interpretation from in-
dividual words to topics as core semantic compo-
nents, constructing a hierarchical topic structure for
explaining decisions across different abstraction
levels. It has shown competitive performance with
leading text classifiers while offering more easily
comprehensible explanations. The intersection of
interpretability and semantics has received limited
attention despite its importance. Prior work on se-
mantic role labeling (Palmer et al., 2005) and frame
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semantics (Fillmore and Baker, 2001) provides the-
oretical grounding for connecting surface forms
to semantic concepts, but these approaches typi-
cally operate independently of neural interpretabil-
ity methods. Our work bridges this gap by opera-
tionalizing semantic interpretability within neural
architectures, enabling empirical investigation of
how models learn linguistic-semantic mappings.
InterroLang (Feldhus et al., 2023) enables users to
engage in interactive dialogue to explore various
explanation levels through natural language. This
methodology combines feature attribution with con-
ceptual explanations, allowing for flexible explo-
ration across several interpretability tiers.

Positioning. Our framework, CLARITY, unifies
rationale extraction and CBMs in a single architec-
ture, enabling a more integrated and controllable
form of interpretability. While prior rationale ex-
traction methods such as UNIREX, FiD-Ex, and
REFER focus on improving plausibility, fabrica-
tion avoidance, or end-to-end differentiability, they
operate solely at the token level. In contrast, CLAR-
ITY introduces a rationale-guided concept mapping
mechanism, where selected spans directly influence
the activation of interpretable concepts. This en-
sures that concept representations are grounded in
meaningful evidence, aligning semantic reasoning
with input-level justifications. Conversely, exist-
ing CBMs such as Text Bottleneck Models and
CT-CBMs often discover or annotate concepts in-
dependently of specific inputs, relying on LMs or
latent clustering. CLARITY addresses this by in-
corporating concept-constrained rationale extrac-
tion, where activated concepts inform and refine
the selection of rationales. This bidirectional in-
teraction creates more coherent and semantically
enriched explanations than approaches that treat
concept prediction and span selection as separate
tasks. Furthermore, frameworks for multi-level in-
terpretability like HEDGE, T-EBAnO, and HINT
connect local and global signals via feature interac-
tions or topic aggregation. CLARITY goes further
by learning explicit hierarchical attention between
token-level rationales and high-level concepts, pro-
ducing structured, end-to-end explanations across
abstraction levels.

Positioning Against LLM-based Explanation
Methods Recent work has explored using large
language models for generating post-hoc explana-
tions through prompting (Wiegreffe et al., 2021;
Lampinen, 2022). While valuable, these ap-

proaches serve a fundamentally different purpose
than our inherently interpretable architecture:

• Inherent vs. Post-hoc Interpretability:
CLARITY builds interpretability into the
model architecture, ensuring explanations di-
rectly reflect the decision process. LLM-
based explainers generate separate explana-
tions that may not accurately represent the
original model’s reasoning.

• Computational Efficiency: Our frame-
work provides explanations without additional
LLM calls, making it suitable for real-time ap-
plications. Prompting-based methods require
expensive LLM inference for each explana-
tion.

• Controllability: CLARITY enables causal
interventions at both rationale and concept
levels. Post-hoc explanations typically don’t
support direct model manipulation.

These approaches are complementary rather than
competing solutions, addressing different inter-
pretability requirements across the ML deployment
pipeline.

3 Methodology

We introduce CLARITY, a framework that com-
bines rationale extraction with concept bottleneck
mechanisms. This section formalizes the task and
presents the model architecture, interpretability
constraints, training objective and intervention pro-
cedure.

3.1 Problem Formulation

Given a tokenized input sequence X =
(x1, . . . , xn) ∈ Vn from vocabulary V , the task
is to predict a class label y ∈ Y . CLARITY com-
putes three intermediate representations

• Token Embeddings: H = (h1, . . . , hn) ∈
Rn×d, produced by a frozen or finetuned en-
coder (e.g., BERT (Devlin et al., 2019)).

• Rationale Mask: R ∈ {0, 1}n, where Ri = 1
indicates that token xi is part of the extracted
rationale (Lei et al., 2016).

• Concept Vector: C ∈ [0, 1]m, where cj de-
notes the activation strength of concept j (Koh
et al., 2020).
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CLARITY decomposes prediction into inter-
pretable intermediate steps. Let H ∈ Rn×d denote
token embeddings for an input sequence X ∈ Vn.
First, the rationale selector gη : Vn → {0, 1}n
produces a binary mask R where Ri = 1 indi-
cates token xi is selected. The concept mapper
hϕ : {0, 1}n×Rn×d → [0, 1]m then maps selected
tokens to a concept vector C ∈ [0, 1]m, with each
dimension cj representing a human-interpretable
feature. Finally, the classifier kψ : [0, 1]m → Y
predicts the label ŷ from C.

3.2 Model Architecture

To produce interpretable predictions, CLARITY
follows a modular design that decomposes decision-
making into three distinct stages: rationale selec-
tion, concept abstraction, and label prediction. Fig-
ure 1 illustrates the process. Notice that each stage
is implemented as a dedicated component, enabling
explicit control and transparency at multiple levels
of the model’s reasoning process. Formally, CLAR-
ITY is structured as a three-stage pipeline where
fθ can be instantiated as either a language model
(LM) or a simpler classifier, depending on the task:

fθ(X) = kψ (hϕ (gη(X), H)) (1)

Rationale selector. It predicts a binary mask
R ∈ {0, 1}n over input tokens, identifying the sub-
set deemed relevant for the final prediction. This
component highlights specific spans of text that
drive the model’s decision, making the process
more transparent.

Concept mapper. It transforms the selected ra-
tionale (in combination with token embeddings H)
to a low-dimensional, interpretable concept vec-
tor C ∈ [0, 1]m. This crucial interpretability layer
bridges the gap between low-level text features and
high-level decisions by: (i) Encoding the pooled
rationale representation through a lightweight neu-
ral network; (ii) modeling explicit concept interac-
tions through a learnable symmetric matrix; (iii)
Enforcing sparsity to ensure only relevant concepts
activate for each input; (iv) Encouraging diversity
to prevent redundancy between learned concepts;
and (v) Enabling concept interventions for causal
analysis of model behavior.

Classifier. It makes a prediction in the label space
Y using only the concept vector (or optionally com-
bining it with raw encoder representations through

a skip connection). This final stage creates a di-
rect link between human-interpretable concepts and
model decisions.

This modular structure enables CLARITY to
generate transparent and controllable predictions
by separating information selection (through ra-
tionales), semantic abstraction (through concepts),
and decision-making (through classification). The
concept mapper hϕ in particular serves as the criti-
cal "bottleneck" in this architecture, ensuring that
predictions pass through a human-interpretable se-
mantic space before reaching the final output.

3.3 Interpretability Constraints

To guide the model toward producing faithful and
human-aligned explanations, we introduce a set
of structural constraints on both the rationale and
concept representations.

Rationale Constraints. To guarantee that ex-
tracted rationales are both meaningful and succinct,
we impose three constraints on the rationale mask
R ∈ {0, 1}n. First, we enforce contiguity, where
rationales must form continuous spans Ri = Rk =
1 and i < j < k ⇒ Rj = 1. This encour-
ages the model to select coherent phrases rather
than disjoint tokens. Second, we promote spar-
sity by constraining the number of selected tokens.
Namely, only a small fraction of tokens is selected:
∥R∥1 ≤ τn where τ ∈ (0, 1) is hyperparameter
and n is the sequence length. This prevents the
model from defaulting to copying the full input. Fi-
nally, we require faithfulness, meaning that predic-
tions based on R should approximate predictions
based on the full input: P (Y |X,R) ≈ P (Y |X)
(DeYoung et al., 2020).

Concept Constraints. To maintain semantic clar-
ity and interpretability in the concept layer, we
introduce constraints on the concept vector C ∈
[0, 1]m and the concept decoder. First, we encour-
age non-redundancy by promoting orthogonality
among concept embeddings: maxj ̸=k⟨wj , wk⟩ ≤
ϵ. This encourages each concept to capture a dis-
tinct semantic dimension. We also apply a sparsity
constraint on the concept vector itself, enforcing
∥C∥0 ≤ κ where κ controls the maximum number
of concepts active per example. Finally, we pro-
mote atomicity by signifying each cj corresponds
to a human-interpretable semantic unit (Koh et al.,
2020). Implicitly, atomicity is promoted through
the integration of sparsity, orthogonality and the
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Figure 1: Overview of the CLARITY architecture that operates in three interpretable stages: (1) rationale extraction
selects a sparse subset of input tokens relevant for the prediction; (2) the concept mapper projects these into a
low-dimensional, interpretable concept space; and (3) the classifier predicts the output label using only the activated
concepts.

alignment of concept activation with specific input
regions using the rationale extractor.

3.4 Training Objective

We use a composite objective that balances task
performance with interpretability. The total loss is
a weighted sum of four components:

L = λclsLcls + λcontLcontiguity+

λdivLdiversity + λsparseLsparsity (2)

Where each component in the loss fulfills a goal
related to either interpretability or performance.
Specifically,
Classification loss Lcls: A standard cross-entropy
loss that measures how accurately the model pre-
dicts the target label y given the final concept rep-
resentation C. This term ensures task performance
is preserved.
Contiguity loss Lcontiguity: Encourages the ratio-
nale mask R to consist of smooth, contiguous spans
rather than scattered tokens. It is computed as the
sum of absolute differences between adjacent bi-
nary rationale values;

∑n−1
i=1 |Ri+1 −Ri|.

Diversity loss Ldiversity: Promotes orthogonality
between concept embeddings by minimizing the
deviation of WW⊤ from the identity matrix, where
W is the concept decoder’s weight matrix. This
reduces redundancy between learned concepts.
Sparsity loss Lsparsity: Penalizes overly dense ratio-
nale masks and concept activations. The first term
enforces that the rationale covers approximately a
target fraction τ of the input sequence. The second
encourages the concept vector C to be sparse (i.e.,
few concepts should be active).

Algorithm 1 in the Appendix A summarizes the
training procedure.

3.5 Concept Intervention Procedure
To evaluate the causal role of learned concepts in
model predictions, we conduct targeted concept
interventions. This technique modifies the activa-
tion of specific intermediate concepts to observe
the effect on downstream predictions, offering in-
sight into model behavior. Given a trained model
and input example x, we first extract the concept
vector c = ConceptMapper(x) and the original
prediction ŷ = argmax f(c). For a target concept
index i, we replace ci with a new value c′i ∈ [0, 1],
producing an intervened vector c′ where:

c′j =

{
c′i, if j = i

cj , otherwise

The updated prediction ŷ′ = argmax f(c′) re-
flects the impact of this intervention. We perform
both zeroing (c′i = 0) and maximization (c′i = 1)
interventions to assess each concept’s necessity and
sufficiency, respectively. The difference in output
probabilities ∆p = f(c′) − f(c) quantifies the
influence of the concept on the prediction. To con-
trol for interactions, we optionally freeze the skip
connection (if enabled) during this process, iso-
lating the concept pathway. This analysis helps
identify which concepts act as decision bottlenecks
and which are spurious or redundant.

3.6 Explanation Pipeline
At inference time, CLARITY generates expla-
nations by passing inputs through a three-stage
pipeline. This process mirrors the model architec-
ture and reflects the interpretability built into each
component. First, the rationale extractor selects a
sparse, contiguous subset of tokens from the input
sequence Ri > 0.5. Next, the selected rationale
is passed to the concept mapper, which transforms
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the span-specific embeddings into a compact, inter-
pretable concept vector. Concepts with activation
scores above a threshold cj > α serve as a semantic
abstraction of the input. Finally, the classifier pre-
dicts the output label based on activated concepts
to compute the label: argmaxy∈Y kψ(C)y.

4 Experiments

To evaluate the effectiveness of CLARITY, we con-
duct experiments on five diverse text classification
tasks. Our analysis focuses on both predictive
performance and interpretability, examining how
well the model maintains accuracy while generat-
ing faithful, semantically meaningful explanations.
Section 5 provides detailed ablations and rationale
quality analyses.

4.1 Experimental Setting

Datasets. We evaluate our model on selected
datasets with varying characteristics to ensure the
generalizability, including CEBaB (Abraham et al.,
2022), SST-2 (Socher et al., 2013), AG News
(Zhang et al., 2015), Yelp Polarity (Zhang et al.,
2015), and DBpedia (Lehmann et al., 2015). See
Appendix B for details.

Implementation. Our classification experiments
utilize a pre-trained DistilBERT-base-uncased
model (Sanh et al., 2019) as the encoder back-
bone, chosen for its balance of efficiency and per-
formance. Other LMs are also used for comparison.
We adopted a unified training framework across
all datasets, with hyperparameters tuned for scala-
bility and stability. To manage large datasets effi-
ciently, we incorporated techniques such as mixed-
precision training (FP16) and gradient accumula-
tion. Appendix C details all training details.

Evaluation Metrics Initial performance is evalu-
ated by utilizing accuracy for classification tasks.
For interpretability, we also extract rationales and
concept activations to inspect decision pathways.

Table 2 reports results on classification. Our
model achieved competitive performance across
all datasets on classification tasks. The model per-
formed particularly well on the DBpedia dataset,
suggesting that topic classification benefits more
from the concept bottleneck approach than senti-
ment analysis tasks. This aligns with our hypoth-
esis that well-defined topic categories map more
cleanly to interpretable concepts. Further analysis
is provided in Appendix D Table 4.

Figure 2: SST2 training dynamics

5 Ablation Analysis

To better understand the internal behavior of
CLARITY and validate the design choices in its
architecture, we conduct a series of ablation stud-
ies. We begin with an analysis of training dynamics
and follow with targeted evaluations of rationale
behavior, concept interventions, and architectural
variants. Additional analyses are provided in the
Appendix.

5.1 Training Dynamics

We analyze training dynamics using metrics loss,
accuracy, F1 score, and rationale span character-
istics. On SST-2, training loss decreased towards
zero, while validation loss increased as shown in
Figure 2, indicating mild overfitting without affect-
ing stable and high validation accuracy. Accuracy
and F1 score quickly improved to about 90% within
10 epochs, maintaining this balanced performance
across classes. Rationale length initially varied be-
tween 15.4 and 16.5 tokens as the model explored
strategies, then stabilized around 16 tokens after
epoch 60, suggesting a reliable strategy for choos-
ing informative segments. Additional analyses are
provided in Appendix C.5.

5.2 Rationale Quality Analysis

We evaluated the quality of rationales extracted
by different configurations of our CLARITY to
understand how architectural choices and hyper-
parameters affect explanation quality. Our com-
prehensive evaluation methodology and detailed
experimental setup are presented in Appendix E.
Here, we summarize the key findings of our analy-
sis, which focused on automated metrics including
faithfulness (agreement between predictions using
rationale-only vs. full text), contiguity (average
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Table 1: Comprehensive Performance Comparison Across Model Architectures and Interpretability Methods

Method Backbone Params Interpretable AG News DBpedia CEBaB Yelp Avg
Black-box Baselines
BERT-base BERT-base 110M ✗ 91.0 99.4 78.9 96.2 91.2
RoBERTa-large RoBERTa-large 355M ✗ 92.3 99.6 82.1 97.8 92.9
Interpretable Methods
LIME BERT-base 110M ✓ 89.2 97.8 76.3 94.1 89.4
SHAP BERT-base 110M ✓ 89.8 98.1 77.1 94.8 90.0
C³M BERT 110M ✓ 91.5 99.5 79.3 95.8 91.3
CB-LLM BERT 110M ✓ 90.0 99.3 76.5 95.0 90.1
CLARITY (Multiple Backbones)
CLARITY DistilBERT 66M ✓ 90.6 99.3 78.4 96.0 90.9
CLARITY BERT-base 110M ✓ 90.8 99.4 79.1 96.2 91.1
CLARITY RoBERTa-base 125M ✓ 91.1 99.5 79.8 96.5 91.7
CLARITY BERT-large 340M ✓ 91.9 99.6 80.5 97.1 92.3
CLARITY RoBERTa-large 355M ✓ 92.3 99.7 81.2 97.8 92.8

Table 2: Classification performance comparison across models and datasets (Accuracy in %)

Model Interpretable Backbone AG News DBpedia CEBaB Yelp Polarity SST-2 Avg
BERT-base ✗ – 91.0 99.4 78.9 96.2 90.7 91.2
DeBERTa-large ✗ – 92.0 99.4 83.2 97.3 93.4 93.1
GPT-3.5 (fine-tuned) ✗ – 91.6 99.2 82.0 97.1 92.7 92.5
GPT-4 (10-shot) ✗ – 92.3 99.5 83.8 97.8 94.1 93.5
Naive Bayes ✓ – 84.0 96.5 71.2 91.4 81.5 84.9
C³M ✓ BERT 91.5 99.5 79.3 95.8 90.2 91.3
CB-LLM ✓ BERT 90.0 99.3 76.5 95.0 89.5 90.1
CLARITY(Ours) ✓ DistillBERT 90.6 99.3 78.4 96.0 90.1 90.9

length of rationale spans), and stability (consis-
tency of rationales across training runs).
Attention Mechanism Impact: As shown in Ta-
ble 5, our gradient-based rationale selection signifi-
cantly outperforms standard attention mechanisms,
achieving 92% faithfulness compared to 81% for
standard attention, while adding only 3
Optimal Rationale Sparsity: A target rationale
percentage of τ = 0.2 (20% of tokens) provides the
best balance between faithfulness and conciseness
across most datasets. More complex tasks like
multi-attribute classification benefit from slightly
higher thresholds (τ = 0.3).
Model Size Trade-off: Smaller models like Distil-
BERT produce more stable and often more faith-
ful rationales (0.82 stability score), while larger
models like RoBERTa-large achieve higher accu-
racy but with less stable explanations (0.58 stability
score).
Enhancement Techniques: Simple modifications
like attribute-specific prompting (+7.3 percentage
points in faithfulness) and domain-specific token
boosting (+4.8 points) significantly improve ratio-
nale quality without architectural changes.

These findings demonstrate that high-quality ra-
tionales require careful design choices that balance
multiple objectives. The optimal configuration
uses our gradient-based selection mechanism with
a moderate sparsity constraint (τ = 0.2), com-
bined with domain-appropriate enhancements like
attribute prompting for multi-aspect tasks. Fig-
ure 3 shows example rationales generated by our

approach across different datasets, illustrating how
the model identifies relevant spans while maintain-
ing coherence. Detailed analyses and additional
experiments can be found in Appendix E.

5.3 Concept Count and Intervention
Mechanism

We conducted a series of experiments analyzing
the impact of bottleneck size and concept interac-
tions on model performance and interpretability.
Our complete experimental methodology and de-
tailed results are presented in Appendix E.8 Here
we summarize the key findings from this analysis.
We varied the number of concepts in the bottle-
neck (10, 25, 50, 100) to understand the trade-off
between model performance and interpretability.
With only 10 concepts, accuracy dropped by 3.2%,
suggesting insufficient representational capacity.
However, increasing beyond 50 concepts yielded
diminishing returns (only 0.4We evaluated the ef-
fects of incorporating concept interactions using
our interaction matrix. Models equipped with inter-
action features demonstrated a 2.1% improvement
in accuracy on complex instances and uncovered
subtle associations between concepts that appeared
unconnected, such as the interplay between formal
language and technical terminology. Nonetheless,
this advancement resulted in an 18% extension of
training time and decreased the clarity of explana-
tions. A more comprehensive analysis of concept
bottleneck dimensionality, interaction patterns, and
their effects on both model performance and expla-
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Figure 3: Explanatory examples for ablation analysis on Yelp Polarity.

nation quality can be found in Appendix E.8.

5.4 Architecture Components
We compared different attention mechanisms for
rationale selection: standard attention, gated atten-
tion, and our proposed gradient-based selection.
The complete experimental methodology, imple-
mentation details, and comprehensive results are
available in Appendix Tab5. Here, we summarize
the key findings from our architectural analysis. We
compared different attention mechanisms for ratio-
nale selection: standard attention, gated attention,
and our proposed gradient-based selection. Stan-
dard attention produced diffuse, less interpretable
rationales. Gated attention improved focus but in-
creased computational cost by 15%. Our gradient-
based approach balanced computational efficiency
with rationale quality, showing higher correlation
with human-annotated important segments (0.68
vs. 0.52 for standard attention).
We tested pre-trained encoders (BERT, RoBERTa,
DistilBERT) as backbone models. While larger
models like RoBERTa improved accuracy (by up to
2.3%), they showed less stable rationale behavior,
with rationale lengths varying up to 42% during
training. DistilBERT, despite slightly lower per-
formance (-1.2%), produced the most consistent
rationales, suggesting a potential connection be-

tween model size and explanation stability.
Memory Management: Tracking both token-level
rationales and concept-level activations for inter-
pretability results in memory consumption that
grows linearly with batch size but quadratically
with model size, creating GPU memory pressure
when scaling beyond mid-sized transformers.

5.5 Additional Experimental Analysis

Detailed methods and results are in Appendix E.3–
E.10. Key findings include the following.

• A rationale size of 20% (Appendix E.3) bal-
ances faithfulness and performance, except
for multi-attribute datasets, which need larger
rationales.

• Smaller models like DistilBERT offer more
stable explanations (0.82 stability), while
larger models like RoBERTa-large are more
accurate but provide less stable rationales
(0.58 stability) (Appendix E.4).

• Enhancements like attribute-specific prompt-
ing (+7.3 points) and domain-specific token
boosting (+4.8 points) improve rationale qual-
ity for multi-attribute tasks (Appendix E.5).

• Rationale extraction costs rise significantly
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with model size, affecting memory and batch
size (Appendix E.6).

• Concept behavior shows unexpected patterns,
functioning collectively rather than as single
features (Appendix E.8). Heatmaps show Con-
cepts activate uniformly across attributes, with
Concept_12 highly active (0.87-0.88), sug-
gesting general sentiment capture (Figure 6).

• Explanation failures are mainly due to miss-
ing implicit information (42% of errors) and
context dependencies (31%) (Appendix E.9).
Faithfulness varies by task: topic classifica-
tion (0.92-0.94) outperforms sentiment analy-
sis (0.85-0.88) and multi-attribute tasks (Ap-
pendix E.10).

6 Conclusions and Future Work

We introduced CLARITY, a modular framework
for interpretable text classification that decomposes
prediction into rationale extraction, concept map-
ping, and label prediction. This structured design
provides faithful, multi-level explanations while
maintaining competitive accuracy across multiple
benchmarks. Our approach enables causal inter-
ventions, encourages sparse and diverse represen-
tations, and significantly narrows the performance
gap between interpretable and black-box models.
Future work includes scaling to foundation models,
learning dynamic and transferable concept spaces,
designing interactive explanation tools, improving
robustness, and applying the model to high-stakes
domains such as healthcare and law. Together,
these directions aim to advance the development
of transparent, controllable, and reliable NLP sys-
tems.

Limitations

While CLARITY delivers promising results in in-
terpretable text classification, it has several impor-
tant limitations. First, the multi-stage architecture
introduces considerable computational overhead,
with training times increasing up to 3.5× and mem-
ory requirements growing significantly when scal-
ing from DistilBERT to LMs like BERT-large or
RoBERTa. This is especially problematic in the
rationale extraction module, where memory usage
scales quadratically with sequence length, severely
limiting batch sizes for longer inputs. Second, ra-
tionale selection poses optimization challenges due
to its discrete nature: the binary rationale mask

requires gradient approximations that become in-
creasingly unreliable as model complexity grows,
leading to instability in both performance and ex-
planation quality. Finally, our experiments reveal a
tension between interpretability and accuracy. En-
forcing sparsity constraints on rationales (τ%of
input tokens) can hurt performance, particularly on
complex tasks where larger models rely on longer
spans for robust predictions, highlighting a tradeoff
between conciseness and effectiveness.
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AG News (Zhang et al., 2015): A topic classifica-
tion dataset with four categories (World, Sports,
Business, Science/Technology), representing a
single-attribute task with clearer lexical distinctions
between classes.
Yelp Polarity (Zhang et al., 2015): Binary senti-
ment classification on Yelp reviews.
DBpedia (Lehmann et al., 2015): Ontology classi-
fication task with 14 topic categories.

C Implementation Details

Our model is implemented in PyTorch and lever-
ages the Hugging Face Transformers library for
the encoder backbone. The training framework
includes support for mixed-precision training via
PyTorch AMP and gradient accumulation for mem-
ory efficiency.

C.1 Architecture
The model comprises:

• A DistilBERT encoder.

• A memory-efficient rationale extractor using
optimized attention.

• A concept mapper with optional concept inter-
actions.

• A classifier head with optional skip connec-
tions.

C.2 Training Configuration
The following implementation details apply to all
experiments unless otherwise specified:

• Encoder Backbone: Pre-trained
DistilBERT-base-uncased model (Sanh
et al., 2019).

• Optimizer: AdamW.

• Learning Rate Scheduler: Linear warmup
scheduler with a 5% warmup ratio.

• Learning Rates:

– Encoder: 1× 10−5

– Rationale and concept modules: 5×10−5

• Batch Size: 32

• Gradient Accumulation: 4 steps (effective
batch size: 128)

• Training Epochs:

Figure 4: AGNews training dynamics

– SST-2: 100 epochs
– Yelp Polarity: 20 epochs
– DBpedia: 20 epochs

• Number of Concepts:

– SST-2: 50
– Yelp Polarity: 75
– DBpedia: 200

• Rationale Extraction:

– Configuration: Contiguous spans
– Minimum length: 5 tokens
– Maximum length: 25 tokens

• Efficient Training Techniques:

– Mixed-precision training: FP16 via
NVIDIA AMP

– Dataset subsampling (for large datasets):
Max training examples: 50,000
Max validation examples: 5,000

C.3 Dataset Preprocessing
Tokenization was performed using the encoder’s
default tokenizer with padding and truncation to
max length 128. Data splits were preserved, or
where unavailable, a 90/10 train/validation split
was created.

C.4 Explanation Extraction
Post-training, we extract token-level rationales and
top activated concepts for qualitative analysis and
intervention studies.

C.5 Training Analysis
Figures 2 and 4 present the training dynamics of
our model on two distinct datasets: SST-2 (senti-
ment classification) and AG News (topic classifica-
tion). These plots reveal interesting patterns in loss
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trajectories, performance metrics, and rationale be-
havior that provide insights into how our model
adapts to different classification tasks.

Loss Dynamics. Both datasets exhibit the ex-
pected pattern of decreasing training loss, reaching
near-zero values by epoch 20. However, the vali-
dation loss trajectories differ markedly. For SST-2,
validation loss consistently increases throughout
training, rising from 0.3 to approximately 1.2 by
epoch 100, suggesting substantial overfitting de-
spite regularization techniques. In contrast, AG
News shows a more moderate increase in valida-
tion loss, plateauing around 0.8, indicating better
generalization capabilities on this dataset. The di-
vergence between training and validation loss is
approximately 50% greater in SST-2 compared to
AG News, highlighting the greater difficulty of gen-
eralizing sentiment patterns compared to topical
features.

Accuracy Trajectories. Despite similar loss di-
vergence patterns, the two datasets show distinctly
different accuracy behaviors. SST-2 exhibits no-
table fluctuations in validation accuracy between
0.89 and 0.91 throughout training, without clear
improvement after the initial rapid learning phase.
In contrast, AG News demonstrates consistent im-
provement in accuracy even in later epochs, starting
at approximately 0.94 and gradually improving to
0.95, with less pronounced fluctuations. This sug-
gests that while the model may be overfitting to
the training data in both cases (as evidenced by
increasing validation loss), this overfitting is less
detrimental to predictive performance on AG News,
possibly because topic classification relies on more
stable lexical features compared to the nuanced
patterns in sentiment analysis.

Rationale Length Dynamics. The most striking
difference between the datasets appears in the aver-
age rationale length. SST-2 rationales are substan-
tially longer (15.4-16.2 tokens) compared to AG
News (6.5-7.0 tokens). This 2.3× difference sug-
gests that sentiment classification requires consider-
ation of more tokens to make accurate predictions,
while topic classification can rely on fewer, more
discriminative terms. Additionally, both datasets
show significant fluctuations in rationale length
during early training (epochs 0-40), followed by
relatively more stable patterns in later epochs, in-
dicating that the model initially explores different
strategies for identifying relevant tokens before con-

verging on a more consistent approach.

Stability Patterns. The amplitude of fluctuations
in rationale length differs between the datasets,
with SST-2 showing larger variations (standard
deviation of 0.18 tokens) compared to AG News
(standard deviation of 0.12 tokens). This suggests
that the model’s rationale extraction mechanism
remains somewhat uncertain about optimal span se-
lection for sentiment analysis, even after extended
training. The stabilization period also differs, with
AG News rationale lengths becoming relatively
consistent after epoch 60, while SST-2 continues
to show mild oscillations throughout training.

Performance-Rationale Relationship. Interest-
ingly, we observe a temporal correlation between
fluctuations in rationale length and performance
metrics, particularly in SST-2. Periods of decreas-
ing rationale length (e.g., epochs 60-80) often coin-
cide with slight dips in accuracy, suggesting that the
model’s confidence in identifying relevant spans
may be linked to its predictive performance. This
relationship is less pronounced in AG News, where
performance remains more stable despite similar
oscillations in rationale length. These observations
point to fundamental differences in how our model
processes and explains decisions for different text
classification tasks. Topic classification appears to
benefit from more focused, concise rationales and
demonstrates better generalization despite increas-
ing validation loss. In contrast, sentiment analysis
requires longer rationales, exhibits greater insta-
bility in both rationale selection and performance,
and shows more pronounced overfitting tenden-
cies. These insights have important implications
for model design and hyperparameter tuning, sug-
gesting that task-specific adjustments to rationale
extraction mechanisms may be beneficial.

Stability of Learning and Rationale Behavior
To better understand the learning dynamics of our
rationale-concept bottleneck model, we examined
two critical aspects across training: validation ac-
curacy (Fig 2 and 4) and average rationale length.
The validation accuracy curve reveals a rapid per-
formance increase within the first few epochs, sur-
passing 94% early in training and remaining stable
thereafter. This early convergence followed by con-
sistent high accuracy indicates that the model gen-
eralizes well without signs of overfitting or degra-
dation over time.

In parallel, we observed the evolution of average
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rationale length. Initially, rationale spans fluctuate,
suggesting the model is actively exploring different
rationale extraction strategies. Over time, how-
ever, the rationale length converges to a narrow
band of 6.8–7 tokens on average. This stabilization
implies the model has learned a consistent policy
for selecting informative text segments, enhancing
the interpretability and reliability of its predictions.
Together, these results suggest that our design en-
courages both effective classification and stable,
human-aligned explanations. For further quantita-
tive breakdowns and comparisons with alternative
configurations (e.g., no rationale continuity loss or
increased target rationale budget), see Appendix E.

Computational Efficiency Considerations
While interpretable methods inherently require
additional computation compared to black-box
models, we implement several optimization
strategies to ensure practical deployment viability.
Our framework employs gradient accumulation,
mixed-precision training, and attention opti-
mizations to mitigate memory constraints. For
rationale extraction, we use continuous relaxation
techniques with straight-through estimators to ap-
proximate gradients for the discrete rationale mask.
Although this introduces computational overhead,
the cost is justified in high-stakes applications
where interpretability is paramount. Table 3
provides a detailed breakdown of computational
requirements across model sizes.

Practical Deployment Considerations: Train-
ing cost represents a one-time investment, while in-
ference efficiency enables production deployment.
For applications requiring real-time explanations,
DistilBERT provides an optimal balance of perfor-
mance and efficiency. The 3.5× training overhead
for larger models is acceptable in domains where
explanation quality justifies the computational in-
vestment.

D Analysis of Individual Components

To understand the contribution of each component
in our CLARITY and identify optimal configu-
rations, we conducted a comprehensive ablation
study across five diverse text classification datasets.
Table 4 summarizes our findings, which we analyze
below.

Rationale Threshold Effects. The rationale
threshold τ controls what proportion of tokens are
included in the extracted rationales. We observe

that moderate thresholds (τ = 0.2–0.3) consis-
tently outperform both lower (τ = 0.1) and higher
(τ = 0.5) values across all datasets. At τ = 0.1,
the model becomes overly selective, often missing
contextual information critical for accurate classi-
fication. For example, on CEBaB, a low thresh-
old might capture key sentiment terms (e.g., "de-
licious") but miss important modifiers or context.
Conversely, at τ = 0.5, the model includes too
many tokens, diluting the signal with noise. Inter-
estingly, on multi-attribute datasets like CEBaB,
we find that a slightly higher threshold (τ = 0.3)
performs best, likely because these tasks require
capturing multiple aspects of the input. In contrast,
single-aspect classification tasks like AG News and
SST-2 achieve optimal performance at τ = 0.2.
This suggests that rationale extraction should be
calibrated to the complexity of the classification
task at hand.

Concept Bottleneck Analysis. Our experiments
with varying the number of active concepts reveal
that performance remains remarkably stable even
when using only a subset of the available concepts.
Using all concepts (default configuration) achieves
the highest average performance (90.9%), but using
only the top-10 concepts results in a negligible per-
formance drop (90.8%). Even with just the top-5
concepts, our model maintains strong performance
(90.6%), highlighting the efficiency of our con-
cept bottleneck. This pattern holds across datasets,
though with subtle variations. For instance, simpler
classification tasks like Yelp Polarity show minimal
degradation even with very few concepts (top-3),
while more complex tasks like CEBaB exhibit a
steeper performance decline as concept count de-
creases. This suggests that concept capacity re-
quirements scale with task complexity, but even
complex tasks can be effectively modeled with a
small number of well-chosen concepts.

Additional Components. The most substantial
improvements come from our proposed enhance-
ments: attribute-specific prompting and token
boosting. On average, adding attribute prompt-
ing improves performance by 0.6 percentage
points, with particularly dramatic gains on CEBaB
(+2.8%). Token boosting provides a further modest
boost across all datasets. When combined, these en-
hancements yield a substantial 1.2 percentage point
improvement over the baseline model, bringing our
interpretable CT-CBM model’s performance much
closer to black-box approaches.
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Table 3: Computational Efficiency Analysis Across Model Architectures

Model Params Training Time Memory (GB) Accuracy Faithfulness
DistilBERT 66M 1.0× (baseline) 4.2 90.6% 0.88
BERT-base 110M 1.5× 6.8 90.8% 0.92
RoBERTa-base 125M 1.7× 7.1 91.1% 0.91
BERT-large 340M 3.2× 14.2 91.9% 0.89
RoBERTa-large 355M 3.5× 15.8 92.3% 0.87

Table 4: Ablation study of our CLARITY (DistillBERT) across datasets (Accuracy in %)

Configuration Component Variant AG News DBpedia CEBaB Yelp Polarity SST-2 Avg

Rationale Threshold

τ = 0.1 – 89.5 99.0 76.8 95.4 89.0 89.9
τ = 0.2 (default) – 90.2 99.2 78.1 95.8 89.8 90.6

τ = 0.3 – 90.1 99.1 78.5 95.6 89.5 90.6
τ = 0.5 – 89.2 98.8 77.3 95.0 88.4 89.7

Concept Count

Top-3 concepts – 89.4 98.7 75.9 94.9 88.2 89.4
Top-5 concepts – 90.0 99.0 77.6 95.6 89.5 90.3
Top-10 concepts – 90.2 99.1 77.9 95.7 89.7 90.5

All concepts (default) – 90.2 99.2 78.1 95.8 89.8 90.6

Additional Components

Baseline – 90.2 99.2 78.1 95.8 89.8 90.6
+ Attribute Prompting – 90.3 99.2 80.8 95.9 89.9 91.2

+ Token Boosting – 90.5 99.2 81.1 96.1 90.1 91.4
+ Both – 90.8 99.3 82.2 96.3 90.4 91.8

E Detailed Rationale Quality Analysis

This appendix provides an in-depth analysis of ra-
tionale quality across different model configura-
tions, datasets, and training regimes. We extend
the key findings presented in Section 5.2 with com-
prehensive experiments and detailed metrics.

E.1 Evaluation Methodology

We evaluated rationale quality using the following
automated metrics:

• Faithfulness: The agreement between predic-
tions made using only rationale tokens versus
the full text, calculated as:

Faithfulness = I[ŷ = ŷR] (3)

where ŷ is the prediction using the full input
and ŷR is the prediction using only the ratio-
nale.

• Sufficiency: The ratio of confidence scores
when using only rationale tokens compared to
the full input:

Sufficiency =
P (ŷR|XR)

P (ŷ|X)
(4)

where XR represents the input with non-
rationale tokens masked out.

• Contiguity: The average length of contiguous
spans in the rationale, measured in tokens.

• Stability: The consistency of rationales
across training epochs, calculated as:

Stability = 1− 1

|D|
∑

X∈D

Changes(RX)

Epochs

(5)

where Changes(RX) counts how many times
the rationale for example X changed substan-
tially (>30% of tokens) during training.

E.2 Comparison of Attention Mechanisms

We compared three attention mechanisms for ratio-
nale selection: standard attention, gated attention,
and our proposed gradient-based selection. Fig 5
presents the detailed results across multiple met-
rics.

The standard attention mechanism computes at-
tention scores αi for each token xi using a query-
key mechanism:

αi =
exp(si)∑n
j=1 exp(sj)

si =
(WqhCLS)

T (Wkhi)√
d

(6)

Our gradient-based approach leverages gradients
flowing through the model to identify important

422



tokens:

αi = Norm
(∣∣∣∣

∂L
∂hi

∣∣∣∣ · |hi|
)

Norm(v) =
v

max(v) + ϵ

(7)

This is then refined through a learned projection:

si = Wp[αi · hi] + bp Ri = 1[si > 0] (8)

The gradient-based approach produces more fo-
cused and coherent spans that better align with
classification-relevant information.

E.3 Effect of Rationale Sparsity
We conducted a detailed analysis of how varying
the rationale sparsity constraint τ (target percent-
age of tokens) affects model performance and ex-
planation quality. Tab 6 shows faithfulness and
model accuracy as a function of τ across five
datasets.

(a) Threshold token count (b) Threshold token count

(c) With Continuity Loss

Figure 5: Rationale sparsity under different configura-
tions. Top: effect of budget. Bottom: effect of continu-
ity loss.

Our analysis reveals that:

• At τ = 0.1, faithfulness is significantly com-
promised (-9 percentage points) and model
accuracy drops (-0.7 points).

• Increasing from τ = 0.2 to τ = 0.3 improves
faithfulness (+4 points) but with a slight de-
crease in accuracy (-0.1 points) and 50% more
tokens in the rationale.

• Multi-attribute datasets (CEBaB) benefit more
from larger rationales, with performance con-
tinuing to improve up to τ = 0.3.

• Single-attribute datasets reach peak perfor-
mance at τ = 0.2, with larger rationales
adding noise rather than signal.

E.4 Encoder Impact on Rationale Quality
We evaluated five pre-trained encoder models to
understand the relationship between model size,
performance, and explanation quality. Table 7
presents the complete results. Our detailed analysis
reveals a clear inverse relationship between model
size and explanation stability. We also tracked
rationale evolution during training for all mod-
els. The relationship between rationale stability
and model size appears to be fundamental rather
than implementation-specific. We hypothesize that
larger models explore more complex feature spaces
during optimization, leading to greater fluctuation
in the features they attend to.

E.5 Attribute-Specific Prompting and Token
Boosting

For multi-attribute datasets, we implemented two
enhancement techniques:

1. Attribute-Specific Prompting: Adding
prompts like "Focus on food quality:" before
the input text.

2. Token Boosting: Increasing attention weights
for domain-relevant terms using TF-IDF scor-
ing.

Table 8 shows the detailed results for the CEBaB
dataset broken down by attribute.

The impact varies significantly by attribute, with
food quality and service showing larger improve-
ments than ambiance and noise level. This corre-
lates with the frequency of these attributes in the
training data, suggesting that enhancement tech-
niques are particularly helpful for more common
aspects.

E.6 Computational Analysis
We conducted a detailed computational analysis
of rationale extraction across model sizes and se-
quence lengths. Key findings include:

• Time complexity is approximately O(nd)
where n is sequence length and d is embed-
ding dimension.

• Memory usage scales quadratically with
model size, creating significant constraints for
larger models.

• For BERT-large with 512-token sequences,
rationale extraction accounts for 27% of total
forward pass time and 34% of peak memory
usage.

423



Table 5: Comprehensive comparison of attention mechanisms for rationale selection

Mechanism Faith. Suff. Cont. Comp. Time Mem. Usage AG News SST-2

Standard 0.81 0.74 2.3 1.00× 1.00× 0.79 0.83
Gated 0.84 0.79 3.1 1.15× 1.12× 0.82 0.86
Gradient (Ours) 0.92 0.88 3.8 1.03× 1.06× 0.93 0.90

Table 6: Impact of rationale sparsity (τ ) on faithfulness and model accuracy

Dataset Faithfulness Accuracy

τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.1 τ = 0.2 τ = 0.3

AG News 0.83 0.92 0.94 89.8% 90.6% 90.4%
SST-2 0.76 0.85 0.88 89.3% 90.1% 89.8%
CEBaB 0.71 0.83 0.89 77.2% 78.4% 78.9%
Yelp 0.79 0.88 0.91 95.6% 96.0% 95.8%
DBpedia 0.87 0.94 0.96 99.1% 99.3% 99.2%
Average 0.79 0.88 0.92 90.2% 90.9% 90.8%

• Batch size limits drop dramatically with se-
quence length: from 32 (128 tokens) to 8 (256
tokens) to 4 (512 tokens) on a 16GB GPU for
BERT-large.

These computational constraints highlight the im-
portance of efficient implementations and the po-
tential benefits of model distillation for deployment
scenarios.

E.7 Concept Activation Across Attributes

We analyzed how different concepts activate across
restaurant review attributes (food, service, am-
biance, and noise) to understand whether our model
learns attribute-specific or general concepts. As
shown in Figure 6, our analysis reveals distinct
patterns in how concepts activate across different
attributes. Concept_12 exhibits consistently high
activation (0.87-0.88) across all attributes, sug-
gesting it captures general sentiment rather than
attribute-specific features. In contrast, Concept_22
shows moderate activation (0.48-0.50) that is also
consistent across attributes. Lower-activating con-
cepts (Concept_25, Concept_32, Concept_37, Con-
cept_44) demonstrate remarkably uniform activa-
tion patterns around 0.24-0.26 across all attributes.
Interestingly, Concept_13 shows consistent acti-
vation for three attributes but has no activation
for the service attribute, suggesting some poten-
tial attribute-specific behavior. Additionally, we
observe concepts with minimal activation (Con-
cept_3 and Concept_6) across all attributes, indi-
cating potential redundancy in the concept space.
This uniform activation pattern across attributes

Figure 6: Concept activation scores across CEBAB
review attributes. Higher values (darker colors) indi-
cate stronger concept activation for that attribute. Con-
cept_12 shows consistent high activation across all at-
tributes, while other concepts like Concept_22 show
moderate attribute-independent activation. Some con-
cepts (Concept_3 and Concept_6) show minimal activa-
tion across all attributes.

suggests that our model may be primarily learn-
ing sentiment-based concepts rather than attribute-
specific features, which aligns with our findings in
the concept co-occurrence analysis (Appendix ??).
These results suggest directions for future work
in explicitly encouraging attribute-specific concept
formation through targeted regularization or archi-
tectural modifications. By developing techniques
to disentangle attribute-specific concepts, we could
potentially improve both model interpretability and
performance on multi-attribute classification tasks.
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Table 7: Comprehensive analysis of encoder impact on rationale quality

Encoder Params Accuracy Faith. Stab. Cont. Train Time
DistilBERT 66M -1.2% 0.88 0.82 3.6 0.65×
BERT-base 110M baseline 0.92 0.76 3.8 1.00×
RoBERTa-base 125M +1.1% 0.91 0.71 3.4 1.12×
BERT-large 340M +2.1% 0.89 0.64 3.1 2.38×
RoBERTa-large 355M +2.3% 0.87 0.58 2.9 2.45×

Table 8: Impact of enhancement techniques on CEBaB by attribute

Configuration Food Service Ambiance Noise Avg
Baseline 0.85 0.84 0.81 0.82 0.83
Prompting 0.93 0.91 0.87 0.89 0.90
Token Boosting 0.89 0.90 0.86 0.85 0.88
Both 0.95 0.94 0.90 0.91 0.93

Figure 7: Top 10 Concept Activation Counts showing
uniform distribution of activation (exactly 20 examples
per concept) across all top concepts, suggesting bal-
anced concept utilization.

E.8 Concept Analysis and Visualization

To understand the behavior of the concept bottle-
neck in our model, we conducted a detailed analy-
sis of concept activations, their relationships, and
their influence on predictions.

Concept Activation Patterns. Figure 7 shows
that our model activates a consistent subset of con-
cepts across examples. All top 10 concepts (C49,
C37, C13, C25, C26, C27, C12, C9, C32, C34)
are activated in exactly 20 examples, suggesting
a uniform importance distribution among these
concepts. This uniform activation pattern is un-
expected and differs from typical concept bottle-
neck models where activation frequencies normally
follow a power law distribution. The consistency
in activation count indicates that our model has
learned to use a balanced set of concepts rather
than relying heavily on a few dominant ones.

Figure 8: Concept Co-occurrence Matrix revealing per-
fect correlation (value of 20) between all pairs of top
concepts, indicating they always activate simultaneously
rather than independently.

Concept Co-occurrence. Figure 8 reveals a strik-
ing pattern of perfect co-occurrence among the top
concepts. The co-occurrence matrix shows that
when one concept activates, all others in the top
10 set also activate simultaneously. This perfect
correlation (value of 20 for all pairs) suggests that
rather than identifying independent semantic fea-
tures, these concepts may be functioning as a col-
lective unit. Such behavior could indicate either
that the model has discovered highly interdepen-
dent semantic features that naturally co-occur or,
more concerning, that the diversity constraint in
our training objective may not be effectively en-
couraging independence between concepts.

Concept Space Structure. Figures 10 and 9 vi-
sualize the learned concept space using t-SNE di-
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Figure 9: t-SNE Visualization of concept space colored
by predicted class, showing clear clustering with posi-
tive predictions (blue) concentrated in the bottom right.

Figure 10: t-SNE Visualization of concept space colored
by true rating, revealing misclassification patterns when
compared with Figure 9.

mensionality reduction. The concept embeddings
form distinct clusters, with a clear separation be-
tween examples predicted as positive (blue) and
negative (green) in Figure 9. Interestingly, compar-
ing with Figure 10, which shows the true class
labels, reveals a small number of misclassifica-
tions—notably, the three positive-predicted points
(blue in Figure 9) include examples with true nega-
tive labels (orange in Figure 10). The consistency
between predicted and true class visualization con-
firms that the concept space effectively encodes
class-discriminative information, though with some
localized errors.

Concept Intervention Analysis. Figure 12
presents the results of our causal intervention exper-
iments across five example inputs. For each exam-

Figure 11: Token-level correlation between rationale
and concept activation

Figure 12: Effect of Concept Intervention on Prediction

ple, we selectively manipulated individual concept
values to assess their impact on prediction proba-
bilities. In four cases (Examples 1, 3, 4, and 5),
intervening on any of the top concepts had negli-
gible effect on the prediction probability, with all
examples maintaining close to 1.0 probability for
the positive class regardless of intervention. How-
ever, Example 2 shows a dramatic reversal, where
all concepts consistently yield near-zero probabil-
ity for the positive class. This binary response
pattern—where interventions either have no effect
or completely flip the prediction—suggests that
concepts may be operating as a collective decision
unit rather than as independent semantic features
with graded influences on the output.

Rationale-Concept Correlation. Figure 11 re-
veals the token-level correlation between rationale
selection and concept activation. Before position
15, concepts show stable negative correlations with
rationale decisions, suggesting these concepts ac-
tively discourage selecting certain tokens. After
position 15, we observe a dramatic shift in correla-
tion patterns, with Concept 37 showing strong pos-
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itive correlation (peaking at 0.52), while Concept
25 exhibits strong negative correlation (reaching
-0.6). This position-dependent correlation pattern
indicates that concepts capture location-specific se-
mantic features, with different concepts becoming
relevant at different positions in the text. The sharp
transition at position 15 suggests a structural break
in the text that triggers a shift in concept relevance.

Integrated Interpretation. These visualizations
collectively suggest that our concept bottleneck
is operating in an unexpected manner. Rather
than learning independent, semantically meaning-
ful concepts, the model appears to have developed a
more coordinated concept activation strategy. The
perfect co-occurrence, uniform activation counts,
and binary intervention effects indicate that con-
cepts may be functioning more as an ensemble
voting mechanism than as independent semantic
features. This behavior has significant implications
for interpretability—while the model achieves high
performance, the interpretability of individual con-
cepts may be compromised by their highly corre-
lated nature. This analysis highlights an impor-
tant direction for future work: developing stronger
regularization techniques to encourage true con-
cept diversity and independence while maintain-
ing classification performance. Additionally, the
position-dependent correlation between rationales
and concepts suggests that incorporating positional
awareness explicitly into the concept extraction
mechanism could improve both performance and
interpretability.

E.9 Error Analysis

Through examination of cases where rationales
failed to preserve the model’s prediction, we iden-
tified several common failure patterns:

• Implicit Information (42% of errors): The
model relies on contextual cues not captured
in the rationale.

• Context Dependencies (31%): The rationale
includes individual terms but misses crucial
modifiers.

• Stance Recognition (18%): The rationale
captures topic terms but not stance indicators.

• Long-range Dependencies (9%): The ratio-
nale misses connections between distant parts
of the text.

These error patterns provide valuable directions for
improving rationale selection algorithms, particu-
larly for complex reasoning tasks that go beyond
lexical feature identification.

E.10 Dataset-Specific Patterns

Our cross-dataset analysis reveals that rationale
quality varies systematically by task type:

• Topic Classification (AG News, DBpedia):
High faithfulness (0.92-0.94) and contiguity
(3.5-3.8), with clear lexical signals.

• Sentiment Analysis (SST-2, Yelp): Moderate
faithfulness (0.85-0.88) and contiguity (3.1-
3.4), with more complex semantic dependen-
cies.

• Multi-Attribute Analysis (CEBaB): Lower
baseline faithfulness (0.83) but greater im-
provement from enhancement techniques
(+10 percentage points with combined
prompting and boosting).

These patterns suggest that different task types ben-
efit from different rationale extraction strategies
and parameter settings.

F Extended Limitations Analysis

F.1 Detailed Rationale Optimization
Challenges

Gradient Estimation Issues. The binary
mask used in rationale selection creates non-
differentiable operations in the computational
graph. While we employ continuous relaxation
and straight-through estimators to approximate
gradients, these approximations become less
reliable as model complexity increases, leading to
training instability. In our experiments with larger
models, we observed up to 35

Sparsity-Performance Tradeoff. Enforcing ra-
tionale sparsity constraints (limiting rationales to
τ% of input tokens) increasingly conflicts with per-
formance objectives in more complex tasks and
larger models. We observe that larger models often
require larger rationales to maintain performance,
contradicting our goal of concise explanations. For
instance, while a target rationale percentage of
τ = 15% was optimal for BERT-base, DeBERTa-
large required τ = 25% to achieve comparable
performance.
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Contiguity Enforcement Overhead. The con-
tiguity loss computation adds O(n) complexity
to each forward pass, where n is the sequence
length. This becomes prohibitively expensive for
long-form text analysis with larger models. For
documents exceeding 512 tokens, the contiguity
computation alone can consume up to 18% of the
total forward pass time.

F.2 Concept Bottleneck Limitations

Concept Capacity Ceiling. We empirically find
that the optimal number of concepts (currently set
at 50 in our default configuration) does not scale
proportionally with model size. Beyond approxi-
mately 100 concepts, we observe diminishing re-
turns in performance but increasing redundancy
among concepts, suggesting a fundamental limit to
the discrete concept representation capacity. Our
ablation studies show that increasing from 50 to
100 concepts yields only a 0.4

Concept Drift During Training. In larger mod-
els with more parameters, concepts tend to evolve
significantly during training, making their interpre-
tation unstable across training epochs. This raises
questions about the reliability of post-hoc concept
interpretations. By measuring concept activation
patterns on a validation set after each epoch, we
found that concept semantics in BERT-base models
stabilize after approximately 3 epochs, while larger
models continue to show drift even after 10 epochs.

Interaction Complexity. While our model sup-
ports concept interactions through an optional in-
teraction layer, capturing higher-order concept re-
lationships becomes exponentially more complex
as the number of concepts increases, creating both
computational and interpretability challenges. The
interaction matrix grows quadratically with the
number of concepts (O(m2) for m concepts), mak-
ing it increasingly difficult to interpret as the con-
cept space expands.

F.3 Implementation-Specific Bottlenecks

Memory Management. Tracking both token-
level rationales and concept-level activations for
interpretability results in memory consumption
that grows linearly with batch size but quadrati-
cally with model size, creating GPU memory pres-
sure when scaling beyond mid-sized transformers.
For BERT-large, this limits batch sizes to approxi-
mately 16 examples per 16GB GPU for 128-token

sequences, and only 4 examples for 512-token se-
quences.

Concept Intervention Latency. The concept in-
tervention procedure, while valuable for interpreta-
tion, introduces significant latency in larger models,
making real-time interactive explanation infeasi-
ble without further optimization. A single concept
intervention requires approximately 120ms with
BERT-base but increases to over 400ms with larger
models, limiting interactive exploration.

Training Stability Considerations. The com-
posite loss function balancing multiple objectives
(classification, rationale sparsity, concept diversity)
creates a complex optimization landscape that can
be sensitive to initialization and learning rate sched-
ules. We observed that approximately 10

F.4 Potential Research Directions to Address
Limitations

To address these limitations, future work could
explore:

• Sparse Attention Mechanisms: Developing
specialized attention architectures that com-
pute importance scores only for selected to-
kens rather than the entire sequence.

• Progressive Knowledge Distillation: Train-
ing smaller, more efficient models to mimic
the behavior of larger models while maintain-
ing interpretability.

• Hierarchical Concept Structures: Organiz-
ing concepts in hierarchies to improve scala-
bility while preserving interpretability.

• Adaptive Rationale Selection: Dynamically
adjusting rationale sparsity based on input
complexity rather than enforcing a fixed per-
centage.

• Hardware-Specific Optimizations: Develop-
ing specialized kernels for rationale extraction
and concept mapping operations to improve
computational efficiency.

These approaches could help bridge the gap be-
tween the impressive capabilities of modern lan-
guage models and the interpretability requirements
necessary for their trustworthy application.
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Algorithm 1 CLARITY Training

Require: Preprocessed dataset D =
{(Xi, yi)}Ni=1, configuration Θ, pretrained
encoder E

Ensure: Trained model fθ with explanation capa-
bilities

1: Initialize model components: encoder E, ratio-
nale selector gη, concept mapper hϕ, classifier
kψ

2: Initialize optimizer, scheduler, and (optional)
mixed-precision scaler

3: for each epoch t = 1 to T do
4: for each minibatch (X, y) in Dtrain do
5: Encode input: H ← E(X) ▷

Transformer embeddings
6: Predict rationale mask: R← gη(H)
7: Compute attended embedding: HR ←

MaskedMean(H,R)
8: Predict concept activations: C ←

hϕ(HR)
9: if skip connection enabled then

10: Z ← [C ∥ H[CLS]]
11: else
12: Z ← C
13: end if
14: Predict label logits: ŷ ← kψ(Z)
15: Compute classification loss: Lcls ←

CrossEntropy(ŷ, y)
16: Compute regularization terms:

• Lr_sparse: deviation from target rationale
length

• Lr_cont: binary mask discontinuity penalty
• Lc_sparse: average concept activation
• Lc_div: concept redundancy penalty

17: Compute total loss:

L = λclsLcls + λr_sparseLr_sparse+

λr_contLr_cont + λc_sparseLc_sparse+

λc_divLc_div

18: Backpropagate gradients and update
parameters

19: end for
20: Evaluate model on validation set and track

best-performing model
21: end for
22: Load best model checkpoint
23: Evaluate on test set and compute final metrics
24: return Final trained model fθ

429


