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Abstract

Evaluating outputs from large language mod-
els (LLMs) presents significant challenges, es-
pecially as hallucinations and adversarial ma-
nipulations are often difficult to detect. Exist-
ing evaluation methods lack robustness against
subtle yet intentional linguistic alterations, ne-
cessitating novel techniques for reliably as-
sessing model-generated content. Training ac-
curate and robust groundedness evaluators is
key for mitigating hallucinations and ensuring
the alignment of model or human-generated
claims to real-world evidence. However, as we
show, many models, while optimizing for ac-
curacy, lack robustness to subtle variations of
claims, making them unsuitable and brittle in
real-world settings where adversaries employ
purposeful and deceitful tactics like hedging
to deceive readers, which go beyond surface-
level variations. To address this problem, we
propose AAvERSEM, a controllable adversar-
ial approach to manipulating LLM output via
Abstract Meaning Representations (AMR) to
generate attack claims of multiple fine-grained
types, followed by automatic verification of the
correct label. By systematically manipulating
a unique linguistic facet AAvERSEM provides
an interpretable testbed for gauging robustness
as well as useful training data. We demonstrate
that utilizing these AMR manipulations dur-
ing training across multiple fact verification
datasets helps improve the accuracy and ro-
bustness of groundedness evaluation while also
minimizing the requirement of costly annotated
data. To encourage further systematic evalua-
tion, we release AdvERSEM-Test, a manually
verified groundedness test-bed.!

1 Introduction

Evaluating the reliability of human or model-
generated claims typically involves human judg-
ment, which can be costly, and insufficiently sensi-
tive to subtle manipulations in generated text. Au-
tomatic evaluators like LLM-Judges offer scalable
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Figure 1: Groundedness Evaluators falter when the
claim is made more specific or is negated

alternatives for assessing critical properties like
groundedness, and factual accuracy, yet these eval-
uators themselves often rely on LLMs and thus
inherit their limitations, including susceptibility to
hallucinations, adversarial perturbations and the
transformers’ non-compositional nature of train-
ing (Nandi et al., 2025). Developing robust au-
tomatic evaluators is particularly challenging, as
subtle semantic changes (Lee et al., 2025; Raina
et al., 2024), purposeful negations, or intentional
manipulations like hedging (Paige et al., 2024) can
cause dramatic degradation in evaluation reliabil-
ity. Besides, most evaluation testbeds rarely of-
fer fine-grained performance assessments, provid-
ing almost zero feedback to evaluation assessors.
Hence, to improve trustworthiness, it is vital that
groundedness are robust as well as provide fine-
grained feedback of performance.

Groundedness evaluation or fact verification
refers to the alignment of human or model-
generated claims with real-world evidence. This
alignment is crucial for assessing the truthfulness
of statements against established knowledge. How-
ever, current language models often exhibit vul-
nerabilities that compromise their groundedness.
For instance, the Llama-3.1-7B model fails to con-
sistently predict the factual correctness of claims
when claims are slightly altered to make them more
specific or when they are simply negated as shown
in Figure 1. In this work, we focus on improving
groundedness evaluation by fine-tuning on adver-
sarially generated examples. Specifically, using
popular fact verification datasets, we construct ad-
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Figure 2: AdvERSEM training and evaluation on AAdvERSEM-Test.

versarial claims designed to expose strategic vulner-
abilities in LLMs. However, generating effective
adversarial attacks remains an open research ques-
tion, requiring careful strategies to ensure examples
both challenging and representative examples.

Attempts to create adversarial examples for
claim verification have traditionally focused on
surface-level perturbations to challenge model ro-
bustness (Thorne et al., 2018b). These methods
typically involve introducing noise, substituting en-
tities, or making minor lexical alterations to input
texts. While such approaches have been instrumen-
tal in exploiting LLM vulnerabilities, they often fail
to capture actual errors involving deeper semantic
and syntactic complexities (Morris et al., 2020)
or carefully crafted manipulation like hedging of-
ten used to dodge potential disagreement (Hyland,
1998; White, 2003) — for instance journalists may
use phrases like “some suggest,” “it might appear,”
or “many doubt” to propose claims while distanc-
ing themselves from responsibility or certainty.

Besides, many of these traditional techniques,
while revealing some issues related to logical rea-
soning or factual consistency, rarely provide clarity
on specific patterns that evaluators fail to under-
stand. Moreover, these surface-level perturbations
can sometimes lead to unnatural or ungrammati-
cal sentences, limiting their effectiveness in real-
world applications. To improve groundedness eval-
uation, it is hence crucial to identify more abstract,
structured, and compositional patterns that mimic
human language patterns as well as provide fine-
grained assessments.

In this paper, we investigate two research ques-
tions — RQI: How can we systematically gener-

ate adversarial claims to attack automated ground-
edness evaluators, and which attacks are particu-
larly effective against SOTA LLM-based evalua-
tors? RQ2: How can we generate useful adversarial
data for training groundedness evaluators that are
robust to such attacks?

To investigate these research questions, we pro-
pose a novel framework that systematically gener-
ates adversarial examples through manipulations in
a higher-order logical space, particularly through
Abstract Meaning Representations (AMR). By ex-
tracting away from syntactic variations, AMR pro-
vides a structured, graph-based representation of
sentence semantics. By manipulating claims in
their abstract representations, we can create chal-
lenging test cases that expose specific weaknesses
in groundedness evaluators, which provide system-
atic feedback of groundedness performance while
addressing the typical issues. In summary, our con-
tributions are the following:

1. We identify a family of semantics-based adver-
sarial claim manipulations that resemble human-
like manipulations like hedging, and show that
these manipulations can successfully mislead
SOTA LLM-based groundedness evaluators.

2. We propose AAvERSEM - a framework for
Adpversarial Evaluation and Robustness through
Semantic Manipulations — an effective, and robust
framework to evaluate and train LLMs by assessing
their groundedness systematically across multiple
fine-grained dimensions.

3. We create a manually-curated holistic adver-
sarial test generated from AdvERSEM called
AdvERSEM-Test, with various types of manipula-
tions that mimick real-world groundedness errors.
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Figure 3: Illustration of Adversarial Manipulation using Abstract Meaning Representation (AMR). In this example
Specificity of a claim is manimuplated by adding a “:subevent” subgraph.

4. We demonstrate how AAdvVERSEM can be used
to identify potential vulnerabilities and be used to
improve accuracy and robustness on multiple fact
verification benchmarks.

2 Related Work

We now discuss related research to place our con-
tributions in context.

False or adversarial claims designed to mislead
human readers, and now machine-reading models,
have been long studied and analyzed. Apart from
deliberate biases exhibited by journalists and tra-
ditional information providers, many frequently
employ rhetorical techniques such as hedging to
preempt disagreement (Hyland, 1998; White, 2003;
Raina et al., 2024) or careful wordplay aimed at
misleading or unduly influencing readers. Recently,
the problem of misinformation and disinformation
has become critically important due to their un-
precedented speed and reach, further amplified
by digital platforms and recent LLMs. Specifi-
cally, Vosoughi et al. (2018) demonstrated that false
news spreads significantly faster, farther, and more
broadly than truthful information, underscoring the
urgent need for improved claim verification meth-
ods. Recent studies, such as those by Zhou et al.
(2023), have emphasized this growing challenge by
illustrating how Al-generated misinformation con-
vincingly integrates fabricated details with truthful
elements, effectively evading traditional detection
approaches.

Hence, automated evaluation of claims, or fact
verification, has been an active area of research.

Works such as MultiFC (Augenstein et al., 2019),
LIAR (Wang, 2017), and AVeriTeC (Schlichtkrull
et al., 2023), emphasize real-world claims veri-
fied by journalists or professionals, offering more
diverse and context-rich challenges. FEVER-
OUS (Aly et al., 2021) expands on earlier work
by incorporating structured data like tables, while
domain-specific datasets like SciFact (Wadden
et al., 2022) and COVID-Fact (Saakyan et al., 2021)
target scientific or health misinformation.

To improve the robustness of fact verification
systems, prior works have produced a range of
datasets used to train and evaluate fact-checking
systems. Datasets like FEVER (Thorne et al.,
2018a), FEVER 2.0 (Thorne et al., 2018b), and
VitaminC (Schuster et al., 2021) focus on generat-
ing adversarial or subtly false claims to test model
robustness, often using Wikipedia as a source, but
most of their adversarial generations either use un-
controlled manipulations or use flat first-order logic
representations like OpenlE triples (Alonso-Reina
etal.,2019). ConQRet (Dhole and Agichtein, 2024;
Dhole et al., 2025; Dhole, 2025) provides a bench-
mark of long-form generations with controlled hal-
lucinations for fine-grained evaluation of ground-
edness in retrieval-augmented systems.

While previous work has considered adversarial
claim generation to evaluate and train fact check-
ing models, our work is the first, to our knowledge,
to systematically investigate the specific types of
semantic manipulation that can successfully attack
state-of-the-art LLM-based fact checkers, and pro-
pose a controllable way to generate successful se-
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mantic manipulation attacks that can be used to
both evaluate existing fact checkers, and to auto-
matically augment training data to make the fact
checkers more robust to a range of attacks.

3 Proposed Method: AdvERSEM

We now describe our proposed method, Ad-
vERSEM starting with the end-to-end overview
of the method and then diving into the details of
the implementation for each module.

3.1 Training Fact Verifiers: Overview

Given a model-generated or a human-written claim,
¢, and evidence text D, the task of grounded-
ness evaluation refers to identifying the verac-
ity v of the claim, i.e., whether the given evi-
dence supports or refutes the claim, where v €
{SUPPORTS,REFUTES}.

AdvERSEM (i) parses a claim into its AMR
graph, (ii) applies multiple manipulations, (iii) ver-
balises the edited graphs, and (iv) trains (and eval-
uates) a claim verifier on the mixed i.e. original +
adversarial pairs—see the full pipeline in Figure 2.
A sample AAvERSEM manipulation (Subevent
Addition) is shown in Figure 3.

3.2 Adversarial Manipulation of Claims using
Abstract Meaning Representation

We now delve into the details of adversarial gener-
ation of claims to augment the testing and training
data for evaluator models, namely steps 1 and 2 in
Figure 2.

Our approach is to design controllable adversar-
ial attacks based on Abstract Meaning Representa-
tions (AMR) (Banarescu et al., 2013). AMR is a
semantic representation that represents sentences as
rooted, directed, acyclic graphs, abstracting away
from syntactic variations. This abstraction allows
for systematic manipulations of sentence meaning
through graph transformations. We developed 17
specialized AMR-based manipulations aimed at al-
tering claims in various ways. Each manipulation
targets a distinct aspect, as detailed in Table 1. The
corresponding prompts used to implement these
manipulations are provided in Appendix A. For
instance, “Focus Shift” manipulation changes the
entity being focused upon, while “Hedging” at-
tempts to introduce mild uncertainty — i.e. either
making the claim appear milder or stronger. “Po-
larity Negation” either adds or removes polarity to
flip the veracity, while “SubEvent Addition” adds a
subevent related to the main event.

We manually validate the different verbalisations
of each one of the 17 different AMR manipulations,
and finalize 10 of those for which veracity is guar-
anteed — namely Topic Addition, Source Addition,
Subevent Addition, Structural Reversal, Hedging,
Focus Shifting, Scalar Adverb Negation, Polarity
Negation (either removal or addition), and Scalar
Negation. Details of the remaining ones are pro-
vided in Appendix A and will be used in the future
for noisy data augmentation.

We now describe AAVERSEM in detail. To
create an adversarial test set for each of the defined
manipulation types, we employed GPT4-0 (Achiam
et al., 2023) to execute each of the following steps:
1. AMR Parsing: We first convert the input claim
c into its AMR graph representation G, using a
10-shot prompt based on the AMR 1.2.6 specifica-
tion. We employ the few-shot setting owing to its
superior performance and conformity to structure
in previous settings (Ettinger et al., 2023). This
transformation can be denoted as:

G. = AMRParse(c)

where AMRParse(-) is the function that maps natu-
ral language claims to their semantic graph repre-
sentations. An example of the parsing prompt is
shown in Figure 4.

2. AMR Manipulation: The AMR graph G, is
then modified according to a specified manipula-
tion action a, guided by a natural language instruc-
tion, resulting in a new, manipulated AMR G

G, =Manipulate(G.,a)

where Manipulate(:) alters the structure while
maintaining plausibility and grammaticality. An
example of this process is illustrated in Figure 5.
3. Text Verbalization: Finally, the manipulated
AMR G. is verbalized into a new natural language
claim ¢ using a 10-shot prompt:

&=Verbalize(G,)

where Verbalize(-) is the AMR-to-text generation
function.

For both parsing and verbalization, we format the
prompts with examples adapted from the official
AMR specification.? Examples for each transfor-
mation and a sample subevent transformation are
shown in Table 3 and in Figure 3, respectively.

2https://github.com/amrisi/amr-guidelines/blob/
master/amr.md

398


https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md

Description

| Intact | Flipped

Manipulations (With Veracity Guarantee)
Specificity: Topic Addition Attaches background themes or topics to situate the event with (e.g., topic: “movies”) v
Specificity: Source Addition Provides spatial or origin-based context for the event (e.g., source: “scientists™) v
Specificity: Subevent Addition Embeds smaller, related events within the main event to deepen the narrative (e.g., subevent: “local protest”) v
Structure Reversal Re-attaches entities in new relationships by reversing argument structure (e.g., ARGO-of: “movement leader”) v
Hedging Introduces uncertainty (mild or strong), e.g., via modal verbs or ‘doubt-01" (e.g., “might”) v v
Focus Shift Changes the focus of the claim (e.g., shifting the subject) (e.g., from “spokesperson” to “organization’) v
Scalar Adverb Negation Reverses claim polarity by adding or removing scalar adverbs broadly (if positive, weaken; if negative, restore) v
Polarity Negation (Addition) Flips the claim’s veracity by adding a negation marker if absent (e.g., polarity neg add: “did not occur”) v
Polarity Negation (Remove) Reverses negation by removing an existing negation marker (e.g., polarity neg remove: remove “not”) v
Specific Scalar Negation Inserts a scalar negation only when there’s no negation (e.g., “barely noticeable”) v
Entity Substitution Replaces named entities with aliases or alternatives from the same category to preserve or invert the original claim. v v
Temp/Numeric Attribute Substitution | Modifies time-based or numerical expres- sions to retain or change the truth value of the sen- tence. v v

Table 1: Adversarial AMR manipulations. A checkmark indicates the veracity setting(s) in which the manipulation

applies. The extended list is shown in Appendix Table 7.

3.3 Sentence Based Manipulation

In the same spirit of AMR-based manipulations,
we introduced two adversarial manipulations that
operate directly over the claim sentences.

Entity Attribute Substitution Replaces named
entities with aliases or alternatives from the
same category to preserve or flip veracity.

Temporal and Numerical Attribute Substitution
Modifies time-based or numerical expressions
to retain or flip the veracity.

3.4 Generated Example Validation

To ensure that our generated examples reflect the
intended veracity labels, we apply an entailment-
based filter that verifies logical consistency be-
tween original and transformed claim pairs (c, ¢).
Rather than comparing claims against extensive
evidence, we use GPT-40 to evaluate entailment
directly between concise claim statements.

We provide GPT-40 with two instructions (see
Appendix Figure 6): for label-intact transforma-
tions, the original and transformed claims must
entail each other; for label-flip transformations,
they must contradict. Only claim pairs that pass
this validation are retained. The resulting dataset is
then used to train a more robust evaluator model.

The percentage applicability of each transforma-
tion is provided in Appendix Table 8.

3.5 Label Agreement

We also measure the agreement between the final
annotations and human annotations (Table 2). We
find that the agreement rate in the case of label
intact is high but poor for the label flipping case,
motivating us to create a manually modified evalu-
ation set that we describe in the upcoming section.

| Label Intact  Label Flip
# Agreed Labels 23 13
Total Measured 24 33
Percentage .96 40

Table 2: Label agreement for adversarial claims be-
tween human annotations and GPT-4o.

4 Experiments

We now present the choice of datasets and models
used along with the corresponding experiments.

4.1 Datasets

We evaluate our performance on 3 datasets using
2 metrics. We consider 1) FEVER 2.0 (Thorne
et al., 2018b), which provides more realistic adver-
sarial claims, 2) AVERITEC (Schlichtkrull et al.,
2023), whose claims necessitate verification using
publicly available noisy sources over the web, and
3) introduce AAvVERSEM-Test our novel manually
verified evaluation set. We measure — the accuracy
i.e. performance on the raw dataset, and robustness
i.e. accuracy on the AAvERSEM transformed sets.

The FEVER 2.0 dataset comprises adversarial
examples generated by competing systems in the
associated shared task and subsequently refined
manually by the task organizers. These examples
primarily leverage Wikipedia as their source of evi-
dence. For a more realistic evaluation of large lan-
guage models, particularly Retrieval-Augmented
Generation (RAG) systems, we additionally use the
AVERITEC fact verification dataset. AVERITEC
includes claims supported by links to publicly
accessible websites. We augment AVERITEC
by scraping these websites using custom Python
scripts and incorporate them as evidence.

Finally, we apply the AAvVERSEM transforma-
tions described in §3 to both the training and test
sets of FEVER 2.0 and AVERITEC.
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We retain only the claims labeled as either Sup-
ported or Refuted in both datasets. From the
FEVER dataset, we select 800 examples, reserv-
ing 80 for testing and development. For the
AVERITEC dataset, we reserve 120 examples for
testing and development out of a total of 1,565.

4.2 AdvERSEM-Test

To create AAvERSEM-Test, we pass the first 20
examples of the FEVER 2.0 test set, through each
of the AAVERSEM transformations. The gener-
ated claims are then manually refined to ensure that
the transformation’s particular change is reflected.
Publicly available LLLM based interfaces are used
as an intermediary if needed. Through this process,
we gather 200 adversarial and manually verified
claims for systematic fine-grained analysis.>

4.3 Training Details

We train our groundedness evaluator using GPT-
40-mini (Achiam et al., 2023) and LLaMA-3.1-
8B (Dubey et al., 2024), balancing performance
and cost. Models are trained for 3 epochs with
a batch size of 32 using a supervised chat com-
pletion objective. LLaMA-3.1-8B is trained via
LLaMAFactory (Zheng et al., 2024) and Hugging-
Face (Wolf et al., 2020).

Baselines: We used various zero-shot LLMs,
including GPT40, GPT40-mini, gemini-2.0-flash,
and llama-3.1-8B, by leveraging the prompt as
shown in Figure 8.

Regular Trained: We trained our grounded-
ness evaluators on the given human-labeled train-
ing set (without any adversarial manipulations) i.e.
(D,¢,v) tuples.

AdvERSEM Trained: We additionally in-
clude AdvERSEM-generated adversarial claims in
our training set i.e., (D,c,v) +(D,&,v) tuples. We
also experiment by choosing the number of train-
ing examples from the adversarial set in proportion
to the errors (EP) on the FEVER 2.0 dev set. Let
M be the set of all manipulation types, and E,, the
number of errors for type m. Then the probability
of selecting an adversarial example of type m is

En
Yrem B

311 transformations were applied on all the 20 examples,
in which 2 transformations, viz., Polarity Negation Removal
and Polarity Negation Addition were applicable on 17 and 3
examples respectively, as only 3 out of 20 claims possessed a
negation in their raw form.

P(m) =

5 Results

We now present the results for all our evaluations.

5.1 Accuracy and Robustness

The summarised results are present in Table 4 both
on the transformed sets (T) as well as the raw (R)
sets of all the fact verification datasets.

We find that AdvERSEM-trained models are
significantly more robust than regularly trained
models, both in terms of macro as well as micro av-
erage across all the 3 benchmarks. For instance, by
including AdvERSEM generated examples, the
micro-average performance improves by 7.1%
in the case of GPT40-mini, and 3% in the case
of Llama-3.1 over the AAvVERSEM-Test.

Additionally, AAvERSEM also keeps the per-
formance on other raw datasets like FEVER 2.0
intact. For instance, GPT40-mini improves the per-
formance on the FEVER 2.0 test set by 1.2% while
significantly improving robustness.

5.2 Fine-Grained Robustness Analysis

Table 5 illustrates the fine-grained perfor-
mance across various adversarial manipulations
of AAdvERSEM-Test. Models trained using the Ad-
vERSEM approach consistently outperform both
baseline and regularly trained models, demonstrat-
ing substantial gains in robustness across nearly
all categories of adversarial manipulation. No-
tably, GPT40-mini trained with AdvERSEM
achieves the highest macro-averaged robustness
of 85 %, significantly surpassing its regular train-
ing variant by 6.6 % and the zero-shot GPT-40
baseline by approximately 9.6 %. Among label-
flipped manipulations, the improvement is particu-
larly marked, with the performance on manipula-
tions such as scalar negation and hedging improv-
ing by approximately 25% and 20%, respectively.

When we look at specific manipulations, we ob-
serve that LLMs fail extensively on label-flipped
manipulations, specifically on negations, and
perform the poorest on hedging. Besides, ran-
dom training data is insufficient to mitigate those
errors and in fact may also hurt performance. For
instance, when evaluated on scalar negatives (Spe-
cific Scalar Negation), GPT4o0-mini reduced per-
formance from 70% to 55% after being trained on
FEVER 2.0.

On the other hand, the AdvERSEM-trained
GPT40-mini demonstrates pronounced improve-
ments in detecting these adversarial changes, par-
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Transformation

Claim (original — transformed)

Specificity: Topic Addition
Specificity: Source Addition
Specificity: Subevent Addition

ARGO-of
Hedging

In 2010, the population of Europe was

larger than 61 » more than 61 million, according to demographic trends.

The Woman in Black was abandoned by Hammer Film Productions in the 2010s in
favor of working on Freddie vs. Jason , according to industry insiders.
“Honeymoon” is the second major-label record by Elizabeth Woolridge
Grant, and it was released in 2015.

There exists a Korean band called Scandal is a band from Korea.

People don’t doubt that “Excuse My French” is the debut album of Karim Khar-
bouch(French Montana).

Focus Shift

Scalar Adverb Negation
Polarity Neg Addition

Polarity Neg Removal
Scalar Negation

Hedging

There is not a natural element that goes by the name of Moscovium does not exist
naturally.

Eurotas is definitely not a minor river of Laconia.

The lead engineer of the iAPX 432 did notwork
20 more years » more than 20 years after its introduction.
Dawood Ibrahim Kaskar was - is not from a place in Mira-Bhayandar, Thane district.
Exotic Birds hardly rejected to be » being an opening band for a band from Min-
neapolis.

The general public doubts that Andrew Kevin Walker was born on August 14, 1864
and is a screenwriter.

at Intel for

Table 3: Transformation examples for each type on FEVER 2.0 claims — pieces of text removed from the original
claim are shown in red while those added in the new claim are shown in green. The upper half shows Veracity Intact
ones, while the bottom half shows Veracity Flipped ones.

Manually Verified Evaluation Sets ‘ Automatically Created Evaluation Sets

AdvERSEM-Test (T) FEVER 2.0 (R) ‘ AVERITEC (R) AVERITEC (T) FEVER 2.0 (T)

Model Macro Micro R R Macro  Micro Macro Micro
Llama-3.1-8B 792 .766 .652 .680 .588 .653 498 504
gpt-4o-mini 763 762 .821 786 569 .642 517 .550
gptdo 154 51 .833 .880 .585 675 .556 579
gemini-2.0-flash 761 155 731 788 562 613 S15 532
gpt-4o-mini (Regular Trained) 784 793 .885 - - - .569 .601
gpt-4o-mini (AdvERSEM Trained) .850 864 897 - - - 585 .625
llama-3.1-8B (Regular Trained) 745 749 .805 817 .599 .652 516 .526
llama-3.1-8B (AdvERSEM Trained) | .771 779 .805 .800 .631 676 518 532

Table 4: Performance on FEVER 2.0, AVERITEC, and AAvERSEM-Test. R=raw/original set, T=AdvERSEM
transformed sets. Best scores across models are highlighted in bold. Top set of rows represent zero-shot variants.

Approach \ Label Change Label Intact Label Flipped Overall
$
s
80 )
- .
£ N & § % &
) S0 S0 3 Fud &
& s o o g & 5
< & k3 S = I & Ey L
5 $ & < s S P So N <
) g £ > 5 ) & 5 ol & 5 S )
& & & < & & 5 &£ & & g | ~
#Examples 20 20 20 20 20 20 | 20 17 3 20 20 | 200 | 200
llama-3.1-8B 850 737 .850 .750 .800  .789 526 .588 333 .500 450 | 652 | .680
gpt-4o-mini 900 .800 .900 .850 .900 .750 684 647 667 700 600 | 763 | 773
gpt-do 900 .800 .900 .950 .900  .900 .526 647 667 .600 500 | 754 | 763
gemini-2.0-flash 850 .800 .850 .800 .850  .800 667 882 667 .600 600 | 761 | 767
1lama-3.1-8B (Regular Trained) 750 700 .800 .900 .800 .650 737 941 667 .650 600 | 745 | .749
llama-3.1-8B (AdvERSEM Trained) | .800 .750 .850 .850 .750 .850 789 824 667 .600 750 | 771|779
gpt-4o-mini (Regular Trained) 950 850 .900 950 .900 .750 .684 824 667 .550 600 | 784 | .793
gpt-40-mini (AdvERSEM Trained) | .950 .900 .950 .850 .900 .800 789 941 667 .800 .800 | .850 | .864

Table 5: Fine-grained performance on AAdvERSEM-Test demonstrating increased robustness.

ticularly in categories like scalar adverb negation
(+10.5%), polarity negation addition (+11.7%),

and scalar negation (+25%). Similar enhancements
are observed with llama-3.1-8B, reinforcing that
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training with semantically structured adversarial
examples notably boosts the robustness of models
across various semantic alterations. These results
indicate that structured AMR-based adversarial
training generalizes well across different linguistic
adversarial manipulations as well as significantly
mitigates vulnerabilities to challenging alterations
commonly employed in deceptive claims.

5.3 Analysis on FEVER and AVERITEC

We now look at the detailed performances over
FEVER 2.0 and AVERITEC (shown in Appen-
dices Table 10 and Table 11). We observe that
the average robustness for all the zero-shot mod-
els is low. While utilizing FEVER 2.0 training
data improves performance on the raw test set, it
only gives a slight boost in robustness. When Ad-
vERSEM-based examples are used for training, the
robustness improves further, maintaining accuracy.

Across both FEVER 2.0 and AVERITEC, we
observe a substantial drop in accuracy for all mod-
els on adversarially manipulated claims, partic-
ularly those that challenge deeper aspects of se-
mantics (e.g., focus shift, structural reversal, or
hedging). For example, zero-shot GPT40 and
gemini-2.0-flash experience significant drops in
performance on manipulations like scalar ad-
verb negation and polarity reversals.

Zero-shot models, despite strong results on stan-
dard test sets, saw significant performance degra-
dation on certain adversarial manipulations, espe-
cially those involving negations — e.g., GPT-40’s
accuracy drops to 0.286 on scalar adverb negations.

On AVERITEC, which features noisy, real-world
web claims, adversarially trained models retain ac-
curacy even in the presence of more diverse and
noisy evidence, showing the practical benefit of
these techniques beyond synthetic testbed.

Proportion of Training

Examples Used Approach Accuracy

gptdo 833

0 gemini-2.0-flash 731
gpt-4o-mini 821

3 gpt-4o-mini (FEVER 2 trained) .800
gpt-4o-mini (AdvERSEM Trained) 829

\n gpt-4o0-mini (FEVER 2 trained) 859
gpt-40-mini (AdvERSEM Trained) .883

gptdo-mini (FEVER 2 trained) 897

1 gptdo-mini (AdvERSEM Trained) .863
gptdo-mini (AdvERSEM Trained EP) 897

Table 6: Accuracy of different models trained on
smaller subsets of FEVER 2.0 and evaluated on FEVER
2.0 Test split. Note that AMR-generated adversarial ex-
amples can improve raw performance with lesser num-
ber of annotated examples. (EP = Error Proportions)

5.4 Out-of-Domain Robustness

We also evaluate the out-of-domain robustness
of these models by training on FEVER 2.0 and
its AAvVERSEM manipulations, then testing on the
AVERITEC dataset.

Our results in Appendix Table 12 show that
while zero-shot and regular finetuned models (such
as GPT4o0-mini and its FEVER 2-trained vari-
ant) maintain competitive accuracy on label-intact
AMR manipulations, their robustness substantially
declines on label-flipped and sentence-based ad-
versarial attacks—especially for semantically chal-
lenging manipulations such as scalar negation
or polarity reversal. Notably, adversarially fine-
tuned models (i.e., those further trained on AMR-
generated adversarial data) consistently outperform
their non-adversarially trained counterparts across
both AMR-based and sentence-level manipulations.
For example, GPT40-mini with AMR-based adver-
sarial training achieves an average robustness of
0.674, outperforming the FEVER 2-trained (0.621)
and vanilla (0.611) baselines, improving AMR ro-
bustness from 0.652 to 0.712. These results high-
light that adversarial AMR-based training boosts
LLM resilience to a broad spectrum of semantic
manipulations, as well as generalizes well in out-
of-domain settings.

5.5 AdvERSEM Training Sample Efficiency

We further demonstrate the effectiveness of incor-
porating AAvVERSEM-based adversarial training in
low-resource settings. We adjusted the amount of
FEVER 2.0 training data available to the model
and controlled the portion used for generating
AMR adversarial examples—ranging from zero-
shot (0) to one-third (1/3), half (1/2), and the full (1)
dataset—and assessed performance on the FEVER
2.0 test set. Consistently, models enhanced with
AMR-generated adversarial examples matched or
exceeded the performance of those trained exclu-
sively on human-annotated claims across all set-
tings. The results are described in detail in Table 6.

The benefit of our approach is especially pro-
nounced when labeled data is scarce. For example,
GPT40-mini trained with AMR-generated adversar-
ial examples consistently outperforms its zero-shot
counterpart, without signs of overfitting. In con-
trast, training with human-labeled FEVER 2.0 data
alone leads to a 3% drop in performance when only
one-third of the data is used. Moreover, expand-
ing the proportion of AMR-based training data to
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one-third and half substantially closes the perfor-
mance gap with the full-data baseline (0.897) by
11% and 82%, respectively. These findings under-
score the sample efficiency of AMR-based augmen-
tation, which introduces diverse and informative
adversarial variations that enhance generalization,
even with limited annotations.

6 Conclusions and Future Work

We introduced AdvERSEM, a novel framework
that leverages Abstract Meaning Representations
(AMR) to systematically evaluate and improve
the robustness of groundedness evaluators through
structured adversarial data augmentation. We un-
cover several vulnerabilities by introducing seman-
tically controlled, fine-grained manipulations of
claims. These adversarial manipulations expose
specific weaknesses in existing evaluators and pro-
vide interpretable and actionable feedback beyond
single-dimensional test scores, highlighting the
importance of robustness and interpretability in
groundedness evaluation, and also serve as a cau-
tion on agent-style modular systems, which pre-
dominantly rely on LLMs in a zero-shot manner.
Moreover, training groundedness evaluators us-
ing our structured adversarial examples signifi-
cantly enhances their ability to withstand complex
semantic perturbations such as hedging, negation,
and specificity adjustments, addressing key vul-
nerabilities identified in LLMs as well as human
writings. By generating challenging yet realistic
training examples, our approach effectively reduces
reliance on expensive annotated data, thereby fa-
cilitating efficient and robust model development.
The AdvERSEM framework, and associated evalu-
ation set AvERSEM-Test can be readily extended
to various other NLP applications, for systemati-
cally testing and enhancing model reliability.

7 Limitations

While AAvERSEM provides a structured and in-
terpretable framework for systematically assessing
and improving the robustness of groundedness eval-
uators, there are several limitations worth noting.
Our adversarial examples, though systematically
designed and verified, are generated through a large
language model (GPT-40), which itself might in-
troduce unintended biases or noise (Mitchell et al.,
2025). Although we employed entailment checks
and manual validation steps to mitigate these risks,
some residual inaccuracies could persist. And

hence, to provide a reliable estimate of the behav-
ior of these groundedness evaluators, we manually
modified split on top of the same.

AdvERSEM encompasses AMR parsing and
AMR verbalization for English text. = While
AMR parsing has been expanded to many lan-
guages (Soto Martinez et al., 2024; Kang et al.,
2024), cross-lingual and multi-lingual parsing is
still an active area of research (Mansouri, 2025),
and our method would need to be evaluated for
those languages separately.

Additionally, while our method significantly im-
proves robustness against specific adversarial ma-
nipulations, it might not cover all possible adver-
sarial strategies, particularly those exploiting multi-
sentence coherence or higher-level rhetorical ma-
nipulations. Future work could expand the diversity
of manipulations and further explore the integra-
tion of human-generated adversarial examples to
address these gaps comprehensively.

8 [Ethics Statement

Our work operates within the broader context of
combating misinformation, as large language mod-
els (LLMs) can be exploited for malicious purposes.
Therefore, developing accurate, reliable, and robust
assessment methods is essential. Systematically en-
hancing claim verification and groundedness evalu-
ation is crucial for countering increasingly sophis-
ticated misinformation and disinformation tactics,
especially as LLM-generated simulations become
proliferate (Dhole, 2024, 2023).

However, while recent advancements in LLM-
based evaluations have shown promise, our re-
search highlights that these models remain brit-
tle and susceptible to exploitation. Consequently,
research like ours, which is situated within fact
verification and related domains, must always be
supported by rigorous manual evaluation, particu-
larly to ensure robustness. AAdvVERSEM-Test, is
specifically created with this consideration in mind.

We used GPT40 and Grammarly to help improve
the grammar of the text and for creating LaTeX
outlines for tables and images.
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A AMR Manipulations

In Table 7, we show our extended set of AMR
manipulations. This list shows the remaining ma-
nipulations that may not guarantee veracity. For in-
stance, in “Quantifier Alteration”, when we change
the scope or amount expressed in the claim, the new
claim may not always maintain (or always flip) the
veracity.

B Robustness Analysis on the Dev Set

In Table 9, we present the robustness analysis on
the development set of FEVER 2.0 using GPT4o-
mini. The fall in accuracy is calculated as the rel-
ative decline in accuracy when evaluated with the
transformed dev set as compared to the raw dev
set. We then use the inverse of the fall of accuracy,
which is used to dictate the proportion of adversar-
ial examples that would be used in training.

You are an advanced semantic parser. Read a sentence and
produce only its AMR or Abstract Meaning Representation,
without explanations.

Below is an example from the AMR 1.2.6 Specification.

EXAMPLE:
Sentence: Patrick Makau finished the marathon in 2 hours.
AMR:
(f / finish-01
:ARGO (p / person :wiki "Patrick_Makau_Musyoki"
:name (n / name :opl "Patrick" :op2 "Makau"))
:ARG1 (r / run-02
:ARGO p
:ARG1 (m / marathon)
:duration (s2 / sum-of
:opl (t2 / temporal-quantity
:quant 2
:unit (h / hour)))))

Now convert the input sentence to AMR. Return only the AMR.
Sentence: {text}
AMR:

Figure 4: Text-to-AMR prompt example used for pars-
ing original claims.

Figure 7 shows the robustness trends with and
without adversarial examples.

C Sample Efficiency: Training with
limited data

The Figure 7 illustrates the sample efficiency of
our approach, highlighting its robustness across
varying numbers of original examples.

D Prompt Templates

We provide the prompt templates used in each step
of our framework. Figure 4, 5, and 6 correspond
to the key steps: AMR parsing, AMR manipulation,
and generated example validation, respectively.

The following is an AMR or Abstract Meaning Representation
of a claim {claim} which is {label} by evidence:

Please perform the following action to create a new AMR
whose verbalisation would be different:

The action should make the new AMR represent a new natural
looking, grammatical, and sensible claim, and also
different from the

original claim. If there is no previous AMR,

then only return

"NO CHANGE'.

Return the new AMR.

Previous AMR: {AMR}

Label: {The new Label}

Description: {Description of Manipulation}
Action: {Action Name of the Manipulation}

New AMR:

Figure 5: Prompt template for AMR manipulation
based on graph operations and label changes.

"The following two statements are intended to

not contradict each other. "

"Check if they are logically consistent and

do not contradict each other.\n\n"

"Original statement: {}

\n\nNew statement: {}\n\n"

"Respond with 'True’ if they do not contradict each other,
"or 'False’ if they do contradict.

Do not respond with anything else."

"The following two statements are expected to reflect
contradictory positions. "

"Check if they indeed contradict each other.\n\n"
"Original statement: {}

\n\nRevised statement: {}\n\n"

"Respond with 'True’ if they contradict each other, "

"or 'False’ if they do not contradict. Do not respond with
anything else."

Figure 6: Entailment and Contradiction

- Overall Rob

- = Aver: stness
= Average AMR Robustness (After Adversarial Training) = Average Overall Robustness (

ter Adversarial Training)

0620

0.600

Robustness

0560
0540
200 300 400 500 600

Number of Original Training Examples Used

Figure 7: Robustness Trends of With and Without In-
cluding Adversarial Examples. At each point, the adver-
sarial examples are generated for the same number of
original examples (x-axis)
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Manipulation Description

Modality Shifting Weaken or strengthen the speaker’s commitment to the claim. (e.g., Replace “must” with “might”.)

Quantifier Alteration Change the scope or amount expressed in the claim. (e.g., Alter “100” to “10”.)

Presupposition Removal Delete or contradict a background assumption (e.g., Remove an assumed ongoing subevent.)

Implicature Disruption Break implied event ordering or assumptions of contrast. (e.g., Replace causal relation with flat conjunction “and”)
Rhetorical Question Framing | Transform into a rhetorical question that implies doubt. (e.g., Change to “Did it really..”)

Parataxis vs Hypotaxis Change logical or causal relationships to a flat structure, altering implications. (e.g., Replace “because” with “and”)
Figurative Interpretation Replace with metaphorical or sarcasm (e.g., Replace “bulldoze” with “dominate” to imply sarcasm.)

Table 7: Adversarial AMR manipulations. These manipulations do not guarantee the veracity of the transformed
claim.

Dataset AMR Transformations (AdvERsem-FEVER) (Automatic) | AMR Transformations (AdvER AVERITEC) (A i AdvERSem-Test (Manual)
Split Train Dev Train Dev Test
TA (%) TAv (%) | TA (%) TAv (%) TA (%) TAv (%) | TA (%) TAv (%) TA (%)
Specificity: Topic Addition 99.84 68.90 100 79.75 100.00 80.96 100.00 84.40 100
Speci : Source Addition 100.00 71.61 100 81.01 99.85 78.15 100.00 81.65 100
Label Intact Specificity: Subevent Addition 99.84 64.75 100 69.62 99.62 77.62 100.00 72.48 100
Structure Reversal 100.00 67.46 98.73 70.89 99.85 71.47 100.00 72.48 100
Hedging 99.84 75.92 100 77.22 100.68 77.62 99.08 76.15 100
Focus Shift 99.84 67.94 100 69.62 100.08 74.81 100.00 71.56 100
Scalar Adverb Negation 99.84 25.20 100 36.71 100.23 33.54 101.83 25.69 100
Polarity (Negative Addition) 68.42 7.18 70 7.59 85.43 6.68 63.30 275 85
Label Flipped | Polarity (Negative Removal) 30.30 3.35 28 3.80 12.75 2.73 14.68 1.83 15
Adding Other Scalar Negations | 99.52 37.16 100 39.24 100.08 27.62 101.83 33.94 100
Hedging 100.00 63.48 100 67.09 100.76 62.82 100.92 58.72 100

Table 8: Transformation Applicability of each transformation without (TA) and with verifier (TAv).

Type | Veracity Change i ion Category Fall in Accuracy

Raw - (810)

Specificity: Topic Addition 7.91 (.746)

Specificity: Source Addition 20.92 (.641)

Specificity: Subevent Addition 7.98 (.745)

Veracity Intact Structure Reversal 11.83 (.714)

Hedging 12.99 (.705)

AMR Based Focus Shift 5.74 (1764)
Scalar Adverb Negation 31.90 (.552)

Polarity Negation (Addition) 17.71 (.667)

Veracity Flipped  Polarity Negation (Remove) 58.85(.333)

Scalar Negation 24.34 (.613)

Hedging 27.80 (.585)

. Entity Attribute Substitution 25.06 (.607)

Sentence Based Veracity Intact Temporal Numerical Substitution 29.46 (.571)
i Veracity Flipped Entity Attribute Substitution 31.72(.553)

Temporal Numerical Substitution 64.73 (.286)

Table 9: “Fall in Accuracy” indicates the difference
from 0.810, with the actual accuracy shown in parenthe-
ses. “Fewer examples were available for these negation-
based transformations.

Classify whether the given evidence SUPPORTS or REFUTES
the given claim.

Evidence: {wiki_text}
Claim: {claim}

Answer (SUPPORTS or REFUTES):

Figure 8: Fact Verification instruction used to evaluate
the veracity of the claims
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AMR Based Transformations Sentence Transformations

Approach \ Label Change Label Intact Label Flipped Label Intact Label Flipped
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#Examples 78|60 59 57 52 6 59 | 21 21 50 31 9] - | 54 58 | 44 2 | - -
gptdo 833 | 717 .661 702 692 .613 .83l .286 500 .000 484 510 545 630 500 .500 714 586 556
gemini-2.0-flash 731 1 .672 586 625 635 610 746 429 333 .000 516 633 526 612 .300 452 571 485 SIS
gpt-40-mini 821 | 717 .678 719 731 .629 .83l 429 .000 .000 581 449 524 .556 .300 568 571 499 517
llama-3.1-8B (FEVER 2 Trained) 702|674 609 725 634 568 667 500 200 2000 381 643 | 509 486 250 588 667 498 1506
llama-3.1-8B (AdvERSEM Trained) | .698 | .702 .587 718 .634 .581 .689 .643 200 .000 429 677 | 533 486 250 .500 667 476 518
gpt-4o-mini (FEVER 2 trained) 885 [ 800 695 719 846 710 .881 381 333 2000 484 490 | 576 1660 400 545 571 544 568
gpt-do-mini (AdvERSEM Trained) | .897 | 817 .746 .842 .827 .726 .847 429 167 .000 548 551 | 591 7196 .500 409 571 .569 585

Table 10: Accuracy of different models on transformed adversarial test splits of FEVER 2.0 (Thorne et al., 2018a).
Best scores across models are highlighted in bold.

‘ ‘ AMR Based Transformations Sentence Transformations

Approach \ Label Change Label Intact Label Flipped Label Intact Label Flipped
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§
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#Examples | 120 ] 91 8 83 68 8 76 | 24 33 81 36 63 | - 90 0 | 47 6 | - -
llama-3.1-8B 766 | 765 813 773 789 684 738 | 250 375 667 226 327 | 583 | 859 793 | 38 375 | 603 | .588
gpt-do-mini 78 | 807 818 775 773 816 716 | .333 000 667 457 290 | 587 | 841 733 | 311 200 | 521 569
gpdo 880 | 839 864 863 .785 .826 811 | 043 125 667 235 290 | 577 | 852 833 | 444 300 | .608 | 585
gemini-2.0-flash 788 | 761 741 800 781 753 736 | 235 500 333 278 279 | 563 | 764 655 | 438 375 | 558 | 562
llama-3.1-8B (Averitec Trained) 817 [ 769 775 771 721 719 724 | 458 250 667 361 238 | 587 | 767 839 | 319 300 | 556 | 579
llama-3.1-8B (AdvERSEM Trained) | 800 | 747 787 819 676 .798 .776 | .625 375 667 639 683 | 690 | 789 806 | 447 200 | 561 | .656

Table 11: Accuracy of different models on transformed adversarial test splits of AVERITEC dataset (Schlichtkrull
et al., 2023). Best scores across models are highlighted in bold.

AMR Based Transformations Sentence Transformations

Approach \ Label Change Label Intact Label Flipped Label Intact Label Flipped
§
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gpt-40-mini 814 823 761 752 .798 .770 407 468 .386 319 .630 836 734 316 356 .561 611
gpt-40-mini (FEVER 2 trained) .864 886 .850 .818 816 .743 292 375 486 387 .652 795 800 356 .200 .538 .621
gpt-40-mini (AdvERSEM Trained) | .818 .830 813 .788 .724 757 583 500 629 677 712 818 767 289 400 568 674

Table 12: Accuracy of AAVERSEM trained models on Out-of-domain data, with FEVER 2.0 adversarial examples
and evaluated on AVERITEC test split (Schlichtkrull et al., 2023), broken down by AMR manipulation type,
highlighting robustness to out-of-domain adversarial variations.
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