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Abstract

This study addresses the problem of halluci-
nated span detection in the outputs of large
language models. It has received less atten-
tion than output-level hallucination detection
despite its practical importance. Prior work has
shown that attentions often exhibit irregular
patterns when hallucinations occur. Motivated
by these findings, we extract features from the
attention matrix that provide complementary
views capturing (a) whether certain tokens are
influential or ignored, (b) whether attention is
biased toward specific subsets, and (c) whether
a token is generated referring to a narrow or
broad context, in the generation. These features
are input to a Transformer-based classifier to
conduct sequential labelling to identify hallu-
cinated spans. Experimental results indicate
that the proposed method outperforms strong
baselines on hallucinated span detection with
longer input contexts, such as data-to-text and
summarisation tasks.

1 Introduction

Large Language Models (LLMs) have significantly
advanced natural language processing and demon-
strated high performance across tasks (Minaee
et al., 2024). However, hallucinations persisting in
texts generated by LL.Ms have been identified as
a serious issue, which undermines LLM safety (Ji
et al., 2024b).

To tackle this challenge, hallucination detec-
tion has been actively studied (Huang et al., 2025).
Model-level (e.g., (Min et al., 2023)) or response-
level (e.g., (Manakul et al., 2023)) hallucination
detection has been proposed. However, identifica-
tion of the hallucinated span is less explored de-
spite its practical importance. Hallucinated span
detection enables understanding and manually edit-
ing the problematic portion of the output. It also
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provides clues to mitigate hallucinations in LLM
development.

To address this, we tackle hallucinated span de-
tection. While there have been various types of hal-
lucinations (Wang et al., 2024), this study targets
hallucinations on contextualised generations that
add baseless and contradictive information against
the given input context. Motivated by the findings
that irregular attention patterns are observed when
hallucination occurs (Chuang et al., 2024; Zaranis
et al., 2024), we extract features to characterise
the distributions of attention weights. Specifically,
the proposed method extracts an attention matrix
from an LLM by inputting a set of prompt, con-
text, and LLM output of concern. It then assembles
features for each token from the attention matrix:
average and diversity of incoming attention as well
as diversity of outgoing attention, which comple-
mentarily capture the attention patterns of language
models. The former two features indicate whether
attention is distributed in a balanced manner for
tokens in the output text. The last feature reveals if
an output token was generated by broadly attend-
ing to other tokens. These features are then fed to
a Transformer encoder with a conditional random
field layer on top to conduct sequential labelling to
determine whether a token is hallucinated or not.

Experimental results on hallucinated span de-
tection confirmed that the proposed method out-
performs strong baselines on data-to-text and sum-
marisation tasks, improving token-level F1 score
for 4.9 and 2.9 points, respectively. An in-depth
analysis reveals that the proposed method is capa-
ble of handling longer input contexts. Our code
is available at https://github.com/0Ogamon958/
mva_hal_det.

2 Related Work

This section discusses hallucination detection that
utilises various internal states of LLMs.
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Figure 1: Overview of the proposed method

Attention-Based  Hallucination Detection
Lookback Lens (Chuang et al., 2024) is the most
relevant method to our study, which identifies
hallucinations using only attention matrices. It
computes the “Lookback” ratio of attention to
assess whether generated tokens attend well to the
input context. In contrast, our features primarily
focus on the attention of output texts and capture
more nuanced and structural attention patterns.
ALTI+ (Ferrando et al., 2022; Zaranis et al., 2024)
tracks token interactions across layers. ALTI+ has
been applied to hallucination detection in machine
translation, highlighting cases where the model
fails to properly utilise source text information. A
drawback of ALTI+ is its computational cost. It
computes a token-to-token contribution matrix for
each layer and for each attention head. Therefore,
memory consumption linearly increases depending
on the length of context and output as well as
LLM sizes. Indeed, Zaranis et al. (2024) excluded
sequences longer than 400 tokens due to GPU
memory constraints.

Other Internal States for Hallucination Detec-
tion Hallucination detection has also explored
various internal states of LLMs other than atten-
tion. Xiao and Wang (2021) and Zhang et al. (2023)
identify hallucinations as tokens generated with
anomalously low confidence based on the proba-
bility distribution in the final layer. Azaria and
Mitchell (2023) and Ji et al. (2024a) use layer-wise
Transformer block outputs to estimate hallucina-
tion risk. These studies assume that hallucination
detection will be conducted on the same LLM gen-
erating output and can access such Transformer
block outputs. In contrast, we empirically showed
that the proposed method can also be applied to
closed LLMs. Further, attention-based methods are
distinctive from these studies in that they aim to

model inter-token interactions.

3 Proposed Method

The proposed method is illustrated in Figure 1. It
conducts sequential labelling, i.e., predicts binary
labels that indicate whether a token in text, which
has been generated by a certain LLM, is halluci-
nated or not. Specifically, the proposed method
takes a set of prompt, input context, and output
generated by an LLM of concern as input to an-
other LLM and obtains the attention matrix of the
output text span. It then extracts features from the
attention matrix (Sections 3.1 and 3.2). These fea-
tures are fed to a Transformer encoder model with
the prediction head of a conditional random field
(CRF) to conduct sequential labelling to identify
hallucinated spans (Section 3.3). As the attention
matrix provides crucial information for our method,
we compare the raw attention and a variation based
on the analysis of attention mechanism (Kobayashi
et al., 2020) (Section 3.4). We remark that only
the hallucination detection model needs training,
i.e., the LLM for attention matrix extraction is kept
frozen, which makes our method computationally
efficient.

Our method applies to both scenarios where the
LLM that generated outputs and the LLM for hal-
lucinated span detection are the same or different.
In practice, the latter setting is expected to be more
common in an era where LLMs are widely used for
writing tasks. In addition, we cannot access the in-
ternal state of proprietary LLMs. Our experiments
assume the scenario where the LLM for generation
and the LLM for detection are different.

3.1 Feature Design

Previous studies revealed that irregular patterns
of attention are incurred when hallucination oc-
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Figure 2: Feature extraction from attention matrix (these attention values are for illustrative purposes.)

curs (Chuang et al., 2024; Zaranis et al., 2024).
Based on these findings, we design features to com-
plementarily capture irregular attentions. Specifi-
cally, we extract features providing complementary
views of the attention matrix as shown in Figure 2:
(a) average attention a token receives (Average
Incoming Attention), (b) diversity of attention
a token receives (Incoming Attention Entropy),
and (c) diversity of tokens that a token attends to
(Outgoing Attention Entropy).

Average Incoming Attention We compute the
average attention weights that a token receives
when generating others. This feature indicates
whether certain tokens are influential or ignored
in generation. Specifically, it computes the aver-
age attention weight in the key direction on the
attention matrix as illustrated on the left side of
Figure 2.

Incoming Attention Entropy This feature cap-
tures the diversity of attention weights, i.e., whether
attention is biased toward specific subsets or is
more uniformly distributed. It computes the en-
tropy of attention weights in the key direction on
the attention matrix as illustrated on the left side of
Figure 2.

Outgoing Attention Entropy The final feature
models the diversity of tokens that a token attends
to when being generated. This indicates whether
the model references a narrow or broad range of
context for generating the token. Specifically, this
feature computes the entropy of attention weights
in the query direction on the attention matrix as
illustrated on the right side of Figure 2.

Given the complex and diverse nature of atten-
tion dynamics, we do not regard individual fea-
tures as independently effective. Rather, we assume
these features complementary capture irregular at-

tention patterns due to hallucination by providing
views from different angles.

3.2 Feature Extraction

We extract these features for each token from the at-
tention matrix. As notation, the output by an LLM
to detect hallucinated span consists of 7' tokens.
The LLM for attention matrix extraction consists
of L layers of a Transformer decoder with H heads
of multi-head attention.

Average Incoming Attention This feature com-
putes the average attention weights that a token
receives when generating other tokens. The atten-
tion matrix A is lower triangular due to masked
self-attention, meaning each query token ¢ attends
only to key tokens j with 1 < j < 4. Thus, ear-
lier tokens receive attention more often, and tokens
close to the end receive attention less often. To
compensate for the imbalanced frequency, we ad-
just the attention weights ; ; as:

o = o - i (1)
Using the adjusted attention matrix A’, the average
attention that a key token j receives is computed
as:

T
(eh) _ 1 1(6,h)
1 —T_jHZZ;aij L@

where 1 < ¢ < L is the layerindex and 1 < h <
H is the head index. The final feature vector is
obtained by concatenating the average attention
weights across all layers and heads:

1,1 (1,2) (L,H)

v(j) = [ w7 ] € RME(3)

Incoming Attention Entropy To model the di-
versity of attention a token receives, we use the en-
tropy of the weights. As discussed in the previous
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paragraph, the attention matrix is lower triangular.
To compensate for different numbers of times to
receive attention, we normalise an entropy value
by dividing by the maximum entropy:

ST ) jog (0H

(6h) _ i=j I
Bj a log(T —j+1) ’ “)
o/ (M)
KGR “ij
— - 5)
ki ih
’ D k=1 O‘gc )

The final feature vector is a concatenation of the
entropy values across layers and heads:

e(j) = [B"Y, B2,

Outgoing Attention Entropy This feature mod-
els the diversity of tokens that a token attends to
when being generated. Similar to the “Incoming At-
tention Entropy” feature, we compute the entropy
of attention weights of query tokens' by dividing
by the maximum entropy:

, B e RH (6)

—yi a(é " Jog algf,m
log( i)

The final feature vector is a concatenation of the
entropy values across layers and heads:

é(i) = [, A, A

7(@ h)

)

e R (8)

Final Feature Vector The three features v(j)
(Average Incoming Attention), e(j) (Incoming At-
tention Entropy), and é(7) (Outgoing Attention En-
tropy) are concatenated as a final feature vector
for hallucination detection. Each feature has LH
elements; thus, the final feature vector consists of
3LH elements.

3.3 Hallucination Detector

Our hallucination detector consists of a linear layer,
a Transformer encoder layer, and a CRF layer on
top, as illustrated in Figure 3. To handle spans, we
employ the CRF layer to model dependencies be-
tween adjacent tokens, improving the consistency
of hallucinated spans compared to independent
token-wise classification.”> The CRF has been suc-
cessfully integrated with Transformer-based mod-
els for structured NLP tasks (Yan et al., 2019; Wang
et al., 2021).

"Remind that attention weights are normalised in the query
direction.

*We empirically confirmed that a linear layer is inferior to
CREF in our study.

1234

Hallucination Predlction

1234

CRF Layer

Transformer per Token
-l " Encoder
Features
Positional
Linear Layer Encoding

Figure 3: Hallucination Detector

Feature vectors are first standardised to have
zero mean and 1 standard deviation per feature
type. After standardisation, the feature vector
first goes through a linear layer for transformation,
which is primarily employed to adapt to various
LLMs that can have different numbers of layers
and attention heads. Then the transformed vector
is input to the transformer layer with positional
encoding to incorporate token order information.
Finally, the CRF layer predicts a binary label indi-
cating whether a token is hallucinated (label 1) or
not (label 0). During inference, the Viterbi algo-
rithm determines the most likely label sequences.

3.4 Attention Weights

Attention weights have been used to analyse con-
text dependency (Clark et al., 2019; Kovaleva et al.,
2019; Htut et al., 2019) of Transformer models.
Recently, Kobayashi et al. (2020) revealed that the
norm of the transformed input vector plays a sig-
nificant role in the attention mechanism. They re-
formulated the computation in the Transformer as:

T
yi= > aijf(x)) ©)
j=1

where «; ; is the raw attention weight and f(x;) is
the transformed vector of input x;. The transfor-
mation function is defined as:

flx)= (@W" +b") W, (10)
where WV ¢ R%>d and b¥ € R% are
the parameters for value transformations and
WO € R *dout ig the output matrix multiplication.
Kobayashi et al. (2020) found that frequently occur-
ring tokens often receive high attention weights but
have small vector norms, reducing their actual con-
tribution to the output. This suggests that attention
mechanisms adjust token influence, prioritising in-
formative tokens over frequent but less meaningful
ones.
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Dataset QA

Data2Text Summarisation

train 4,584 (1,421) (31.0%)
valid 450 ( 143) (31.8%)
test 900 ( 160) (17.8%)
Total 5,934 (1,724) (29.1%)

4,848 (3,360) (69.3%)
450 ( 315) (70.0%)
900 ( 579) (64.3%)

6,198 (4, 254) (68.6%)

4,308 (1, 347) (31.3%)
450 ( 135) (30.0%)
900 ( 204) (22.7%)

5,658 (1, 686) (29.8%)

Table 1: Number of samples in the RAGTruth dataset (Numbers in parentheses indicate the raw number of and
percentage of sentences containing at least one hallucination span.)

Hyperparameter Search Range
Learning rate le-5 ~ 1e-3

Number of layers 2,4, 6,8, 10,12, 14, 16]
Number of heads  [4, 8, 16, 32]

Dropout rate 0.1 ~0.5

Weight decay le-6 ~ le-2

Model dimension  [256, 512, 1024]
Parameter Setting

Optimizer AdamW

Batch size 64 (Summrization: 32)

Maximum epochs 150

Table 2: Search ranges of Transformer hyperparameters
(upper) and training settings (bottom)

This study compares the effectiveness of raw
and the transformed attention weights of Kobayashi
et al. (2020). Specifically, we employ the adjusted
attention matrix A, defined as:

Anorm = A - diag (|| f(z)|]), (11)

where A is the raw attention weight matrix, and
diag(||f(x)||) represents a diagonal matrix con-
taining the transformed vector norms.

4 Evaluation

We evaluate the effectiveness of the proposed
method for hallucinated span detection.

4.1 Dataset

As the dataset providing hallucination span anno-
tation, we employ RAGTruth (Niu et al., 2024)3, a
benchmark dataset that annotates responses gen-
erated by LLMs (GPT-3.5-turbo-0613, GPT-4-
0613, Llama-2-7B-chat, Llama-2-13B-chat, Llama-
2-70B-chat, and Mistral-7B-Instruct). It covers
three scenarios of using LLMs in practice, i.e.,
question answering (QA), data-to-text generation

Shttps://github.com/ParticleMedia/RAGTruth

(Data2Text), and news summarisation (Summari-
sation). RAGTruth provides 18, 000 annotated re-
sponses, where hallucinated spans in each response
are tagged at the character level. The number of
samples is shown in Table 1. As there is no official
validation split in RAGTruth, we randomly sam-
pled 450 instances (75 IDs) from the training set
for validation.

4.2 Evaluation Metric

The hallucination labels in RAGTruth are provided
at the character span level. For example, a hallu-
cination might be annotated with “start: 219, end:
229.” We convert these labels into the token level
for intuitive interpretation of evaluation results. We
employed the same tokeniser of LLM to extract
attention matrices.

We compute the token-level precision (Prec) and
recall (Rec). Given a set of gold-standard halluci-
nation tokens )) = {yq Y1, -+ ,yn} and predicted

hallucination tokens ) = {Jo, 91, -+ ,Unr}»
VN VN
precision = Y = y',recall = Y y’. (12)
Y Y|

Matching of the gold-standard and predicted to-
kens is computed in the context of output texts.
The primary evaluation metric is the F1 score of
token-level hallucination predictions, which is the
harmonic mean of precision and recall. Follow-
ing the RAGTruth evaluation scheme, we used the
micro-average of precision, recall, and F1.

4.3 Implementation

The proposed method consists of the linear layer,
the Transformer encoder layer, and the CRF layer.
The settings of the Transformer layer, i.e., the num-
bers of layers and attention heads, the dimensions,
and the dropout rate, were tuned together with other
hyperparameters of learning rate and weight decay
using the Data2Text task, as it provides the largest
samples. We apply the same hyperparameters for
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Methods LLM QA Data2Text Summarisation
Prec Rec F1 Prec Rec F1 Prec Rec F1
Ours;w 477 68.7 56.3 | 55.6 55.0 55.3 | 51.1 36.7 42.7
Oursporm 57.4 54.0 55.6 | 53.4 57.1 552 | 51.0 39.5 44.5
Fine-tuning Llama | 62.8 56.9 59.7 | 55,4 46.2 504 | 52.0 34.6 41.6
Lookback Lens 53.5 7.6 132 | 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: Hallucinated span detection results on Llama-3-8B-Instruct. The proposed method is denoted as “Ours”
with variations of raw attention (“raw”) or the transformed attention (“norm”). It outperformed the baselines on
tasks with longer input contexts, i.e., Data2Text and Summarisation.

other tasks. In this study, we used the Optuna li-
brary* to perform hyperparameter search in the
ranges shown in the upper rows of Table 2. The
setting of the model with the highest F1 score was
selected for formal evaluation.

Table 2 bottom shows training settings: we used
AdamW (Loshchilov and Hutter, 2019) optimizer
with the batch size of 64 (32 for Summarisation).
We employed early stopping on training: training
was terminated if the F1 score on the validation set
did not improve for 10 consecutive epochs. The
maximum training epoch was set to 150.

As the LLLM to obtain attention matrices,
we employed the recent smaller yet strong
models of Llama-3-8B-Instruct (Touvron et al.,
2023; Llama Team, 2024) and Qwen2.5-7B-
Instruct (Team, 2025) (see Appendix A.2 for de-
tails). We adapted the template by Niu et al. (2024)
for promoting. Notice that these LLMs are different
from the ones used to create the RAGTruth dataset,
which simulates the scenario where we cannot ac-
cess the LLMs generated outputs for hallucinated
span detection.

4.4 Baselines

We compared the proposed method to two baselines
employing the same LLMs as our method.

Fine-tuned LLMs Although straightforward,
fine-tuned LLMs serve as a strong baseline (Niu
et al., 2024). We fine-tuned the LLMs using the
prompt of Niu et al. (2024) with instructions to pre-
dict hallucinated spans. More details are provided
in Appendix A.3.

Lookback Lens We employed Lookback
Lens (Chuang et al., 2024), which also utilises
the attention matrix for hallucination detection.
It computes the “Lookback™ ratio; the ratio of

4https://optuna.org/

QA Data2Text Summ.
In Out In Out In Out
Mean | 400 140 788 199 723 136
Max 646 437 | 1,499 406 | 2,063 412
Min 244 9 517 69 225 16

Table 4: Numbers of tokens of context (‘In’) and out-
put (‘Out’) (measured using Llama-3-8B-Instruct to-
keniser).

attention weights on the input context versus
newly generated tokens. The Lookback feature
is input to a logistic regression model to predict
the probability of a token being hallucinated.” We
regarded tokens for which the predicted probabili-
ties are equal to or larger than 0.5 as hallucination,
following the traits of the logistic regression
classifier. We used the author’s implementation®
for the Lookback Lens model training.

4.5 Experimental Results

The experimental results on Llama-3-8B-Instruct
are shown in Table 3. The proposed method is
denoted as “Ours” with variations of using raw
attention weights (denoted as “raw”) and the trans-
formed attention weights (denoted as “norm”).
The proposed method outperformed both the
fine-tuning and Lookback Lens for hallucinated
span detection in Data2Text and summarisation,
achieving the highest token-level F1 scores. On
QA, the proposed method tends to have higher
recall yet lower precision, i.e., it tends to overly
detect hallucinations. A possible factor is shorter
lengths of input context. Table 4 shows the num-
bers of tokens in context and output texts. QA has

Lookback Lens can also conduct span-level prediction
by segmenting texts using a sliding window. For direct com-
parison to our method, we used the token-level variant (i.e.,
window size is one).

®https://github.com/voidism/Lookback-Lens
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Source text: [...] From the giant sequoias of Yosemite to the geysers of Yellowstone, the United
States’ national parks were made for you and me. And for Saturday and Sunday, they’re also
free. Though most of the National Park Service’s 407 sites are free year-round, the 128
parks that charge a fee - like Yellowstone and Yosemite - will be free those two days. It’s
all part of National Park Week, happening April 18 through April 26, and it’s hosted by the

National Park Service and the National Park Foundation. [...]

QOutput summary: National Park Service offers free admission to 128 parks, including

Yellowstone and Yosemite, on April 18-19 and 25-26, as part of National Park Week.

Ground Truth: on April 18-19 and 25-26

Ourspay: April 18-19 and 25-26

Fine-tuning: - (Detection failed)

Table 5: Hallucination detection example (Summarisation)
Methods QA Data2Text Summarisation
02 24 46 68 02 24 46 68 02 24 46 68

Ours,aw 27.7 — 486 594 330 — 526 63.3 00 423 285 544
Oursporm 25.1 — 41.1 61.0 33.0 — 51.2 61.9 0.0 419 305 59.0
Fine-tuning | 384 — 52.7 62.3 238 — 45.8 579 0.0 41.0 314 564

Table 6: Token-level F1 scores of hallucinated span detection per different hallucination ratios (Llama-3-8B-Instruct).
“—" indicates there was no sample falling in the corresponding bin.

significantly shorter contexts on average compared
to Data2Text and summarisation, while the output
lengths are similar. This result may imply that the
proposed method better handles tasks where consis-
tency with long context is important, like summari-
sation. We conduct further analysis in Sections 4.6
and 4.7.

For attention weights, the effectiveness of the
raw and transformed attention weights depends
on tasks. The raw attention weights performed
higher in QA, while the transformed weights out-
performed the raw attention in summarisation, and
they are comparable on Data2Text.

Lookback Lens consistently exhibited the lowest
F1 scores.” Our inspection confirmed that Look-
back Lens overfitted the majority class, i.e., no
hallucination. Hallucinated spans are much more
infrequent compared to the no-hallucination to-
kens. This implies that making a binary decision
based on the predicted hallucination probability is
non-trivial. Furthermore, Lookback Lens seems
to have struggled to handle longer input contexts,
i.e., Data2Text and summarisation tasks, in con-
trast to the proposed method. This may be because
the Lookback Lens strongly depends on attention
weights for the input context. We evaluated the
combination of features of Lookback Lens and ours

"This looks largely different from the original paper. We
remark that in addition to the experimental dataset difference,
the original paper reported AUROC.

to see if they are complementary. As a result, no
improvement was observed; possibly because our
“Outgoing Attention Entropy” feature also takes the
input context into account.

Table 5 presents an example of hallucination
detection on summarisation. In the output text,
the red-coloured span indicates the hallucination.
While the Fine-tuning failed to detect the halluci-
nation, the proposed method successfully identi-
fied the span very close to the ground truth (only
missing a preposition). Further examples are in
Appendix B.

4.6 Effects of Hallucination Ratio

Intuitively, the ratio of hallucinated tokens in a text
affects the performance. When the frequency of
hallucinations is small, detection should become
more challenging. Table 6 shows the token-level F1
scores on different percentages of hallucinated to-
kens. These results confirm that the intuition holds
true. Across methods and tasks, higher F1 scores
were achieved when hallucinated tokens were more
frequent.

Another interesting observation is that the effect
of task type is dominant than the hallucinated token
ratio. Table 6 shows that the superior method is
consistent across different frequencies of halluci-
nated tokens within the same task.
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Methods LLM QA Data2Text Summarisation
Prec Rec F1 Prec Rec F1 Prec Rec F1
Ours,y 385 73.7 506 | 53.5 57.1 552 | 496 35.7 41.5
Oursporm 39.0 64.7 48.7 | 55.5 553 554 | 49.3 33.6 399
Fine-tuning Qwen | 60.1 57.1 586 | 589 514 549 |62.0 300 404
Lookback Lens 46.6 5.6 9.9 | 50.0 0.0 0.0 0.0 0.0 0.0
Table 7: Hallucinated span detection results on Qwen2.5-7B-Instruct
QA (Total Tokens: 124,817) introduced by LLMs. The trend is the opposite
Methods Shnfo Elnfo SConf EConf | All on QA and summarisation, where the proposed
Ours 741 744 — 4.0 68.7 . .
Ours 506 60.0 _ 33 54.0 method achieved much higher recall on SInfo and
Fine-tuning | 48.7  63.8 _ 78 | 56.9 Elnfo than on SConf and EConf, which implies that
" Hal. Tokens | 1,020 4,742 — 501 | 6,263  baseless information was easier to capture for the

Data2Text (Total Tokens: 178,343)

Methods SInfo Elnfo SConf EConf | All
Ours;ay 29.4 50.5 7.3 64.7 55.5
Ours,orm 37.8 52.7 7.3 64.8 | 57.1
Fine-tuning | 35.8  51.6 0.0 43.7 46.2

" Hal. Tokens | 595 3,118 41 3,580 | 7,334

Summarisation (Total Tokens: 121,248)

Methods SInfo Elnfo SConf EConf | All
Ours;ay 65.2  46.5 8.5 16.4 36.7
Ours,orm 49.7 51.3 8.5 18.5 | 39.5
Fine-tuning | 44.9  43.7 8.1 18.6 | 34.6

" Hal. Tokens | 187 2,067 71 1,160 | 3,485

Table 8: Recall of hallucinated span detection per hallu-
cination type (Llama-3-8B-Instruct)

4.7 Effects of Hallucination Type

We further analysed the hallucination detection ca-
pability of the proposed method for different hal-
lucination types. RAGTruth categorises hallucina-
tions into four types: Subtle Introduction of Base-
less Information (SInfo) and Evident Introduction
of Baseless Information (EInfo) indicate whether
the output text subtly adds information or explic-
itly introduces falsehoods. Subtle Conflict (SConf)
and Evident Conflict (EConf) indicate whether the
output alters meaning or directly contradicts the
input text. For more details, see Niu et al. (2024).
Table 8 shows detection recalls for different
hallucination types.® For Data2Text, the recall
of Evident Conflict is significantly higher than
SInfo and Elnfo. This result indicates that the pro-
posed method better captures conflicting informa-
tion against input context than baseless information

8Precision (and thus F1) is difficult to compute because
it is non-trivial to decide to which category does detected
hallucination belong.

proposed method. These results indicate that detec-
tion difficulties of different hallucination types can
vary depending on tasks.

4.8 Performance on Qwen

Table 7 shows the results on Qwen2.5-7B-Instruct.
While the results are consistent with Table 3, Qwen
was consistently inferior to Llama regarding the
proposed method, which should be attributed to
different implementations of their attention mech-
anisms. Specifically, Llama-3-8B-Instruct has 32
layers and 32 attention heads, while Qwen2.5-7B-
Instruct has 28 layers and 28 heads. Qwen has
fewer numbers of layers and attention heads, and
thus its feature dimension is smaller than Llama.
In addition, the parameters in multi-head atten-
tion are more aggressively shared in Qwen. These
differences may affect the attention features ex-
tracted from Qwen. More details of the differences
between Llama and Qwen are discussed in Ap-
pendix A.2.

5 Conclusion

We proposed the hallucinated span detection
method using features that assemble attention
weights from different views. Our experiments con-
firmed that these features are useful in combination
for detecting hallucinated spans, outperforming a
previous method that also uses attention weights.
This study focused on hallucination detection,
but our method may also apply to broader abnor-
mal behaviour detection of LLMs. As future work,
we plan to explore its potential for detecting back-
doored LLMs (He et al., 2023), which behave nor-
mally on regular inputs but produce malicious out-
puts when triggered. Since our approach analyses
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attention distributions, it may detect anomalous
attention patterns caused by the triggers.

Limitations

While we confirmed the effectiveness of the pro-
posed method on two models: Llama-3-8B-Instruct
and Qwen2.5-7B-Instruct, there are lots more
LLMs. The effectiveness of our method when ap-
plied to attention mechanisms from other models
remains unverified. In addition, our experiments
are limited to the English language. We will ex-
plore the applicability of our method to other lan-
guages by employing multilingual LLMs.

Our method requires training data that annotates
hallucinated spans, which is costly to create. A
potential future direction is an exploration of an
unsupervised learning approach. The success of
the current method implies that our features suc-
cessfully capture irregular attention patterns on hal-
lucination. We plan to train our method only on
non-hallucinated human-written text. We then iden-
tify hallucinations as instances in which attention
patterns deviate from the learned normal patterns.
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A Details of Experiment Settings

A.1 Computational Environment

All the experiments were conducted on NVIDIA
RTX A6000 (48GB memory) GPUs. For training
the Transformer encoder of the proposed method,
we used 2 GPUs. For fine-tuning the LLM, we
used 4 GPUs in parallel.

A.2 LLM Details

Llama-3-8B-Instruct has 32 layers and 32 attention
heads, while Qwen2.5-7B-Instruct has 28 layers
and 28 heads. Both models replace standard Multi-
Head Attention (MHA) with Grouped-Query At-
tention (GQA) (Ainslie et al., 2023), but Llama-3
uses more layers and heads than Qwen?2.5.

MHA assigns each query to a single key-value
pair, whereas GQA allows multiple queries to share
a key-value pair, reducing the number of train-
able parameters. Llama-3-8B-Instruct processes
32 queries while reducing the number of keys and
values to 8, so each key-value pair corresponds to
4 queries. In contrast, Qwen2.5-7B-Instruct pro-
cesses 28 queries and reduces the number of keys
and values to 4, making each key-value pair corre-
spond to 7 queries.

We conjecture these differences were reflected
in the different performances of Llama and Qwen
in our method.

A.3 Fine-Tuning

Fine-tuning was conducted wusing LLaMA-
Factory (Zheng et al., 2024)°, a library specialized
for fine-tuning LLMs. The fine-tuning parameters
are shown in Table 9. The fine-tuned model
predicts the hallucinated span by predicting
character indexes. If a hallucination label changes
within a single token in predictions, the entire
token is considered as being hallucinated.

*https://github.com/hiyouga/LLaMA-Factory
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Parameter Value

Fine-tuning method full fine-tuning

Learning rate 5e-6
Batch size 1
Number of epochs 3
Optimizer AdamW
Warmup steps 10

Table 9: Fine-tuning Parameters

A.4 Prompts of RAGTruth
The prompts used in our experiments are shown in
Table 10 and Table 11.

B Hallucination Detection Examples

Table 12 presents hallucination detection results in
the QA task. The Fine-tuning baseline incorrectly
judged the non-hallucinated span as hallucinated

and largely overlooked the truly hallucinated span.

In contrast, the proposed method mostly correctly
identified the hallucinated span.

Table 13 presents hallucination detection results
in the summarisation task where the proposed
method failed. In the first example, the proposed
method overlooked the hallucinated span. In the
second example, the proposed method mistook the
non-hallucinated span as hallucinated.
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QA Prompt

Original text (including tokens):

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are an excellent system, generating output according to the instructions.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Briefly answer the following question:

{question}

Bear in mind that your response should be strictly based on the following three passages:
{passages}

In case the passages do not contain the necessary information to answer the question, please
reply with:

"Unable to answer based on given passages."”

output:

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{answer} <|eot_id|>

Data2Text Prompt

Original text (including tokens):

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are an excellent system, generating output according to the instructions.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Instruction:

Write an objective overview about the following local business based only on the provided
structured data in the JSON format.

You should include details and cover the information mentioned in the customers’ review.
The overview should be 100 - 200 words. Don’t make up information.

Structured data:

{json_data}

Overview:

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{Converted text} <|eot_id|>

Summarisation Prompt

Original text (including tokens):
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are an excellent system, generating output according to the instructions.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Summarize the following news within {word count of the summary} words:

{text to summarize}

output:

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{summary} <|eot_id|>

Table 10: Prompts for RAGTruth (Using Llama-3-8B-Instruct)
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QA Prompt

Original text (including tokens):

<|im_start|>system

You are an excellent system, generating output according to the instructions.<|im_end|>
<|im_start|>user

Briefly answer the following question:

{question}

Bear in mind that your response should be strictly based on the following three passages:
{passages}

In case the passages do not contain the necessary information to answer the question, please
reply with:

"Unable to answer based on given passages."”
output:<|im_end|>

<|im_start|>assistant

{answer}<|im_end|>

Data2Text Prompt

Original text (including tokens):

<|im_start|>system

You are an excellent system, generating output according to the instructions.<|im_end|>
<|im_start|>user

Instruction:

Write an objective overview about the following local business based only on the provided
structured data in the JSON format.

You should include details and cover the information mentioned in the customers’ review.
The overview should be 100 - 200 words. Don’t make up information.

Structured data:

{json_data}

Overview:<|im_end|>

<|im_start|>assistant

{Converted text}<|im_end|>

Summarisation Prompt

Original text (including tokens):

<|im_start|>system

You are an excellent system, generating output according to the instructions.<|im_end|>
<|im_start|>user

Summarize the following news within {word count of the summary} words:

{text to summarize}

output:<|im_end|>

<|im_start|>assistant

{summary}<|im_end|>

Table 11: Prompts for RAGTruth (Using Qwen2.5-7B-Instruct)
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Key Part of the Question
Briefly answer the following question: differences between elements, compounds, and mixtures.
Bear in mind that your response should be strictly based on the following three passages:
(Following this, three passages appear, but there is no information on the bonding of elements or compounds. The
content primarily focuses on mixtures.)

" Ground TruthLabet oo oo oo

3. Separation: Elements can be separated easily by physical means, while separating
compounds requires more complex methods like chemical reactions. It is easy to physically
separate the components of a mixture. 4. Bonding: Elements are held together by covalent
bonds, while compounds can have various types of bonds (covalent, ionic, metallic, etc.).
Mixtures do not have any bonds between their components.

3. Separation: Elements can be separated easily by physical means, while separating
compounds requires more complex methods like chemical reactions. It is easy to physically
separate the components of a mixture. 4. Bonding: Elements are held together by covalent
bonds, while compounds can have various types of bonds (covalent, ionic, metallic, etc.).
Mixtures do not have any bonds between their components.

" Fine-tuning oo oo

3. Separation: Elements can be separated easily by physical means, while separating
compounds requires more complex methods like chemical reactions. It is easy to physically
separate the components of a mixture. 4. Bonding: Elements are held together by covalent
bonds, while compounds can have various types of bonds (covalent, ionic, metallic, etc.).
Mixtures do not have any bonds between their components. (Incorrect detection in point 3 + incomplete
detection in point 4. The discussion on separation in point 3 is fully described in the original text.)

Table 12: Hallucination detection example (QA)

Example 1

Key Part of the Target Sentence for Summarisation

. Doug Ducey signed legislation to allow Arizonans to get any lab test without a doctor’s
order. Freedom of information - always sounds like a good thing. ... (The target sentence for
summarisation contains no mention of Doug Ducey being the governor of Texas. In fact, he was a former governor
of Arizona, making this incorrect.)

" Ground TruthLabet oo oo oo

The article discusses the increasing trend of individuals getting tested for various medical
conditions without a prescription. Texas Governor Doug Ducey has signed legislation allowing
Arizonans to get any lab test they desire without consulting a doctor first.
The article discusses the increasing trend of individuals getting tested for various medical
conditions without a prescription. Texas Governor Doug Ducey has signed legislation allowing
Arizonans to get any lab test they desire without consulting a doctor first. ... (Detection
failed)

"~ Fine-tuning oo
The article discusses the increasing trend of individuals getting tested for various medical
conditions without a prescription. Texas Governor Doug Ducey has signed legislation allowing
Arizonans to get any lab test they desire without consulting a doctor first.

Example 2

Key Part of the Target Sentence for summarisation
Still, the average monthly benefit for retired workers rising by $59 to $1,907 will
undoubtedly help retirees with lower and middle incomes to better cope with inflation.
($1907-$59=$1848 increase)
" Ground TruthLabet oo oo
Retired workers can expect an average monthly benefit of $1,907, up from $1,848.
Retired workers can expect an average monthly benefit of $1,907, up from $1,848.
(False detection)
" Fine-tuoning oo
. Retired workers can expect an average monthly benefit of $1,907, up from $1,848.

Table 13: Hallucination detection example (Summarisation)
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