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Abstract

Large Language Models (LLMs) have demon-
strated remarkable generalization across di-
verse NLP tasks, yet they often produce outputs
lacking semantic coherence due to insufficient
grounding in structured linguistic knowledge.
This paper proposes a novel method for inject-
ing Frame Semantics into a pretrained LLaMA
model using Low-Rank Adaptation (LoRA).
Leveraging FrameNet (a rich resource of over
1,000 semantic frames) we construct a training
corpus comprising structured triples of frame
definitions, frame elements, and lexical units.
Our method encodes these examples into the
model via LoRA adapters and evaluates perfor-
mance using zero-shot prompting for textual en-
tailment and semantic role labeling (SRL) over
FrameNet. Experimental results show that our
adapted frame-aware LLM substantially outper-
forms the baseline across closed, open-ended,
and multiple-choice prompts. Moreover, we
observe significant improvements in SRL accu-
racy, demonstrating the efficacy of combining
frame-semantic theory with parameter-efficient
pretraining.

1 Introduction

Large Language Models (LLMs) such as GPT-
4 (Achiam et al., 2023) and LLaMA (Dubey et al.,
2024) have demonstrated impressive capabilities
across a wide range of natural language processing
(NLP) tasks. However, despite their generalization
strength, these models often lack explicit ground-
ing in linguistic theories, which can occasionally
result in fluent outputs that overlook deeper seman-
tic distinctions and, in some cases, lead to factual
inconsistencies or semantic hallucinations (Ji et al.,
2023). To address this gap, enriching LLMs with
structured linguistic knowledge could certainly be
beneficial, as improved interpretability may sup-
port more reliable and semantically coherent out-
puts.

One promising direction is the integration of
Frame Semantics (Fillmore, 1976), a linguistic the-
ory that connects word semantics to situational,
i.e. conceptualized, information in terms of frames.
Each frame consists of a situation (i.e. the frame)
and prototypical participants, known as Frame El-
ements (FEs). It is triggered by specific Lexical
Units (LUs) in the text. For example, the verb
provide triggers a SUPPLY frame, with roles such
as SUPPLIER, RECIPIENT, and THEME. Unlike
purely distributional approaches, Frame Semantics
imposes situational constraints on semantic role
assignments, grounding language interpretation
in real-world scenarios. FrameNet (Baker et al.,
1998), a computational resource based on Frame
Semantics, offers a comprehensive repository of
over 1,000 frames and their annotated instances. In
fact, equipping models with frame-level informa-
tion can make a tangible difference for tasks like
semantic role labeling (Das and Smith, 2010), ques-
tion answering (Madabushi et al., 2024), and even
commonsense reasoning (Botschen et al., 2018b;
Wang et al., 2021b).

In this work, we present a parameter-efficient
method to inject Frame Semantics into large lan-
guage models (LLMs) through fine-tuning with
Low-Rank Adaptation (LoRA) (Hu et al., 2022).
Our central idea is to make an abstract linguistic
theory usable by LLMs by textualizing its core
concepts: we systematically convert FrameNet’s
structured knowledge (frame definitions, frame ele-
ments or FEs, and lexical units or LUs) into natural
language examples in the form of question–answer
pairs. For instance, we generate prompts that ask
for the definition of a frame, the roles it involves, or
the words that evoke it, thus producing an artificial
dataset that “translates” theoretical content into a
format suitable for instruction-based adaptation. In
total, this process yields a dataset of 6,628 ques-
tion–answer pairs covering 60 FrameNet frames.
By fine-tuning LLaMA models on this textualized
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dataset, we aim to encourage the model to inter-
nalize frame-semantic structures and relationships,
enabling it to better reason about frames, roles, and
their instantiations in text, even in the absence of
explicit annotation.

A critical question, however, is whether LLMs
fine-tuned on such examples merely memorize spe-
cific facts about the frames encountered during
training, or whether they actually generalize frame-
semantic knowledge to novel, previously unseen
frames. To address this, we explicitly evaluate
model performance on both seen frames (included
in fine-tuning) and unseen frames (held out from
training). This experimental design allows us to
disentangle the model’s ability to recall injected
knowledge from its capacity to abstract and apply
frame-semantic principles to new scenarios-an es-
sential property for robust knowledge integration.

We assess the effectiveness of our approach in
two ways. First, we probe the model’s frame-
semantic competence by evaluating its ability to an-
swer structured questions about frames, elements,
and lexical units-essentially measuring whether
the injected knowledge is accessible via prompt-
ing. Second, and more crucially, we test whether
this knowledge generalizes to downstream tasks
for which the model has not seen explicit train-
ing examples. In particular, we consider seman-
tic role labeling (SRL): given a sentence, can the
model correctly identify and assign core frame el-
ements? Notably, during fine-tuning, the model
is never shown labeled sentences (only definitions
and conceptual relations) so improvements on SRL
reflect genuine semantic knowledge transfer. Our
results show that the frame-aware LLM not only
answers frame-related questions more accurately,
but also outperforms the baseline on zero-shot SRL
tasks, supporting the claim that structured linguistic
knowledge can be effectively injected via prompt-
based fine-tuning.

Our main contributions are as follows: 1) We
propose a lightweight, LoRA-based method for
injecting frame-semantic knowledge into LLMs us-
ing structured FrameNet annotations. 2) We design
a diverse set of instructional prompting templates
and linguistic variations to simulate realistic use
cases for frame-role understanding. 3) We pro-
vide extensive evaluation on both seen and unseen
frames for zero-shot knowledge probing and SRL
inference, demonstrating enhanced interpretability
and generalization.

In the rest of the paper, Section 2 reviews re-

lated work, Section 3 describes our methodology,
Section 4 presents experiments and results, and
Section 5 concludes with final remarks and future
directions.

2 Background and Related Work

Frame Semantics, introduced by Fillmore (Fill-
more, 1976), provides a principled approach to
modeling linguistic meaning by organizing words
into conceptual structures called frames. Each
frame represents a prototypical scenario, described
by a set of frame elements (FEs), and is evoked
by specific lexical units (LUs). The FrameNet
project (Baker et al., 1998) operationalizes this
theory by cataloguing over 1,000 frames, their core
and peripheral elements, and annotated instances.

While Large Language Models (LLMs) such as
GPT-4 (Achiam et al., 2023) and LLaMA (Dubey
et al., 2024) achieve remarkable performance
across diverse NLP tasks, they are pre-trained on
general web corpora and lack explicit integration
of structured linguistic resources like FrameNet.
As a result, LLMs may generate fluent yet semanti-
cally misaligned outputs when required to interpret
or generate language in terms of frame-semantic
roles.

Recent research has sought to bridge this gap
by augmenting LLMs with frame-semantic knowl-
edge. Fine-tuning LLMs on FrameNet data has
been shown to enhance their ability to model se-
mantic structures and improve interpretability (Cui
and Swayamdipta, 2024a; Torrent et al., 2022).
Several works have proposed injecting frame-level
information into transformer architectures to sup-
port semantic role labeling (Das and Smith, 2010;
Zhang et al., 2023), question answering (Mad-
abushi, 2024), commonsense reasoning (Botschen
et al., 2018a; Wang et al., 2021a), and even named
entity recognition (Alexiev and Casamayor, 2016).
Frame-based representations have also been lever-
aged for more robust and factually grounded sum-
marization (Han et al., 2016; Guan et al., 2021).

Despite these advances, most prior work either
leverages FrameNet solely as a source of annota-
tions for supervised tasks or incorporates frame
information as static features. In contrast, our ap-
proach aims to internalize frame-semantic knowl-
edge by textualizing FrameNet diverse knowledge
into instructional prompts for LLM adaptation. Fur-
thermore, we explicitly assess the quality of in-
jected knowledge by evaluating the model not just
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on frames used for adaptation, but also on unseen
frames held out from training, a perspective rarely
addressed in prior studies.

In summary, while previous research has demon-
strated the benefits of integrating frame-semantic
supervision into neural models, there remains a
need for approaches that support robust general-
ization and interpretability via explicit, structured
knowledge injection. Our work aims to reduce this
gap by proposing a scalable, prompt-based method
for frame-semantic adaptation, and by providing a
systematic evaluation on both in-domain and out-
of-domain (seen/unseen) frames.

Our work also relates to recent efforts in dis-
course semantics that employ question answering
as a tool for evaluating consistency and logical
understanding. For example, (Miao et al., 2024)
introduce a Socratic QA framework to test whether
LLMs respond consistently to logically equivalent
or entailed discourse questions, while (Rabinovich
et al., 2023) propose QUDeval to measure semantic
consistency across related QA pairs grounded in
discourse theory. These studies highlight the im-
portance of consistency in QA-based evaluation,
which is complementary to our focus on injecting
frame-semantic knowledge into LLMs.

3 Injecting Frame-Semantics into LLMs

Our knowledge injection pipeline, illustrated in
Figure 1, is designed to make the structured con-
tent of FrameNet directly usable by large language
models. The process begins with the extraction of
frame-level information from FrameNet: for each
frame, we collect its definition (a concise descrip-
tion of the scenario the frame represents), its core
frame elements (the prototypical participants or
roles involved), and the set of lexical units (words
or multiword expressions that evoke that frame in
context).

To give a concrete example, Table 1 shows the
SUPPLY frame: its definition describes a scenario
where a “SUPPLIER provides a THEME to a RECIP-
IENT.” The core frame elements here are roles such
as SUPPLIER, RECIPIENT, and THEME, each map-
ping to a participant in this scenario, for instance,
“China” as the SUPPLIER, “Iran” as RECIPIENT

and “decontamination materials” as the THEME in
the sample sentence. The associated lexical units
(LUs) are verbs and nouns like “provide”, “sup-
ply”, or “equipment”, each capable of triggering
the frame in different contexts.
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Figure 1: System architecture for frame-semantic knowl-
edge injection into LLaMA-3. The pipeline extracts
frame-element-lexical unit triples from FrameNet, con-
verts them into multiple prompt formats (open-ended,
closed-ended, MCQ), and fine-tunes the model using
LoRA adapters. The resulting Frame-Aware LLM en-
ables zero-shot semantic role labeling and frame ele-
ment QA.

Frame: SUPPLY
A SUPPLIER provides a THEME to a RECIPIENT

FEs

SUPPLIER
Has China provided Iran with de-
contamination materials?

RECIPIENT
Has China provided Iran with de-
contamination materials?

THEME
Has China provided Iran with de-
contamination materials?

LUs
afford.v, equip.v, equipment.n, fix up.v, fuel.v,
furnish.v, issue.v, outfit.v, provide.v, provision.n,
provision.v, supplier.n, supply.n, supply.v

Table 1: Illustration of the SUPPLY frame with annotated
frame elements and associated lexical units.

Rather than using FrameNet only as a source
for supervised labeling, we transform this struc-
tured knowledge into a set of natural language
question–answer pairs. For each frame, we gener-
ate prompts that ask about its definition, the roles it
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contains, or which words evoke it, simulating realis-
tic queries a user or downstream application might
pose. Prompts are generated in various formats,
including open-ended, closed-ended, and multiple-
choice ensuring broad coverage of the theory.

This synthetic QA dataset serves as supervision
for fine-tuning a pretrained LLaMA-3 model via
Low-Rank Adaptation (LoRA) (Hu et al., 2022).
LoRA is a parameter-efficient fine-tuning tech-
nique that augments a frozen pretrained model
with small trainable low-rank matrices. During
training, only these additional parameters are up-
dated, greatly reducing memory and computational
cost while preserving the general linguistic compe-
tence already encoded in the model. These prop-
erties make LoRA particularly suitable for inject-
ing structured resources like FrameNet, where the
large number of frame–role combinations would
make full fine-tuning both expensive and prone
to catastrophic forgetting, i.e., the overwriting of
previously acquired knowledge. By constraining
learning to a compact set of additional parameters,
LoRA enables the integration of frame-semantic
knowledge without erasing the model’s broader
abilities. In our experiments, we adopt both 3B and
8B LLaMA models, which balance computational
feasibility with meaningful evaluation.

This allows the model to internalize the relation-
ships between frame definitions, roles, and lexical
units, without relying on explicit sentence-level an-
notation. After training, the resulting Frame-Aware
LLM can be probed on zero-shot tasks such as
semantic role labeling and frame-related question
answering.

Instructional Template Construction. To effec-
tively inject frame-semantic knowledge into large
language models (LLMs), we design natural lan-
guage templates (Zheng et al., 2023; Su et al.,
2021; Wen et al., 2024) that translate structured
FrameNet annotations-such as frame definitions,
frame elements (FEs), and lexical units (LUs)-into
instructive, contextualized prompts. In the Ques-
tion: “Can you list some frame elements in the X
frame?” with Answer: “The frame elements of the
X frame are: FE1, FE2, and FE3.” symbols, such
as X or FE1, are placeholders replaced with anno-
tations from FrameNet. This approach builds on
the principle that linguistic structure can be aligned
with QA-based representations (He et al., 2015),
supporting both training as well as augmenting in-
terpretability.

We compose 11 task-specific templates, grouped
as follows: six open-ended, four closed-ended,
and one multiple-choice (MCQ) format. Each
template addresses a distinct aspect of frame-
semantics, ranging from recognizing frame ele-
ments to identifying lexical units and mapping roles
to frames. This diversity enables the model to en-
counter a wide range of linguistic formulations,
enhancing generalization (Ma et al., 2022; Cui and
Swayamdipta, 2024b).

Prompt Types:

• Open-ended Prompts (6 templates): En-
courage free-form, descriptive responses and
probe the model’s ability to verbalize frame
knowledge in its own words. These cover
frame definitions (e.g., What is the definition
of the X frame?), frame elements (e.g., Can
you list some frame elements in the X frame?),
frame element definitions, and lexical units.
Example: Question: Can you identify a
few frame elements or roles in the ‘SUPPLY’
frame?
Answer: The frame elements “SUPPLIER,
THEME and RECIPIENT” are associated with
the SUPPLY frame.

• Closed-ended Prompts (4 templates): Bi-
nary (yes/no) or direct verification questions
to check specific facts about frames, roles, or
lexical units.
Example: Question: Are the roles ‘RECIPI-
ENT’ and ‘THEME’ part of the frame elements
of the ‘SUPPLY’ frame?
Answer: Yes

• Multiple-choice Prompts (1 template): The
model selects the correct answer among sev-
eral options, diagnosing confusion or gaps in
understanding.
Example: Question: Which role is part of the
frame elements in the ‘SUPPLY’ frame?
A) SUPPLIER B) RECIPIENT C) LOCA-
TION D) THEME

Answer: D) THEME

Linguistic Variations. Template diversity alone
is not sufficient to guarantee robustness: a model
could simply memorize fixed associations between
question forms and answers. To promote general-
ization, for each template and frame, we system-
atically construct five alternative phrasings of the
question and fifteen variants of the answer. For
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instance, for the “list frame elements” template,
questions might include: Which are the roles in the
X frame?, What are some frame elements defined
for X?, Who are the core entities in the X frame?,
etc. Answers likewise vary (e.g., The X frame in-
cludes FE1, FE2, and FE3; FE1, FE2, and FE3

define the X frame; and so on).
For each training instance, one question and one

answer variant are chosen at random and the pair
is used as a supervised example. This strategy,
inspired by Dong et al. (Dong et al., 2017), ex-
poses the model to a wide spectrum of natural lan-
guage formulations and minimizes spurious corre-
lations, crucial for supporting transfer to unseen
frames (see Section 4). In this way, the LLM can-
not “cheat” by matching surface forms; it must
internalize the underlying frame-semantic associ-
ations. Taken together, our prompt engineering
pipeline, spanning diverse task templates and sys-
tematic linguistic variation, supports both the depth
and breadth of frame-semantic knowledge acqui-
sition. This methodology improves robustness, in-
terpretability, and aligns the knowledge injection
process more closely with the real-world variability
of language. To further ensure quality, we manu-
ally inspected around 100 generated SRL exam-
ples, confirming that the questions and answers
were consistent with the intended frame-semantic
annotations (Mihaylov et al., 2018).

4 Experimental Evaluation

In this section, we evaluate the effectiveness of our
frame-semantic knowledge injection approach for
large language models (LLMs). Our experimen-
tal objectives are twofold: (1) determine whether
the injected knowledge substantially enhances the
model’s ability to reason about frames, frame el-
ements, and lexical units; and (2) assess whether
this acquired semantic knowledge generalizes effec-
tively to practical downstream tasks, most notably,
semantic role labeling (SRL)-even without explicit
SRL supervision during training.

4.1 Experimental Setup

Our experiments utilize FrameNet version 1.71

(Baker et al., 1998), a comprehensive lexical
database cataloging over 1,000 semantic frames,
their associated core and peripheral frame elements,
and lexical units.

1https://framenet.icsi.berkeley.edu/frameIndex

Frame Selection and Dataset Composition. For
our initial evaluation, we constructed a representa-
tive subset of 60 frames from FrameNet, designed
to maximize semantic diversity and ensure robust
hierarchical coverage (see Appendix A for full cri-
teria and the frame list). The selection process
began with a set of core “seed” frames (such as
ABANDONMENT, BRINGING, ASSISTANCE, MO-
TION, and COMMUNICATION) which were cho-
sen to span different domains and frame com-
plexities. From these seeds, we expanded the
set by systematically including frames that are
hierarchically related, either inheriting from or
being inherited by others within the FrameNet
taxonomy. This relational expansion yielded a
set of frames that are both semantically coherent
and structurally interconnected, capturing the full
breadth of frame–element–lexical unit configura-
tions observed in FrameNet. As a result, the fi-
nal subset covers 175 unique frame elements and
730 lexical units, with frames selected to reflect a
broad range of structures (from simple to highly
articulated) and to ensure that all major types of
frame–element relations and domains are repre-
sented. This principled construction ensures the
resulting dataset is both challenging and realistic
for frame-semantic evaluation.

Instance Sampling Strategy. Naturally, the sam-
pling process differs slightly depending on the type
of task. For now, we disregard the additional layer
of linguistic variation and focus on the core in-
stance generation procedure. For every open-ended
task, the approach is straightforward: for example,
when eliciting the definition of a frame or asking
which frame corresponds to a given definition, a
single core instance is generated per frame (be-
fore further expansion via linguistic paraphrasing).
However, for tasks that involve frame elements
(restricted here to core frame elements) or lexical
units, the number of instances per frame directly
depends on the number of relevant elements or
units present in that frame. In other words, frames
with more core frame elements or lexical units will
yield proportionally more question–answer pairs
for those tasks. Further details on the sampling
strategies adopted for frame elements and lexical
units are provided in Appendix B. Closed-ended
tasks require both positive and negative examples
to prevent the model from defaulting to trivial re-
sponses (e.g., always answering no). Positive sam-
ples are created by pairing correct annotations (e.g.,
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frame definitions, frame elements) with their re-
spective frames. Negative samples, however, must
be selected carefully to avoid class imbalance: us-
ing all incorrect annotations would overwhelm the
dataset with negatives. To address this, we fix the
ratio to p = 3 positives and q = 6 negatives per
frame–task pair. Negatives are drawn from unre-
lated frames and filtered to avoid duplication. This
results in a balanced and informative training sig-
nal: p − 2 positive and q − 2 negative samples
are assigned to training, with the rest evenly split
across validation and test. Full sampling proce-
dures for specific tasks are detailed in Appendix C.
Multiple-choice tasks were constructed with a fixed
number of k = 5 samples per frame, allocated as
k − 2 = 3 to the training set, and one each to the
validation and test sets. Each MCQ instance pre-
sented a single correct answer along with a set of
distractors sampled from alternative frames, ensur-
ing that all options were unique and plausible. To
increase the challenge and diagnostic value, some
prompts included an additional distractor option
such as “None of these”, following practices pro-
posed in prior work (Yatskar et al., 2016). The
training split intentionally contained both positive
and fully negative MCQs (i.e., questions with only
incorrect options), while the validation and test sets
each included one positive and one negative sample
per frame to support balanced evaluation.

Synthetic Dataset Construction. From the tar-
geted frames, we systematically generated a total of
6,628 synthetic question–answer pairs, employing
linguistically diverse prompt templates (described
in Section 3 and exemplified in Appendix D). Fol-
lowing generation, we allocated 3,642 samples to
the training set, 1,493 to the development (vali-
dation) set, and 1,493 to the test set. Except this
split, with same approach a separate set of 1,052
question–answer pairs was generated using 10 un-
seen frames to evaluate the model’s generalization
at unseen frame-semantic knowledge. Moreover,
no question or answer surface form is ever repeated
across different splits, preventing the model from
memorizing fixed linguistic patterns. Each of the 11
tasks was instantiated using multiple paraphrased
templates for both questions and answers. Specifi-
cally, for each task, three distinct question formu-
lations were assigned to the training set, one to
the validation set, and one to the test set. Answer
templates followed a similar logic: out of a total of
15 available variants per task, 10 were designated

as eligible for training (from which 3 were ran-
domly sampled for each frame), 2 were allocated
for validation (with one randomly selected), and 3
were reserved for testing (with one randomly se-
lected). This controlled partitioning ensures strict
paraphrastic separation across splits, preventing the
model from relying on surface-form memorization
and encouraging genuine generalization. Concrete
examples and the complete set of question–answer
paraphrases for a representative frame-based task
are provided in Appendix D. In particular, a de-
tailed summary of the prompt types, task formula-
tion strategies, and sampling counts is reported in
Table 6.

Evaluating Generalization. To rigorously as-
sess the model’s ability to generalize beyond mem-
orization, we adopted a frame-level splitting strat-
egy rather than random sampling: 50 frames were
designated as seen (utilized for training and vali-
dation), while 10 frames were held out as unseen
and reserved exclusively for zero-shot evaluation.
The unseen frames, such as RELEASING, MANIP-
ULATION or CONTROL, were selected to ensure
semantic and structural diversity against phenom-
ena not observed during training. Further details
on the selection process, as well as the full frame
list and distribution across tasks, are provided in
Appendix A.

Fine-tuning Configuration. We fine-tuned pre-
trained LLaMA models-LLaMA 3.2 3B2 and
LLaMA 3.1 8B3, using Low-Rank Adaptation
(LoRA) (Hu et al., 2022), building on the archi-
tecture described in (Touvron et al., 2023). LoRA
introduces trainable low-rank matrices into the
model’s attention and feedforward layers, allow-
ing for parameter-efficient adaptation with minimal
computational overhead. In our experiments, we
used a rank of 16, a scaling factor of α = 16,
and no dropout. Fine-tuning was carried out us-
ing instruction-style prompts consistent with the
supervised instruction tuning paradigm (Ouyang
et al., 2022). Each input was structured in a stan-
dardized format: ### Input: <QUESTION> -
### Response: <ANSWER>. We employed the
Unsloth framework (Daniel Han and team, 2023)
to enable efficient fine-tuning with 4-bit quantized
weights. Models were trained for 7 epochs using

2https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct

3https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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the AdamW optimizer (8-bit), with a learning rate
of 2 × 10−4, a batch size of 4 per device, and 8
gradient accumulation steps. To optimize mem-
ory usage, we activated gradient checkpointing and
used FP16 or BF16 precision depending on hard-
ware capabilities. Model selection was based on
validation loss, evaluated every 50 steps. All fine-
tuned LoRA models 45 and associated tokenizers
have been released on the Hugging Face Hub (Wolf
et al., 2020) to facilitate reproducibility.

4.2 Results and discussion

Evaluation of Injected Frame-Semantic Knowl-
edge. To evaluate the effectiveness of our frame-
aware supervision strategy, we group the 11 frame-
related tasks into three broad categories based on
the type of prompt: Closed-ended, Open-ended,
and Multiple-choice questions (MCQs). Each cate-
gory reflects a different cognitive demand: Closed-
ended tasks involve binary decisions (e.g., verify-
ing if a role belongs to a frame), Open-ended tasks
require free-form generative responses (e.g., defin-
ing a frame or a role), and MCQs present a set of
options from which the model must select the cor-
rect answer. We further assess performance under
two generalization regimes. The first includes the
50 seen frames used during training and validation
(“In-domain”). The second consists of 10 unseen
frames (“Out-of-domain”), explicitly held out for
zero-shot evaluation to test the model’s ability to
generalize beyond the training distribution. Results
for both the baseline LLaMA models (3.1 8B and
3.2 3B) and their fine-tuned variants are summa-
rized in Table 2. Each prompt category is evaluated
using a metric suited to its output type. For both
Closed-ended and Multiple-choice (MCQ) tasks,
we report the F1 score, which balances precision
and recall, effectively capturing the model’s ability
to make accurate binary and categorical predic-
tions. Although MCQs involve a selection among
distractors, their scoring is treated as a binary clas-
sification of correctness, hence the use of F1. For
Open-ended tasks, which require the model to pro-
duce free-form natural language responses (e.g.,
definitions, descriptions of frame elements), we
adopt a semantic similarity metric. Specifically,
we compute the cosine similarity between the pre-
dicted and reference answers using Sentence-BERT

4https://huggingface.co/shahidrai/llama_3.1_
8b/tree/main

5https://huggingface.co/shahidrai/llama_3.2_
3b_finetuned/tree/main

embeddings6. This approach, standard in semantic
textual similarity evaluation, allows us to assess
whether the model captures the intended meaning
even when surface forms differ.

Fine-tuned models consistently outperform their
pretrained counterparts across all prompt types and
model sizes. For instance, the LLaMA 3.1 8B
model shows a substantial improvement in F1 score
on Closed prompts, rising from 0.55 to 0.93, and
in cosine similarity on Open-ended tasks, from
0.64 to 0.87. The gains extend to Multiple-choice
questions as well, with F1 increasing from 0.27
to 0.66. The smaller LLaMA 3.2 3B model ex-
hibits similar trends, confirming the robustness of
the approach. These results demonstrate that in-
jecting structured frame-semantic supervision sig-
nificantly enhances the model’s ability to under-
stand and reason over semantic roles, definitions,
and frame-element associations. Despite not be-
ing exposed to ten frames during training, fine-
tuned models retain strong performance on these
held-out examples. For instance, the 8B model
drops only slightly from 0.87 to 0.73 in cosine sim-
ilarity on Open-ended prompts, and from 0.93 to
0.87 in F1 on Closed ones. This small degradation
indicates that the model generalizes well beyond
memorization, applying abstract frame-semantic
reasoning to novel lexical and conceptual configu-
rations. The original LLaMA models perform con-
sistently worse in all settings. On unseen frames,
the baseline 3.2 3B model achieves only 0.33 F1
on MCQs and 0.63 cosine on Open-ended tasks.
In contrast, the fine-tuned models maintain sub-
stantially higher scores. These discrepancies high-
light the necessity of targeted, frame-aware train-
ing signals: without them, the model struggles to
interpret even well-formed prompts about roles,
definitions, or lexical associations. In sum, our re-
sults provide strong evidence that explicit semantic
supervision-grounded in FrameNet and enhanced
by task- and template-level diversity-substantially
improves the model’s ability to understand and ma-
nipulate frame-semantic knowledge. Notably, the
generalization observed on zero-shot frames sug-
gests that the learned representations are not only
effective but also transferable, paving the way for
broader deployment in downstream tasks such as
frame disambiguation, SRL, and knowledge-based
QA.

6https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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A detailed breakdown of performance across
individual tasks is provided in Appendix E.

Model Pr. Type Metric Zero-shot Fine-tuned
In Out In Out

LLaMA Closed F1 0.55 0.52 0.93 0.87
3.1 Open-ended Cos 0.64 0.63 0.87 0.73
8B MCQs F1 0.27 0.34 0.66 0.63

LLaMA Closed F1 0.49 0.50 0.91 0.86
3.2 Open-ended Cos 0.63 0.63 0.83 0.73
3B MCQs F1 0.25 0.33 0.52 0.50

Table 2: Performance comparison across models and
prompt types, grouped by evaluation setting. “In” refers
to seen frames; “Out” refers to unseen frames.

Semantic Role Labeling (SRL) Evaluation. To
evaluate whether frame-semantic knowledge ac-
quired through our supervision strategy transfers
to a practical downstream task, we design a con-
trolled Semantic Role Labeling (SRL) experiment.
In this setting, the model is prompted to identify the
lexical unit evoking a given frame and extract the
associated frame elements expressed in a sentence.
We employ a zero-shot prompting strategy inspired
by instructional paradigms (Devasier et al., 2025),
using structured, natural language instructions (de-
tailed in Appendix 2) rather than fine-tuning on
SRL-annotated data. We evaluate on the Open-
Sesame dataset7 (Swayamdipta et al., 2017), which
is based on FrameNet and originally released in
CoNLL format (Carreras and Màrquez, 2005). The
evaluation set contains 371 sentences covering 38
of the 50 frames used during training, totaling 468
annotated instances. While the task setup is not in-
tended to compete with dedicated SRL systems, it
provides a diagnostic test bed to verify whether the
model can apply definitional and structural knowl-
edge to recognize semantic roles in naturalistic text.

Table 3 breaks down model performance across
three increasingly strict evaluation criteria for
frame element identification. The first row (Roles
Only) considers predictions correct if the role label
matches, regardless of span alignment. The second
criterion (Roles + Span (25%)) adds a minimum
25% token-level overlap requirement between the
predicted and gold spans. The final setting (Roles
+ Span (75%)) requires a much tighter alignment,
with at least 75% span overlap. The fine-tuned
model significantly outperforms the baseline in all
settings, achieving a fourfold improvement in role-
only detection (0.60 vs. 0.14) and similarly large

7https://github.com/swabhs/open-sesame

gains in span-aware scoring (e.g., 0.41 vs. 0.10 at
25% threshold). Even under the strictest criterion
(75% overlap), it reaches 0.25 F1, far surpassing
the baseline’s 0.07.

Consider the sentence: “Has China provided
Iran with decontamination materials?” In this rep-
resentative example involving the SUPPLY frame,
both the base LLaMA model and our fine-tuned
version correctly identify China as the SUPPLIER.
However, the base model incorrectly labels Iran as
a LOCATION and fails to detect any additional role.
In contrast, our fine-tuned model correctly assigns
the RECIPIENT role to Iran and identifies materi-
als as the THEME. Although the predicted span
misses part of the full constituent (“with decon-
tamination materials”), it successfully captures the
semantic head, which is often sufficient for down-
stream tasks. This pattern is consistent with our
overall results: the fine-tuned model reliably recov-
ers nearly all core roles, in line with the aggregate
metrics, but span completeness can occasionally be
imprecise.

While our setup is simplified and intentionally
scoped, it is noteworthy that the fine-tuned model
achieves competitive (if not superior) performance
compared to recent LLM-based SRL systems. For
example, Cheng et al. (2024) report F1 scores of
0.40 and 0.38 using ChatGPT in a 3-shot setting on
CoNLL-2005 WSJ and CoNLL-2012 WSJ, respec-
tively, and just 0.22 F1 in a zero-shot setting on
CoNLL-2005 WSJ. In contrast, our model reaches
0.41 F1 in zero-shot SRL, despite being trained
on a smaller and more focused dataset comprising
only 50 FrameNet frames. This discrepancy can
be explained in part by the underlying resource dif-
ferences: while Cheng et al. (2024) evaluate over
PropBank-style predicates, our approach concen-
trates on a curated subset of FrameNet frames. This
narrower scope likely contributes to the higher ac-
curacy, as it allows the model to internalize more
structured and semantically grounded knowledge.

Evaluation Criterion Zero-shot Fine-tuned
Roles Only 0.14 0.60
Roles + Span (25% ov.) 0.10 0.41
Roles + Span (75% ov.) 0.07 0.25

Table 3: SRL Performance on Frame Element Prediction
(F1 Score)

These results confirm that frame-semantic su-
pervision improves both structural role identifica-
tion and token-level grounding of semantic roles,
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demonstrating generalization from injected knowl-
edge to real-world SRL inputs. These results, al-
though obtained in a controlled setting and limited
to a selected subset of frames, mark a promising
first step: their consistency indicates that the ap-
proach is robust and generalizable. The natural
next step is to scale the fine-tuning procedure to the
full FrameNet inventory, a conceptually straight-
forward extension that merely requires a longer
training cycle.

A brief analysis highlights both strengths and
weaknesses of the fine-tuned model. At the posi-
tive end, qualitative analysis shows clear improve-
ments over the baseline. For instance, in the SUP-
PLY frame the fine-tuned model correctly recov-
ers all gold-standard roles and spans in: “Has
[China]SUPPLIER provided [Iran]RECIPIENT [with de-
contamination materials]THEME?”. By contrast,
the baseline mislabels the THEME span, predict-
ing [materials]MATERIAL and missing the full con-
stituent. This suggests that frame semantics help
the model align roles and spans more faithfully
to gold annotations, correcting systematic errors
made by the baseline. At the same time, errors
remain. In the EXCHANGE frame, sentence “The
Mycenaeans were an acquisitive race who came to
conquer, not to trade”, the fine-tuned model halluci-
nates THEME and RECIPIENT alongside the correct
roles EXCHANGER 1 and EXCHANGER 2, inflating
false positives. Similarly, in the OBJECTIVE IN-
FLUENCE frame, sentence “Many Jamaicans head
to the States for further education, and the Amer-
ican economic influence on areas such as busi-
ness investment and planning is growing”, it adds
a spurious AREA role where none was annotated.
Another common error is predicting roles without
spans, which negatively impacts F1. By contrast,
in such difficult cases the baseline typically fails to
recover any meaningful roles at all.

5 Conclusion and Observations

In this work, we introduced an efficient and prin-
cipled methodology for injecting structured frame-
semantic knowledge into large language models
via LoRA-based fine-tuning. By transforming
FrameNet resources into instructional prompts, we
enabled the model to internalize rich semantic ab-
stractions grounded in linguistic theory. Our ex-
periments demonstrate substantial gains in both
frame and role recognition tasks, as well as in zero-
shot semantic role labeling (SRL). Importantly,

the model exhibits strong generalization to unseen
frames, highlighting its ability to abstract beyond
surface-level associations and apply learned struc-
tures in novel contexts.

These findings suggest that explicitly aligning
LLMs with Frame Semantics can meaningfully en-
hance their semantic behavior, without sacrificing
general language capabilities. This opens promis-
ing avenues for future research, including scaling to
broader frame inventories, by also exploring more
refined prompting strategies. Moreover, we will
study the overall impact of the proposed adaptation
framework on LLM interpretability and reliability
in other downstream tasks, like QA and dialogue.
Future work could also explore frame-to-frame re-
lations (e.g., inheritance links), which are highly
relevant for reasoning tasks such as NLI where en-
tailment often depends on recognizing hierarchical
or causal connections between events. In addi-
tion, future evaluations should stratify FrameNet
QA data to examine which question types (e.g.,
frame definitions, frame elements, lexical units)
drive the observed improvements, and extend the
study across multiple large language models to as-
sess the generalizability of frame-semantic knowl-
edge injection beyond a single architecture.
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Limitations

This study focuses on a constrained subset of
FrameNet frames and tasks, reflecting an inten-
tionally scoped investigation. While our model
shows substantial gains in frame-semantic reason-
ing, several limitations remain. First, it occasion-
ally predicts spurious frame elements, especially
in low-resource frames, reducing precision. Sec-
ond, it often fails to produce accurate spans for
correctly identified roles, limiting its effectiveness
in span-level SRL. Extending coverage to the full
FrameNet inventory and evaluating across addi-
tional tasks (e.g., QA, dialogue) are key directions
for future work.
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A Task-Frame Sample Distribution

In FrameNet, semantic relationships between
frames are organized through hierarchical links,
primarily defined as inherits from and inherited
by. To maximize semantic diversity and cover a
broad range of frame phenomena, we selected 60
FrameNet frames according to the following prin-
ciples:

• Each frame maintains at least one hierarchical
relationship with another (either inherits from
or inherited by), ensuring structural coverage
within the FrameNet taxonomy.

• Selection prioritizes frames with diverse num-
bers of frame elements and lexical units, and
spanning multiple FrameNet domains.

• Ten frames were held out as unseen for zero-
shot evaluation: RELEASING, MANIPULA-
TION, CONTROL, KIDNAPPING, and COM-
MUNICATION MANNER (see complete list be-
low in Table 8).

The complete set of frames used for prompt
generation and model training is listed in Table 9,
where each row represents a FrameNet frame and
each column corresponds to a template-based task.
The columns of Table 9 are ordered and numbered
as follows, and match the templates described in
Section 3:

1. Open-ended: What is the definition of the X
frame?

2. Open-ended: Which frame is defined by
“def(X)”?

3. Closed-ended: Is “def(X)” regarded as the
definition of Frame X?

4. Open-ended: Can you list some frame ele-
ments in the X frame?

5. Open-ended: Which is the frame involving
frame elements such as FE1 and FE2?

6. Multiple-choice: Which one of the following
roles belongs to the set of frame elements of
the X frame?

7. Closed-ended: Are roles such as Y and Z part
of the frame elements of Frame X?

8. Open-ended: How is frame element FEi de-
fined in X frame?

9. Closed-ended: Does the definition of frame
element “def(FEi)” accurately express FEi

in the X frame?

10. Open-ended: Could you list some lexical
units associated with the X frame?

11. Closed-ended: Can LUi, as a POSi, be con-
sidered as the lexical unit of the X frame?

Each cell in the table reports the number of
question–answer pairs generated for the corre-
sponding frame–task combination for details on
sampling). The final column reports the total num-
ber of samples generated for each frame.

Task Type Details:

• Open-ended Prompts (Tasks 1, 2, 4, 5, 8,
10): The model provides free-form or descrip-
tive responses, testing the ability to paraphrase
and verbalize frame knowledge.

• Closed-ended Prompts (Tasks 3, 7, 9, 11):
Require binary (yes/no) or direct verification,
probing recognition of frame facts or rejec-
tions.

• Multiple-choice Prompts (Task 6): The
model selects the correct answer among can-
didates, revealing confusion or gaps.

Unseen Frames for Zero-shot Evaluation: To
assess the model’s performance after fine-tuning,
we apply the same sample generation methodol-
ogy described in Section 3 to a separate set of un-
seen frames. By using a uniform prompt structure
and evaluation format, we isolate the effect of un-
seen knowledge on model behavior in a controlled
setting. Ten frames Table 8 were excluded from
training and validation and used only for zero-shot
testing:

• SUICIDE ATTACK (inherits from ATTACK)

• MOTION NOISE (inherits from MOTION)

• COMMERCE PAY (inherits from GIVING)

• RECEIVING (inherits from GETTING)

• CORPORAL PUNISHMENT (inherits from
REWARDS AND PUNISHMENTS)

• COMMUNICATION MANNER (inherits from
COMMUNICATION)
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• KIDNAPPING (inherits from COMMITTING

CRIME)

• CONTROL (inherits from OBJECTIVE INFLU-
ENCE)

• MANIPULATION (inherits from INTENTION-
ALLY ACT)

• RELEASING (inherits from INTENTIONALLY

AFFECT)

These choices ensure challenging and diverse cov-
erage for generalization evaluation.

B Sampling Strategy for Open-ended
Tasks

As described in Appendix A, open-ended tasks are
sampled according to the specific structure of each
prompt.

For tasks that require only a single reference to
the frame-such as asking for the definition of a
frame (“What is the definition of the X frame?”) or
for the frame corresponding to a given definition
(“Which frame is defined by “def(X)”?”)-the sam-
pling process is straightforward. For each frame,
we generate a single instance per prompt type, later
augmented through linguistic variation in the main
dataset.

In contrast, for open-ended tasks that involve
frame elements or lexical units, sampling is more
nuanced due to the multiplicity of possible ele-
ments within each frame. For example, in prompts
like “Can you list some frame elements in the X
frame?” and “Which is the frame involving frame
elements such as FE1 and FE2?”, the core frame
elements are randomly sampled or grouped, ensur-
ing that not all elements always appear in the same
order or configuration.

A particularly important case is the prompt
“How is frame element FEi defined in the X frame?”.
Here, the number of generated samples is deter-
mined by the number of core frame elements asso-
ciated with each frame. To ensure coverage while
controlling dataset size, we generate p = 3 varia-
tions for each core frame element, allocating p− 2
samples to the training set, and one each to the
validation and test sets.

For prompts targeting lexical units, such as
“Could you list some lexical units associated with
the X frame?”, we employ the iterative prompting
technique from (Wang et al., 2022). The number
of samples generated depends on the number of

available lexical units, grouped by part of speech
(POS; e.g., verbs, nouns, adjectives) within each
frame. Specifically, let nPOS be the number of lexi-
cal units for a given POS. We partition the list of
lexical units into sub lists, each containing at most
five items. The number of samples sPOS for each
POS is thus computed as

sPOS =
⌈nPOS

5

⌉

where ⌈·⌉ denotes the ceiling function.
For instance, if the frame ARRIVING includes

nverb = 15 verb lexical units, then

sverb =

⌈
15

5

⌉
= 3

resulting in three samples for verbs. If there are
nnoun = 8 noun lexical units, then

snoun =

⌈
8

5

⌉
= 2

so two noun samples are produced.
For evaluation, the complete set of lexical units

per part of speech is exhaustively covered, with
three sample sets (each reflecting a different linguis-
tic variation) distributed across training, validation,
and test splits. This guarantees that all lexical units
are sampled without repetition or overlap between
sets (Fillmore et al., 2003).

C Sampling Strategy for Closed-ended
Tasks

Closed-ended tasks require a balanced set of pos-
itive and negative examples to support meaning-
ful learning and avoid degenerate behaviors (e.g.,
always predicting no). For tasks such as “Does
the definition of frame element def(FEi) accu-
rately express FEi in the X frame?”, we generate
k = p + q = 9 samples per frame element FEi,
where p = 3 are positive and q = 6 are negative.

Negative examples are created by pairing the tar-
get frame with distractor definitions, elements, or
lexical units sampled from unrelated frames (e.g.,
using definitions from ATTACK when evaluating
GESTURE). This ensures diversity while avoiding
overwhelming the model with negatives. To pre-
serve task balance, p−2 positive and q−2 negative
samples are included in the training set, with the re-
maining examples evenly split between validation
and test.

For tasks involving lexical unit verification, such
as “Can LUi, as a POSi, be considered a lexical
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unit of the X frame?”, samples are generated for
each sublist of five lexical units. Given a part of
speech POSi, the number of such sublists is com-
puted as:

sPOSi =
⌈ni

5

⌉

where ni is the number of lexical units with POS
equal to POSi in the given frame. For example, in
the frame ARRIVING, if there are nverb = 15 verb
lexical units:

sverb =

⌈
15

5

⌉
= 3

then the total number of samples for that POS is:

stotal = sverb × k = 3× 9 = 27

Similarly, for nnoun = 8, we compute:

snoun =

⌈
8

5

⌉
= 2 ⇒ snoun, total = 2× 9 = 18

This sampling strategy ensures a consistent bal-
ance of examples across frames and tasks, while
maintaining semantic relevance and avoiding anno-
tation redundancy.

D Linguistic Variations

A key aspect of our data construction process is
the use of diverse linguistic templates for both
questions and answers. Each template contains
placeholders—such as X for the frame name or
def(X) for the frame definition—that are instan-
tiated using FrameNet annotations during prompt
generation. This approach promotes generalization,
prevents the model from memorizing fixed surface
forms, and closely mirrors the variability found in
real-world user queries.

Tables 4 and 5 provide concrete examples of lin-
guistic variation for a representative open-ended
task: frame definition. For each data split (train-
ing, validation, test), we sample distinct phrasings,
ensuring that the same question or answer formu-
lation is never shared across different splits. This
careful partitioning avoids data leakage and tests
the model’s ability to generalize across different
linguistic realizations.

Training
Q1: What is the definition of the X frame?
Q2: Can you define the X frame?
Q3: How is the X frame defined?
Validation
Q4: Could you provide the definition of the X frame?
Test
Q5: Please can you provide the definition of the X
frame?

Table 4: Examples of question template variations for
the frame definition task, grouped by data split. Each
formulation is unique to a split to ensure maximal lin-
guistic diversity and strict separation between training,
validation, and test sets.

Training
Ans1: We can define the X frame as “def(X).”
Ans2: The X frame can be defined as “def(X).”
Ans3: The definition of the X frame is “def(X).”
Ans4: If we define the X frame, it would be “def(X).”
Ans5: We can define the X frame as “def(X).”
Ans6: The X frame can be defined as follows: “def(X).”
Ans7: We can outline the definition of the X frame as
“def(X).”
Ans8: The X frame is defined as “def(X).”
Ans9: The X frame can be described as “def(X).”
Ans10: The definition of the X frame is “def(X).”
Validation
Ans11: The X frame can be summarized as “def(X).”
Ans12: If we describe the X frame, it will be “def(X).”
Ans13: A possible definition of the X frame is “def(X).”
Test
Ans14: The definition of the X frame can be “def(X).”
Ans15: We could define the X frame as “def(X).”

Table 5: Examples of answer template variations for the
frame definition task, grouped by data split. As with
the questions, each answer formulation is assigned to a
single split, ensuring the model cannot rely on surface-
level memorization.

E Task-level Evaluation Breakdown

To better understand where our frame-aware super-
vision strategy yields the most impact, we provide
a task-level breakdown of performance. Table 7 re-
ports scores on each of the 11 prompt-based tasks,
comparing the original LLaMA model (zero-shot)
with its fine-tuned counterpart. Task types are cate-
gorized as Open-ended, Closed-ended, or Multiple-
choice (MCQs), and evaluated using appropriate
metrics: cosine similarity for generative outputs,
and F1 score for classification tasks.

The results consistently confirm the effective-
ness of semantic supervision: for each task, the
fine-tuned model outperforms the baseline. Partic-
ularly notable gains are observed in closed tasks
requiring precise frame-role or definition-role veri-
fication (e.g., T3, T7, T9, T11), and in open-ended
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ID Prompt type What varies? Instances per frame Why that number of instances?

T1 Open-ended Wording of question about frame definition 5 One definition, asked in 5 paraphrased forms
T2 Open-ended Wording of question about frame name from

definition
5 One definition, reversed as 5 distinct questions

T3 Closed-ended Match/mismatch of frame definitions 9 (3+6) 3 correct, 6 distractors from unrelated frames
T4 Open-ended Surface forms of request for FE list 5 FE list is fixed, asked in 5 paraphrased forms
T5 Open-ended Subset of core FEs and question formulation 5 2 FEs randomly sampled; question paraphrased 5

times
T6 Multiple-choice Set of distractors for correct FE 5 Each with 1 correct + 3–4 distractors; mix of cor-

rect/incorrect MCQs
T7 Closed-ended Pairings of roles with frames 9 (3+6) 3 true role sets, 6 sampled from unrelated frames
T8 Open-ended Question formulation per core FE 3 × |core FE| 3 paraphrases per core FE definition
T9 Closed-ended FE–definition pairs 9 × |core FE| 3 correct, 6 incorrect per FE
T10 Open-ended POS-based sublists of LUs

∑
p

⌈np
5

⌉
One question per LU-POS bucket; no overlap across
splits

T11 Closed-ended LU–POS verification questions 9 ×
⌈np

5

⌉
3 positives, 6 negatives per LU-POS bucket

Table 6: Summary of task-specific generation strategies and sample counts per frame. Task IDs correspond to the
columns of Table 9.

ID Task Type Metrics Os FT
T1 What is the definition of the X frame? Open-ended Cos 0.70 0.96
T2 Which frame is defined by def(X)? Open-ended Cos 0.50 0.84
T3 Is “def(X)” regarded as the definition of Frame X? Closed F1 0.48 0.70
T4 Can you list some frame elements in the X frame? Open-ended Cos 0.58 0.88
T5 Which is the frame involving frame elements such as FE1 and FE2? Open-ended Cos 0.47 0.83
T6 Which one of the following roles belongs to the set of frame elements of the X frame? MCQs F1 0.27 0.66
T7 Are roles such as Y and Z part of the frame elements of Frame X? Closed F1 0.61 0.85
T8 How is frame element FEi defined in X frame? Open-ended Cos 0.68 0.87
T9 Does the definition of frame element “def(FEi)” accurately express FEi in the X frame? Closed F1 0.51 0.99
T10 Could you list some lexical units associated with the X frame? Open-ended Cos 0.75 0.85
T11 Can LUi, as a POSi, be considered as the lexical unit of the X frame? Closed F1 0.60 0.98

Table 7: Task-wise evaluation results across the 11 prompt templates. Metrics are cosine similarity for open-ended
prompts and F1 score for closed-ended and MCQ formats.

prompts involving structured natural language re-
sponses (e.g., T1, T5, T8).

F Instruction-style Prompt Used for SRL
Evaluation

We evaluate our model’s semantic role labeling
(SRL) capabilities using a controlled instruction-
style prompt, shown in Figure 2. The prompt re-
quires the model to extract both the lexical unit
evoking the frame and the associated frame ele-
ments, returning a structured JSON object. The
input consists of a sentence and its corresponding
frame label.

Although the prompt includes a single illustra-
tive example, this is not intended as one-shot learn-
ing: the example solely clarifies the expected out-
put format and does not correspond to the frame
used in the actual input. A true one-shot setting
would require frame-specific exemplars for each
evaluation case, which are not provided. Thus, the
evaluation remains fully zero-shot with respect to
frame-specific role assignments.
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"""
You are an expert in Frame Semantics and Semantic Role Labeling. Your task is to identify the **

lexical unit** evoking a given frame and extract the corresponding ** frame elements ** with
their roles from a given sentence.

### Instructions:
1. Identify the ** lexical unit** that evokes the given frame.
2. Extract ** frame elements ** present in the sentence and map them to their respective roles
3. Format your response strictly as a JSON object following the structure provided.
4. Do not include any additional explanations -return only the JSON.
5. Use only **frame elements ** you know.

### Example:
#### Given Frame: LOCATION
#### Input Sentence:
Hall , who recently returned from a trip to Iraq ....
#### Expected Output:
{

"input_sentence ": "Hall , who recently returned from ...." ,
"annotations ": [

{
"frame": "LOCATION",
"lexical_unit ": "trip",
"frame_elements ": {

"PLACE ": "Iraq",
"TRAVELER ": "Hall"

}
}

]
}
Now , process the following input and return a JSON object:

#### Given Frame:
#### Input Sentence:
#### Your Output:
"""

Figure 2: Instructional prompt used for SRL evaluation.

Frame Name T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Total
RELEASING 5 5 9 5 5 5 9 9 27 2 18 99
MANIPULATION 5 5 9 5 5 5 9 9 27 2 18 99
CONTROL 5 5 9 5 5 5 9 21 63 2 18 147
KIDNAPPING 5 5 9 5 5 5 9 6 18 3 27 97
COMMUNICATION MANNER 5 5 9 5 5 5 9 9 27 2 18 99
CORPORAL PUNISHMENT 5 5 9 5 5 5 9 9 27 2 18 99
SUICIDE ATTACK 5 5 9 5 5 5 9 6 18 1 9 77
MOTION NOISE 5 5 9 5 5 5 9 15 45 1 9 113
COMMERCE PAY 5 5 9 5 5 5 9 15 45 2 18 123
RECEIVING 5 5 9 5 5 5 9 9 27 2 18 99
Total 50 50 90 50 50 50 90 108 324 19 171 1052

Table 8: Summary of the sample counts produced for each task across the unseen frames.
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Frame Name T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Total
ABANDONMENT 5 5 9 5 5 5 9 6 18 12 27 106
ABUSING 5 5 9 5 5 5 9 6 18 12 27 106
APPOINTING 5 5 9 5 5 5 9 15 45 9 27 139
ARREST 5 5 9 5 5 5 9 12 36 9 27 127
ARRIVING 5 5 9 5 5 5 9 6 18 11 45 123
ASSEMBLE 5 5 9 5 5 5 9 12 36 4 9 104
ASSISTANCE 5 5 9 5 5 5 9 12 36 13 36 140
ATTACK 5 5 9 5 5 5 9 6 18 18 81 166
ATTEMPT MEANS 5 5 9 5 5 5 9 9 27 4 9 92
BRINGING 5 5 9 5 5 5 9 21 63 17 72 216
COME TOGETHER 5 5 9 5 5 5 9 12 36 6 27 124
COMMITTING CRIME 5 5 9 5 5 5 9 6 18 8 18 93
COMMUNICATION 5 5 9 5 5 5 9 12 36 10 36 137
COMMUNICATION RESPONSE 5 5 9 5 5 5 9 15 45 10 36 149
CONTACTING 5 5 9 5 5 5 9 15 45 12 54 169
DEPARTING 5 5 9 5 5 5 9 6 18 9 27 103
ENFORCING 5 5 9 5 5 5 9 9 27 8 18 105
ESCAPING 5 5 9 5 5 5 9 6 18 9 27 103
EVENT 5 5 9 5 5 5 9 9 27 8 18 105
EVENTIVE AFFECTING 5 5 9 5 5 5 9 6 18 5 18 90
EXAMINATION 5 5 9 5 5 5 9 15 45 8 18 129
EXCHANGE 5 5 9 5 5 5 9 6 18 8 18 93
EXECUTE PLAN 5 5 9 5 5 5 9 9 27 8 18 105
EXECUTION 5 5 9 5 5 5 9 6 18 9 27 103
FUNDING 5 5 9 5 5 5 9 9 27 4 9 92
GESTURE 5 5 9 5 5 5 9 15 45 9 27 139
GETTING 5 5 9 5 5 5 9 6 18 10 36 113
GIVING 5 5 9 5 5 5 9 9 27 12 54 145
INTENTIONALLY ACT 5 5 9 5 5 5 9 6 18 10 36 113
INTENTIONALLY AFFECT 5 5 9 5 5 5 9 9 27 4 9 92
KILLING 5 5 9 5 5 5 9 15 45 24 135 262
MOTION 5 5 9 5 5 5 9 21 63 8 45 180
OBJECTIVE INFLUENCE 5 5 9 5 5 5 9 21 63 8 18 153
PIRACY 5 5 9 5 5 5 9 9 27 12 27 118
RAPE 5 5 9 5 5 5 9 9 27 12 27 118
REPLACING 5 5 9 5 5 5 9 9 27 9 27 115
RESIDENCE 5 5 9 5 5 5 9 9 27 15 54 148
RESPONSE 5 5 9 5 5 5 9 12 36 8 18 117
REWARDS AND PUNISHMENTS 5 5 9 5 5 5 9 12 36 12 27 130
SELF MOTION 5 5 9 5 5 5 9 18 54 45 297 457
SMUGGLING 5 5 9 5 5 5 9 15 45 12 27 142
SUMMARIZING 5 5 9 5 5 5 9 9 27 8 18 105
SUPPLY 5 5 9 5 5 5 9 12 36 9 27 127
SUPPORTING 5 5 9 5 5 5 9 6 18 4 9 80
TAKING 5 5 9 5 5 5 9 9 27 8 18 105
TEMPORARY STAY 5 5 9 5 5 5 9 12 36 9 27 127
THEFT 5 5 9 5 5 5 9 12 36 20 99 210
USING 5 5 9 5 5 5 9 12 36 13 36 140
VEHICLE LANDING 5 5 9 5 5 5 9 6 18 4 9 80
VISITING 5 5 9 5 5 5 9 6 18 8 18 93
Total 250 250 450 250 250 250 450 525 1,575 524 1,854 6,628

Table 9: Overview of the number of samples generated for each task across frames, with tasks represented as
columns and frames as rows. The table also includes the total number of sample pairs for each frame. Each cell
reflects the actual number of QA pairs generated, which may vary according to (a) the number of frame elements or
lexical units per frame, (b) the mix of positive and negative samples, and (c) the paraphrasing strategy adopted for
data splitting. These design choices are fully detailed in Appendix B (for open-ended tasks) and Appendix C (for
closed-ended tasks)
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