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Abstract

As language models continue to scale, the de-
mand for knowledge editing, a retraining-free
knowledge update method, has increased. How-
ever, since knowledge editing directly alters
token prediction probabilities acquired during
pretraining, the probabilities may diverge from
the empirical distribution. In this study, we an-
alyze the impact of knowledge editing to com-
pare the alignment between token prediction
probabilities and task accuracy by calculating
confidence calibration before and after knowl-
edge editing. Our results reveal that, for tasks
requiring semantic understanding, the range of
increase in token prediction probabilities tends
to be smaller than that of accuracy improve-
ment, suggesting that knowledge editing meth-
ods lead to less confidence in prediction.

1 Introduction

Large language models (LLMs) have been devel-
oped with increasing parameter size (OpenAl et al.,
2024; Touvron et al., 2023; Bai et al., 2023). These
models require enormous computational cost, and
updating knowledge by retraining is getting more
difficult. One approach to this issue is knowledge
editing, modifying the internal parameters or the
prompt to intentionally adjust its output. It can
easily introduce new knowledge to LLMs.
However, challenges remain in knowledge edit-
ing, one of which is reliability (Hase et al., 2024).
Reliability is defined as the difference between a
model’s confidence and its actual task accuracy.
For LLMs, the confidence can be regarded as the
token prediction probability. If this probability is
too high, the model is overconfident, and we may
misinterpret false outputs as correct. Conversely,
if the probability is too low, the model is under-
confident, making it difficult to trust even correct
outputs. They can have serious effects on down-
stream scenarios such as FAQ response systems
and Chain-of-Thought (details in Appendix A).

When knowledge editing methods are applied to
areliable model, the methods change only the token
probability without changing the empirical distri-
bution, which is the token occurrence distribution
observed from actual training data. Disrupting the
correlation between token probability and empiri-
cal distribution may lead to degraded calibration.

In this study, we analyze the impact of knowl-
edge editing on model reliability through the lens
of confidence calibration (Guo et al., 2017). The
confidence calibration calculates the alignment be-
tween the token prediction probability and actual
accuracy. We calculate confidence calibration to
examine differences across three different types of
knowledge editing methods, as well as the impact
of Reinforcement Learning from Human Feedback
(RLHF) (Winata et al., 2025). Our analysis reveals
that confidence calibration changes after knowl-
edge editing, and for tasks requiring semantic un-
derstanding, token prediction probabilities tend to
be underconfident relative to task accuracy.

2 Knowledge Editing

Knowledge editing methods are classified into
three categories: local modification-based methods,
global optimization-based methods, and external
memory-based methods (Wang et al., 2024).

Local modification-based methods, such as
ROME (Meng et al., 2022), MEMIT (Meng et al.,
2023), and KN (Dai et al., 2022), alter the output by
locating and updating parameters that are highly re-
lated to the target knowledge. Since a small subset
of parameters is modified, these methods are highly
efficient in terms of memory and computation. As
for ROME, the editing process involves two steps.
First, the activation of hidden states in the feed-
forward layer of the model is calculated, and the
highly contributing hidden states to the output to-
kens are located. Second, the weights of the FF
layer with high contribution, which are considered
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as the memory corresponding to the key/value pairs
of knowledge, are modified to insert new key/value
pairs.

Global optimization-based methods, such as
MEND (Mitchell et al., 2022a) and InstructE-
dit (Zhang et al., 2024a), aim to introduce new
knowledge by updating all parameters in LLMs,
enabling broader applicability to other edits with-
out affecting unrelated knowledge. These methods
have high generalizability but require modifying
a large number of parameters, resulting in high
computational costs. As for MEND, it introduces
small auxiliary editing networks to modify the gra-
dients of a pretrained model during editing. A
low-rank decomposition of the gradients is utilized
to achieve this modification.

External memory-based methods, such as IKE
(Zheng et al., 2023) and SERAC (Mitchell et al.,
2022b), store new knowledge in an external mem-
ory. Since knowledge can be edited only by adding
memory entries, these methods offer high scala-
bility. These methods do not modify any internal
parameters of models. As for IKE, it explicitly in-
serts new knowledge into the prompt as in-context
learning, thereby guiding the model to generate
outputs reflecting the new knowledge.

3 Confidence Calibration

Metrics. Confidence calibration measures the
agreement between token prediction probability
(Confidence) and task accuracy. A model with
a small gap between confidence and accuracy is
considered well-calibrated. Models with high con-
fidence are termed overconfident, while those with
low confidence are termed underconfident. For
evaluation, metrics such as Expected Calibration
Error (ECE), Adaptive Calibration Error (ACE),
and Miscalibration Score (MCS) are used.

ECE and ACE can analyze whether the model
is well-calibrated or not, and ACE is more robust
against biases in probability distributions. For ECE
and ACE, lower values indicate better calibration.
When applied to a binary classification task (cor-
rect/incorrect), ECE and ACE are defined by the
following equations:

B

ECE = Z %Mcc(b) —conf(b) (1)
b=1
1 R

ACE = ) ; lace(r) —conf(r)]  (2)

Here, b represents each bin, obtained by dividing
the probability interval [0, 1] into equal-width bins,
ny is the number of samples included in each bin b,
B is the total number of bins b, r represents each
bin obtained by sorting samples by probability and
dividing them equally, R is the total number of
bins 7, NV is the total number of samples, acc is the
accuracy of a bin, and con f is the confidence, i.e.,
the average predicted probability within the bin.

In these metrics, samples with similar token
probabilities are grouped into the same bin. If a
bin contains samples whose token probability is ap-
proximately 0.8, then the accuracy of the bin should
be approximately 0.8. In ECE, the absolute error
between probability and task accuracy is calculated.
ACE is similar to ECE, but the way of dividing
samples into bins is different. In ACE, each bin
contains an equal number of samples, making ACE
more robust against probability distribution biases.
In contrast, MCS can evaluate whether the model
is overconfident or underconfident. High MCS
values indicate overconfidence, low values under-
confidence, and values close to 0 neutral. MCS is
defined by replacing |acc(b) — conf(b)| in Equa-
tion (1) with con f(b) — acc(b).

B
MCS = Z %(conf(b) —acc(b))  (3)
b=1

Relation between knowledge editing and RLHF.
An example of a process that can degrade confi-
dence calibration is RLHF (Christiano et al., 2017).
RLHF is a technique to directly align LLMs to
human preferences. Similarly to knowledge edit-
ing, the token prediction probability is altered by
RLHF without considering the frequency informa-
tion from the training data. OpenAl et al. (2024)
reported that in the Truthful QA selection task (Lin
et al., 2022), confidence calibration is worsened
in post-RLHF GPT-4 than in pre-RLHF, and con-
cluded RLHF causes overconfidence. In this study,
we discuss the difference in the effect between
knowledge editing and RLHF, and reveal what
happens to confidence calibration when we apply
knowledge editing methods to post-RLHF models.

4 Experimental Settings

Figure 1 shows the overview of the experiments.
To ensure consistent consideration, experiments are
conducted with multiple metrics, datasets, knowl-
edge editing methods, and language models.
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Figure 1: Overview of our experiments workflow.

Metrics. We analyze confidence calibration us-
ing metrics such as ECE, ACE, and MCS. We set
the number of bins to 10 for evaluation.

Dataset. We use ZsRE (Levy et al., 2017) and
WikiDatacounter fact (Cohen et al., 2024). Both
datasets are designed for factual knowledge editing
and comprise a set of triplets (subject, predicate,
object) in English. The type of prompts is next
token prediction in WikiData ,unter fact. and ques-
tion answering in ZsRE. Appendix B shows the
details of the dataset information. We used these
two prompts and two answers:

1. Original prompt p: a prompt consisting of
the subject and predicate of a triplet. (e.g.,
“The name of the country of citizenship of
Leonardo DiCaprio is”)

. Paraphrased prompt p*: a reworded version
of the prompt that retains the meaning of the
subject-predicate pair. (e.g., “Leonardo Di-
Caprio’s country of citizenship is known as”)

. Pre-edit answer a,;,: the object that follows
each prompt, which corresponds to factual in-
formation. (e.g., “United States of America”)

. Post-edit answer a,.,,: the object that fol-
lows each prompt, which does not correspond
to factual information. Models are edited to
output this entity. (e.g., “Syria”)

Note that to maintain consistency in format across
both datasets, “The answer is” is appended to the
end of p and p* in ZsRE (e.g., “Who was Marc
Moulin’s mother? The answer is”).

Editing and Evaluation phase. In editing phase,
the model M4 is modified so that it outputs aeq

in response to the original prompt p, resulting in
the edited model M,,cq.

In the evaluation phase, we assess M¢,, by in-
putting both the original prompt p and the para-
phrased prompt p*, with a,e, as the correct an-
swer. For comparison, we also evaluated M4 by
inputting p and p*, with a4 as the correct answer.

If the original prompt p is inputted, the prompts
in both phases are exactly the same, and only mem-
orization of the word sequence p and @y, iS re-
quired. In contrast, if the paraphrased prompt p* is
input, the model needs to understand the semantics
of prompts and a,,eq.

Knowledge Editing Methods. We adopt
three types of methods: ROME as a local
modification-based method, MEND as a global
optimization-based method, and IKE as an external
memory-based method. We use the framework
EasyEdit (Zhang et al., 2024b) for implementation.

LLMs. We use the following LLMs as open-
source language models capable of knowledge edit-
ing: Llama2-7B/Llama2-7B-chat (Touvron et al.,
2023), Qwen2.5-7B/Qwen2.5-7B-Instruct (Bai
et al., 2023), Llama3-8B/LLlama3-8B-Instruct, and
Llama3.2-3B/Llama3.2-3B-Instruct (Grattafiori
et al.,, 2024), and Mistral-7B-v0.1/Mistral-7B-
Instruct-v0.1 (Jiang et al., 2023). The names in-
cluded ‘-chat’ or ‘-Instruct’ mean RLHF versions.
The implementation is based on Hugging Face
Transformers (Wolf et al., 2020). The correspond-
ing IDs are listed in Table 1 in Appendix B.

S Experimental Results and Discussions

First, we focus on accuracy in §5.1. Next, we ex-
amine ECE and ACE to capture whether models

340



1.0 - - — ,
= pre-edit p
0.8 [ pre-edit p*
- ROME p
50-6' = [ ROME p*
§ mmm MEND p
g041 L BN MEND p*
024 _ mmm (KE p
ﬂ i Iﬂ B IKE p*
0.0

Llama2-7B Qwen2.5-7B

Llama3-8B

Llama3.2-3B  Mistral-7B-v0.1
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Figure 4: ACE on prompts p and p*, and on WikiData ounter fact- LoOwer ACE means better calibration.

are well-calibrated or not in §5.2. Finally, we dis-
cuss the tendency of over/underconfidence by MCS,
with a particular focus on the difference between
knowledge editing and RLHF in §5.3.

5.1 Accuracy

Figure 2 shows accuracy on WikiData ounter facts
categorized by each editing method, model without
RLHEF, and both original prompt p and rephrased
prompt p*. ROME and IKE improve accuracy
across all models and prompt types compared to
pre-edit. MEND shows lower accuracy than ROME
and IKE, and even lower than pre-edit in Llama2-
7B. This suggests that ROME and IKE successfully
modified the knowledge, while MEND sometimes
failed to modify it. The result on RLHF models
and on ZsRE shows the same trend. All results are

shown in Tables 3 and 7 in Appendix C.

Comparing original prompts p and rephrased
prompts p*, accuracy on p is higher than on p*.
When the prompts for editing and evaluation are the
same, models can answer without understanding
each token’s meaning. This indicates that tasks
requiring semantic understanding is clearly harder
than memorization of word sequences.

5.2 ECE and ACE

Figure 3 shows the ECE on WikiData ounter fact-
Unlike accuracy, calibration is not always improved
by knowledge editing. When rephrased prompts p*
are used, ECE remains almost the same or worsens
compared to pre-edit p* in many cases. On the
original prompt p, ECE is relatively improved.
Figure 4 shows ACE on WikiData ounter fact-
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Figure 5: MCS on models with/without RLHF, prompts p*, and WikiData ,unter fact- MCS close to 0 is neutral.

When rephrased prompts p* are used, ECE remains
almost the same or worsens compared to pre-edit
p* in many cases. On the original prompt p, ECE
tends to be improved relatively. This result is simi-
lar to ECE, as Figure 3 shows in §5.2.

The results in ZsRE are similar to those in
WikiDatacounter fact- All detailed results are shown
in Tables 4 and 8 (ECE), and Tables 5 and 9 (ACE)
in Appendix C.

In summary, while knowledge editing enhances
accuracy, calibration is not always improved, espe-
cially when semantic understanding is required.

5.3 MCS

Figure 5 presents the MCS on WikiDatacounter fact
and paraphrased prompts p*. Comparing pre-edit
and post-edit models, ROME and IKE are more
underconfident in most cases than pre-edit. MEND
indicates unstable tendency. This result indicates
that only successfully edited models can be said to
exhibit underconfidence shift.

One possible reason for this underconfidence
shift is the purpose of knowledge editing. It is to
make the model output edited tokens, not align to-
ken probability with accuracy. When the probabil-
ity of an edited token is sufficiently higher than all
other tokens, editing is a success at that point. Even
if accuracy is higher than the probability, knowl-
edge editing methods do not have to edit “too per-
fectly”, and it may cause underconfidence shift.

Next, comparing models with/without RLHF, the
RLHEF versions are more overconfident than with-
out RLHF model in most cases. This tendency is
consistent with the result of GPT-4 reported by Ope-

nAl et al. (2024) (see §3). Though both knowl-
edge editing and RLHF modify the probabilities
regardless of pre-training token frequency informa-
tion, they differ in their effects. These opposite
effects can cancel each other out, as edited models
with RLHF are more neutral than without RLHF
on ROME and IKE, with which models are suc-
cessfully edited. The result in ZsRE is similar to
WikiData ounter fact- Tables 6 and 10 in Appendix
C show all results.

6 Conclusion

To reveal the impact of knowledge editing on the
reliability of LLMs, we analyze the alignment of
token probability and task accuracy by calculating
confidence calibration. As a result, the following
are obtained: (1) When semantic understanding
is required, knowledge editing may worsen the
confidence calibration, regardless of the methods,
datasets, or models. (2) Knowledge editing tends
to make models more underconfident. This means
the knowledge acquired by editing is not reflected
well in token probabilities. (3) Contrary to knowl-
edge editing, RLHF induces overconfidence. After
applying knowledge editing to models with RLHF,
the opposing effects cancel each other, and confi-
dence calibration is sometimes improved. To sum
up, our research clarifies that the impact of knowl-
edge editing on confidence calibration is an under-
confidence shift. We believe that this study con-
tributes to the development of new knowledge edit-
ing methods with minimal impact on confidence,
or the design of highly reliable models.
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Limitations

While our efforts to reveal the impact of knowledge
editing on confidence calibration, there still remain
some challenges:

* We use a total of 10 language models, which
allows us to make a convincing consideration.
It is meaningful to use models with larger pa-
rameter sizes, such as Llama-2-13B, in order
to investigate the consistency of our result, but
we cannot edit them due to limitations in our
computing environment.

In this paper, we used two factual knowledge
editing datasets. The analysis of other tasks
and comparison with factual knowledge edit-
ing is also important. However, there is no
other existing dataset of other tasks, because
confidence calibration analysis and compari-
son before and after knowledge editing need
clearly determined pre-edit answer a,;q and
post-edit answer ¢, It Will be necessary to
redefine tasks and build new datasets.

Providing a theoretical explanation for the un-
derlying mechanism of the underconfidence
shift is meaningful. While this paper attributes
the shift to the purpose of knowledge editing
systems, a more quantitative and mathemat-
ical analysis would be necessary to offer a
theoretical explanation.

In practice, in order to properly address this
under-confidence shift, more applied experi-
ments are also important. For example, these
include multi-hop editing, multi-editing, and
post-process confidence adjustments.

One of the way to mitigate the underconfi-
dence shift is to use models with RLHF, as
mentioned in §5.3. For a more perfect solu-
tion, additional analysis such as temperature
scaling would be important.

Baan et al. (2022) shows when human evalu-
ation of the LLLM outputs correctness is diffi-
cult, applying calibration metrics using accu-
racy, such as ECE, ACE, and MCS, is inappro-
priate. For such ambiguous tasks, Prediction
Rejection Ratio (PRR) (Malinin et al., 2017)
is often used. Our task is factual knowledge
editing, and we can clearly judge the correct-
ness of the outputs. ECE, ACE, and MCS are
appropriate evaluation metrics in this study.
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Ethical Considerations

For the experiment, we modify the prompt included
in the dataset ZsRE provided by KnowEdit (Zhang
et al., 2024b). KnowEdit is released under the MIT
License, allowing modification. Note that we use
Al assistant tools, ChatGPT and DeepL, for writing
support. We confirm that this work contains no
harmful content and fully complies with all aspects
of the ACL Ethics Policy.
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A Real-World Cases Where Lack of
Calibration Becomes A Problem

There are several examples of downstream scenar-
10s in which poor calibration poses a problem. One
of them is the FAQ response system. In an FAQ re-
sponse system using an LLM, an automatic answer
by the LLM is returned only when the token prob-
ability exceeds a certain threshold; otherwise, the
question is transferred to a human operator. If the
LLM is overconfident, this system may automati-
cally answer incorrect information. On the other
hand, if the LLM is underconfident, the output is
regarded as ‘uncertain’ and sent to operators even if
it is clearly correct. As a result, it leads to reduced
automation efficiency.

Another example is Chain-of-Thought prompt-
ing. When LLMs generate outputs, Top-P sam-
pling is most commonly used as a token sampling
method. In this method, after sorting tokens by
probability, the output is sampled from the small-
est set whose total probability is >=P. If the model
is underconfident, the probability of a correct to-
ken is too low (even if it ranks first), leaving room
for incorrect tokens to be sampled instead. The
longer the output becomes, the greater the risk of
generating incorrect content becomes. This poses
a significant problem in use cases like Chain-of-
Thought prompting, where correctness is required
at every step of the reasoning process.

B Detailed Experimental Settings

During both knowledge editing and evaluation,
we use EasyEdit! (Zhang et al., 2024b) as the
knowledge editing framework and the source
of the datasets ZsRE and WikiData ounter fact-
The dataset sizes of train, eval, and test in
WikiData ounter fact are 1455, 1919, and 837, and
in ZsRE, 10000, 19086, and 1301, respectively.

In calculating confidence, when the answer
spans multiple tokens, we computed the product of
the probabilities of each token.

We use the Hugging Face implementation when
we edit models. Table 1 shows the list of model
names and their Hugging Face IDs.

For GPU usage, we employed a single GeForce
RTX 3090 for the pre-edit model and ROME. For
MEND and IKE, we use a single NVIDIA A100
80GB PCle. Each model is run once for the same
experimental conditions. The hyperparameters are

"https://github.com/zjunlp/EasyEdit

LLMs Hugging Face ID

Llama2-7B meta-llama/Llama-2-7b-hf
Llama2-7B-chat meta-llama/Llama-2-7b-chat-hf
Qwen2.5-7B Qwen/Qwen2.5-7B
Qwen?2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct
Llama3-8B meta-llama/Meta-Llama-3-8B
Llama3-8B-Instruct meta-llama/Meta-Llama-3-8B-Instruct
Llama3.2-3B meta-llama/Llama-3.2-3B
Llama3.2-3B-Instruct ~ meta-llama/Llama-3.2-3B-Instruct
Mistral-7B-v0.1 mistralai/Mistral-7B-v0.1

Mistral-7B-Instruct-v0.1 mistralai/Mistral-7B-Instruct-v0. 1

Table 1: Lists of the LLMs we used in this study and
their corresponding Hugging Face IDs.

set according to the configurations provided by
EasyEdit. Only MEND parameters in Llama3.2-
3B and Llama3.2-3B-Instruct are not implemented,
so we use this parameter set (Table 2).

editing layers 25, 26,27
seed 42
learning late le-6
activation function =~ ReLU
training batch size 1

Table 2: MEND Parameters on Llama3.2-3B and
Llama3.2-3B-Instruct.

C All Detailed Results

In this section, we describe all the detailed data. Ac-
curacy measured in WikiData ,unter fact 1S Shown
in Table 3, ECE is shown in Table 4, ACE is shown
in Table 5, and MCS is shown in Table 6. Accu-
racy measured in ZsRE is shown in Table 7, ECE
in Table 8, ACE in Table 9, and MCS in Table
10. Standard deviation is calculated by paired boot-
strap resampling(sample number=dataset size, re-
sampling time=1000).
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Llama-2-7B Llama-2-7B-chat Llama-2-7B Llama-2-7B-chat
p p* P p* p P p p
pre-edit 0.3240.016 0.1840.013 0.2240.014 0.2160.014 pre-edit 0.1490.013 0.0480.010 0.1160.012  0.1050.012
ROME 0.9360‘009 0.5290,017 0.9290‘009 0.4030,017 ROME 00230.005 0-10704013 0-0290.006 006904013
MEND 0.287¢.015 0.0819.009 0.4070.017 0.1370.012 MEND 0.033¢.008 0.0720.008 0.0410.009 0.2090.012
IKE 1.0000‘000 0.8460,013 0.9940‘003 0.7860,014 IKE 0-0030.000 0-07804009 0-0180.003 0-06404011
Qwen2.5-7B Qwen2.5-7B-Instruct Qwen2.5-7B Qwen2.5-7B-Instruct
p p* p p* p P p P
pre-edit 0.0000.000 0.0000.000 0.0000.000 0.0000.000 pre-edit 0.0660.003 0.0760.004 0.1240.005  0.1320.006
ROME 0.9880.003 0.6710.016 0.9800.005 0.5900.017 ROME 0.0550.003 0.1430.011 0.0640.004 0.084¢.011
MEND 0.4940.017 0.1830.014 0.0670.008 0.0120.004 MEND 0.0680.011 0.0620.009 0.0610.008 0.0570.005
IKE 0.98904003 0.8250013 0.962()‘007 0.8150013 IKE 0-0110003 0-0690009 0-0120,005 0.0480010
Llama3-8B Llama3-8B-Instruct Llama3-8B Llama3-8B-Instruct
p p* p p* p P’ p P
pre-edit 0~277O4016 0.2500_015 0.2770‘015 0.2050.014 pre_edit 0~1380.012 0-1260,012 0.0420,010 0.0510.010
ROME  0.9860.004 0.6900.015 0.9880.004 0.6420.016 ROME  0.0450.004 0.1440.011 0.0630.004 0.0890.011
MEND 0.5470.017 0.2800.016 0.6210.017 0.3290.016 MEND 0.0870.011 0.0530.00s 0.0770.012 0.194¢.013
IKE 1.0000.000 0.8530.013 0.9970.002 0.694¢. 017 IKE 0.0119.001 0.125¢0.011 0.0180.013 0.1580.013
Llama3.2-3B Llama3.2-3B-Instruct Llama3.2-3B Llama3.2-3B-Instruct
p p* p p* p p p p
pre-edit 0.1650.012 0.1250.011 0.1770.013 0.1640.012 pre-edit 0.0850.011 0.0370.008 0.0500.009  0.0310.00s
ROME  0.9750.005 0.6730.016 0.9860.004 0.6520.017 ROME  0.0520.004 0.1570.012 0.0640.004 0.1280.012
MEND 0.7250.016 0.3820.017 0.6390.017 0.3640.017 MEND 0.081¢.010 0.0350.000 0.0840.011 0.0740.011
IKE 1.0000‘000 0.8460,013 1.0000‘000 0.8460'013 IKE 0-0160.001 0-15804012 0-0650.003 0-15804012
Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1 Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1
P P P P P P p P
pre-edit 0.1899.013 0.1780.013 0.2230.014 0.2060.015 pre-edit 0.0660.010 0.0510.009 0.0860.011 0.061¢.011
ROME 0.5750.017 0.3799.016 0.6340.017 0.4399.017 ROME 0.0590.009 0.0490.009 0.0580.010 0.0440 011
MEND 0.5979.017 0.4760.017 0.4760.017 0.2510.015 MEND 0.0999.011 0.062¢.012 0.0629.012 0.1039.012
IKE 1.0000. 000 0.821p.011 1.0000.000 0.8170.011 IKE 0.0050.000 0.285¢.011 0.0150.001  0.1790.011

Table 3: Accuracy on WikiData ounter fact-

Llama-2-7B

p p

Llama-2-7B-chat

p p

pre-edit
ROME

MEND

IKE

0.0290.006 0.1060.013
0.0030.000 0.0820.009

0.0340.006 0.0660.0013
0.0390.008 0.2090.012
0.0199.002  0.0680.011

Qwen2.5-7B
P P

Qwen2.5-7B-Instruct
p P’

pre-edit
ROME

MEND

IKE

0.0660.003 0.0760.004
0.0560.003 0.143¢.011
0.0670.010 0.0660 009
0.0140.003 0.074¢.000

0.0660.004 0.0850.011
0.0219.005 0.0570.011

Llama3-8B
p "

Llama3-8B-Instruct

p p

pre-edit
ROME

MEND

IKE

0.14104012 0.127()‘012
0.0480.004 0.143¢.011
0.0850.011 0.0470.008
0.0119.001 0.1320.011

0.0500,010 0.0510009
0.0640.004 0.089¢.011
0.0810.011 0.194()‘013
0.0210_010 0.1580,013

Llama3.2-3B
p P’

Llama3.2-3B-Instruct
p P’

pre-edit
ROME

MEND

IKE

0.0890.011 0.0380.008
0.0540.004 0.1570.012
0.0810.009 0.0360.009
0.0160.001 0.1600.011

0.0510.000 0.0440.009
0.0650.004  0.126¢.012
0.083p.011 0.0730.011
0.06504003 0.1600.011

Mistral-7B-v0.1
p P

Mistral-7B-Instruct-v0.1
P P’

pre-edit
ROME

MEND

IKE

0.0620.010 0.0520.009
0.0580.009 0.049¢.000
0.094¢0.011 0.0630.011
0.0050.000 0.291¢.011

0.0870.011  0.0650.009
0.0560.010 0.0410 010
0.0630.011  0.0950.011

Table 4: ECE on WikiDatacounter fact-

Table 5: ACE on WikiData oynter fact-

Llama-2-7B Llama-2-7B-chat
p p" P p"
pre—edit -0.1419.012 =0.0320.011 0.116¢.0012 0.104¢.013
ROME -0.0180,007 -0.1040_013 -0.0250‘007 0.0300,015
MEND —0.0090011 0-0720008 0.0030011 0,209()‘012
IKE '0.0030'000 '0.0730_011 '0.0180‘003 0.0100'013
Qwen2.5-7B Qwen2.5-7B-Instruct
p 2 P P’
pre—edit 0.0660,003 0.0760,004 0.1240,005 0-1320.006
ROME -0.0550.0003 -0.1430.011 -0.064¢0.004 -0.0810.012
MEND ‘0.0610'011 0-0660,011 0.0520,008 0.0570,005
IKE -0.0040.003 -0.0740.011 0.0070.005 0.0320.012
Llama3-8B Llama3-8B-Instruct
p p* P P’
pre-edit -0.1379.012 -0.123¢g.012 =0.005¢.012 0.0380.012
ROME -0.045¢0.004 -0.143¢.011 -0.0630.004 -0.086¢ 012
MEND -0.083p.012 0.0340.011 0.0740.013 0.194¢.013
IKE -0.0119.001 -0.1080.013 -0.018¢p.003 -0.158¢.013
Llama3.2-3B Llama3.2-3B-Instruct
p " P p"
pre—edit -0.0830.011 -0.0310.0090 =0.0399.011 -0.0160.011
ROME -0.0520.004 -0.157¢.012 -0.064¢. 004 -0.126¢.013
MEND —0.0770_010 -0.013(]‘012 —0.0770_011 0.0650012
IKE -0.0160.001 -0.1580.012 -0.065¢0.003 -0.158¢.012
Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1
p p* P P’
pre—edit —0.0560,011 —0.0150_011 0.0790_011 0.0530,011
ROME 0.0480,010 —0.0210012 0.0410012 -0-0050014
MEND ‘0.0770'011 '0-0110_012 '0-0110‘012 0.0880,013
IKE '0.005()‘000 ‘0-1910A011 '0.01504001 —0.128()011
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Table 6: MCS on WikiDataounter fact-



Llama-2-7B Llama-2-7B-chat Llama-2-7B Llama-2-7B-chat
p P’ p p* p P p P
pre-edit 0-04204006 0.0370,005 0-0490.006 0~043O4006 pre-edit 0.0250,005 0.0210‘004 0.1900,007 0.1840‘007
ROME 0.8540.010 0.7750.012 0.8480.010 0.7360.012 ROME 0.072¢.009 0.0720.009 0.0860.009 0.0610.000
MEND 0.846¢.010 0.8080.011 0.81320.010 0.7630.011 MEND 0.042¢.008 0.0870.000 0.0660.008 0.0399.00s
IKE 1.0000.000 0.9860.003 1.0000.000 0.9170.00s IKE 0.0040.000 0.1150.004 0.0200.001 0.1000.006
Qwen2.5-7B Qwen2.5-7B-Instruct Qwen2.5-7B Qwen?2.5-7B-Instruct
p P p P p P’ p P
pre-edit 0.00004000 0.0000000 0.0000,000 0.0000,000 pre-edit 0.0950004 0.0820,003 0.1910,005 0.1640,005
ROME 0.9839.003 0.9179.008 0.9690.005 0.798¢.011 ROME 0.055¢.003 0.1150.006 0.0580.004 0.0750.008
MEND 0.5069.013 0.402¢.013 0.7830.012 0.6480.013 MEND 0.1120.010 0.0840.011 0.1049.010 0.069¢.009
IKE 0.9990.002 0.9930.002 0.9360.007 0.9550.006 IKE 0.0290.001 0.0860.003 0.0250.005 0.018¢.004
Llama3-8B Llama3-8B-Instruct Llama3-8B Llama3-8B-Instruct
P p* p p p p P p
pre—edit 0.0600,007 0.0480,006 0.1320,009 0.1050,009 pre—edit 0.0360,006 0.0410,005 0-0430.008 0.0430,007
ROME 0.962¢.005 0.8790.000 0.9429.010 0.8590.010 ROME 0.0500.004 0.0910.005 0.0330.004 0.0740.007
MEND 0.8020.011 0.6250.013 0.853p.011 0.7780.011 MEND 0.1580.010 0.1450.011 0.0280.006 0.0400.00s
IKE 1.0000.000 0.9990.001 0.9990.006 0.9570.006 IKE 0.0119.000 0.0700.002 0.0050.001 0.0960.005
Llama3.2-3B Llama3.2-3B-Instruct Llama3.2-3B Llama3.2-3B-Instruct
p P p P p p* p P’
pre-edit 0.0400‘005 0.0380,006 0.0620,007 0.0620‘007 pre-edit 0.0210,005 0.0200‘005 0.0200,()05 0.0140‘004
ROME 0.966¢.005 0.8870.009 0.9640.000 0.8780.009 ROME 0.0620.004 0.1220.006 0.0600.004 0.1080.006
MEND 0.916¢.00s 0.8360.010 0.921¢.010 0.8280.010 MEND 0.037¢.005 0.085¢0.008 0.0550.006 0.069¢.00s
IKE 1.0000 000 0.941p.004 0.9610.014 0.4170.014 IKE 0.0180.001 0.135¢0.004 0.0720.004 0.209¢.011
Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1 Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1
p P p P’ p P’ p P
pre—edit 0.06404007 0‘0670007 0~0950.008 0-0900008 pre—edit 0‘0350006 0-0350006 0.0600,006 0-0540006
ROME 0.5749.014 0.5100.014 0.6820.013 0.6040.014 ROME 0.0799.009 0.0710.000 0.0919.010 0.069¢.009
MEND 0.8269.011 0.7920.012 0.8440.010 0.6810.013 MEND 0.0450.007 0.0830.008 0.0520.008 0.045¢.00s
IKE 1.0000. 000 0.9990.001 0.9980.001 0.9520 005 IKE 0.0060.000 0.0579.001 0.023p.002 0.133¢.005
Table 7: Accuracy on ZsRE. Table 9: ACE on ZsRE.
Llama-2-7B Llama-2-7B-chat Llama-2-7B Llama-2-7B-chat
p P P P p p* p p"
pre-edit 0.0260‘004 0.0230,004 0.1900‘007 0.1840,007 pre-edit 0.0220_005 0.0170_005 0.1900,007 0.1840‘007
ROME 0.0780.009 0.0719.009 0.0970.009 0.0700.009 ROME 0.0620.009 =0.0090.010 0.08209.009 0.0370.010
MEND 0.043¢.007 0.0860.009 0.0750.008 0.046¢.00s MEND  0.0079.00s -0.0800.009 0.063¢.00s 0.0260.009
IKE 0.0040.000 0.1150.004 0.0200.001 0.1100.006 IKE -0.0040.000 -0.1150.004 -0.0200.001 -0.099¢.007
Qwen2.5-7B Qwen2.5-7B-Instruct Qwen2.5-7B Qwen2.5-7B-Instruct
p P P P p p* p p
pre—edit 0.09504004 0.0820003 0.191 0.005 0‘1640005 pre—edit 0.0950004 0.0820003 0.1 910005 0. 16404005
ROME 0.0579.003 0.116¢9.006 0.0610.004 0.0770.007 ROME 0.0550.003 -0.115¢.006 -0.0580.004 -0.0750.008
MEND 0.117¢9.010 0.0900.010 0.1050.009 0.0740.009 MEND -0.0900.010 =0.0610.010 -0.0710.010 -0.0470.010
IKE 0.0290.001 0.087¢.003 0.0250.005 0.023¢.004 IKE -0.0299 001 -0.0860.003 0.0230.005 -0.014¢ 005
Llama3-8B Llama3-8B-Instruct Llama3-8B Llama3-8B-Instruct
P P’ p p* p p* p p
pre—edit 0-03104006 0.0380,006 0.0430,007 0.0410,007 pre—edit 0.0060,007 0-0120.006 0-0390.008 0.0390‘007
ROME 0.052¢.003 0.091¢.005 0.0380.004 0.0750.006 ROME -0.0500.004 -0.0900.005 -0.074¢.004 -0.0740.007
MEND 0.1499.010 0.1430.011 0.0370.006 0.046¢.007 MEND -0.1470.010 -0.1370.011 0.025¢0.007 0.0200. 008
IKE 0.0119.000 0.0700.002 0.0060.001 0.097¢.005 IKE -0.011¢9.000 -0.0700.002 -0.0050.001 -0.096¢ 005
Llama3.2-3B Llama3.2-3B-Instruct Llama3.2-3B Llama3.2-3B-Instruct
p P p P p p* p P’
pre-edit 0.0160‘004 0.0220,005 0.0200‘005 0.012()_004 pre-edit 0.0110_0()5 0.0080_005 0-0130.006 0.0040‘004
ROME 0.0620.004 0.1220.006 0.062¢.003 0.109¢.006 ROME -0.0620.004 -0.122¢.006 -0.0600.004 -0.1080.006
MEND 0.0390.005 0.0830.008 0.0470.006 0.065¢.008 MEND -0.035¢.005 -0.083¢.008 -0.0400.006 -0.064¢.00s
IKE 0.0180.001 0.1370.005 0.0720.004 0.211¢.013 IKE -0.0180.001 -0.1350.004 -0.0720.004 0.204¢.015
Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1 Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1
p P P P p p* p P
pre—edit 0-0330.006 0-0320006 0.064()‘006 0.0580006 pre—edit ‘0-0210006 —0.028()‘006 0.059()‘007 0-0540006
ROME 0.078¢.009 0.074¢.000 0.0920.010 0.0710.009 ROME 0.07360.010 -0.0000.010 0.0640.011 0.0270.011
MEND 0.0469.007 0.082¢9.008 0.0500.008 0.0460.00s MEND -0.033p.008 -0.0790.009 -0.0410.008 -0.034¢.010
IKE 0.0060.000 0.0580.002 0.024¢.002 0.133¢.004 IKE -0.0060 000 -0.0579.001 -0.023¢.001 -0.1330.005

Table 8: ECE on ZsRE.
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Table 10: MCS on ZsRE.



