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Abstract

Recent vision—language models excel at large-
scale image—text alignment but often neglect
the compositional structure of language, lead-
ing to failures on tasks that hinge on word order
and predicate—argument structure. We intro-
duce DisCoCLIP, a multimodal encoder that
combines a frozen CLIP vision transformer
with a novel tensor network text encoder that
explicitly encodes syntactic structure. Sen-
tences are parsed with a Combinatory Cate-
gorial Grammar parser to yield distributional
word tensors whose contractions mirror the
sentence’s grammatical derivation. To keep
the model efficient, high-order tensors are fac-
torized with tensor decompositions, reducing
parameter count from tens of millions to un-
der one million. Trained end-to-end with a
self-supervised contrastive loss, DisCoCLIP
markedly improves sensitivity to verb seman-
tics and word order: it raises CLIP’s SVO-
Probes verb accuracy from 77.6% to 82.4%,
boosts ARO attribution and relation scores
by over 9% and 4%, and achieves 93.7% on
a newly introduced SVO-Swap benchmark.
These results demonstrate that embedding ex-
plicit linguistic structure via tensor networks
yields interpretable, parameter-efficient repre-
sentations that substantially improve composi-
tional reasoning in vision—language tasks.

1 Introduction

Vision-language understanding is a key challenge
in Al, with applications to image captioning
and multimodal retrieval. Models like OpenAl’s
CLIP (Radford et al., 2021) have shown that large-
scale joint embeddings can effectively connect
visual and textual data. However, these mod-
els mainly rely on Transformer architectures with
dense attention, which may overlook the linguistic
structure. For instance, recent evaluations of CLIP-
like models show that they often ignore word or-
der, acting like bags-of-words (Thrush et al., 2022;

Jiang et al., 2024; Li et al., 2024). The Attribution,
Relation and Order (ARO) benchmark (Yuksek-
gonul et al., 2023) checks if they are able to under-
stand the correct word order. Similarly, the SVO-
probes benchmark (Hendricks and Nematzadeh,
2021) tests if these models mainly focus on nouns,
or are also able to recognise verbs. Both of these
issues have been common challenges for vision-
language models.

It has been argued that these challenges stem
from CLIP-like models being trained on web-
sourced image-caption pairs, where captions (often
alt-texts) frequently ignore word order and verb
usage. As a result, their contrastive learning is not
sensitive to linguistic structure (Yuksekgonul et al.,
2023). While training with hard negatives could
address this, such samples are costly to source. In-
stead, we introduce DisCoCLIP, the first model for
vision and language with a text encoder that fully
incorporates the compositional linguistic structure
of text with the distributions of the words therein.
To achieve this, we represent sentences as tensor
networks, where each word is encoded as a ten-
sor and interactions between words are captured
through a series of tensor contractions.

The advantages of using a tensor network text
encoder are twofold. First, it enables explicit en-
coding of both syntactic structure and statistical
semantic information, making the resulting text
representations more interpretable than those pro-
duced by transformer-based encoders. Second, ten-
sor network decompositions can dramatically re-
duce the number of parameters required, allowing
for efficient modelling of high-order interactions
without incurring exponential growth in tensor size.
Tensor networks are widely used in quantum ma-
chine learning to capture higher order data corre-
lations (Biamonte et al., 2017; Schuld et al., 2015;
Stoudenmire and Schwab, 2016; Cichocki et al.,
2016). Their use in vision-language tasks might
lead to further advantages coming from the quan-
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tum world.

DisCoCLIP was evaluated on two existing
benchmarks on compositional capability: SVO-
Probes and ARO, as well as on a new SVO-Swap
benchmark created by swapping subjects and ob-
jects. We compare the performance of DisCoCLIP
with CLIP, OpenCLIP (Ilharco et al., 2021) and
BLIP (Li et al., 2022) on these benchmarks.

DisCoCLIP outperforms CLIP and OpenCLIP
on verb understanding by 4.82% and 1.01%. It
also outperforms CLIP in overall performance by
1.3%, but falls behind OpenCLIP and BLIP by
2.05% and 7.9%. On SVO-Swap, it achieves an
accuracy of 93.68% outperforming all three of
CLIP, OpenCLIP and BLIP by a large margin
(30.52% — 57.04%). On ARO-Relation, again
it outperforms all three of the CLIP models by
4.28% — 5.1%, in ARO-Attribution, it outperforms
CLIP and OpenCLIP by 9.01% and 10.88%, but
falls behind BLIP by 8.45%.

In summary, DisCoCLIP achieves comparable
performance to transformer-based models with or-
ders of magnitude fewer parameters. The use of
tensor decomposition enables efficient represen-
tation and computation, making our model more
parameter-efficient and potentially more robust
when training data is limited. To our knowledge, it
is the first time that the theory of tensor networks
has been used to model the structure of language or
used in vision-language tasks. Our work provides
a new witness for the applications of tensor net-
works to machine learning and further showcases
the advantage of using them.

2 Related Work

Several approaches have been proposed to address
these challenges in vision-language models. Some
incorporate aspects of linguistic structure (Jiang
et al., 2024), others introduce hard negatives (Li
et al., 2024), and some incentivize learning by ex-
plicitly rewarding the model for capturing linguis-
tic elements such as adjectives and verbs (Thrush
et al., 2022).

Tensor networks were introduced to make the
numerical treatment of many-body quantum states
feasible by exploiting their internal structure
(White, 1992). Such states naturally live in expo-
nentially large tensor-product spaces, which are dif-
ficult to handle directly. A tensor network circum-
vents this by factorizing a single, high-order tensor
into a set of lower-order tensors, whose indices are

glued together by contraction operations. In a 7en-
sor Train (also known as a Matrix Product State, or
MPS), these tensors are arranged in a strictly one-
dimensional sequence, with each tensor contracted
only to its immediate predecessor and successor
through shared bond indices; by contrast, a Tree
Tensor Network connects tensors in a branching,
hierarchical structure. Tensor networks have found
applications outside physics, especially in machine
learning where they are used for sequence mod-
elling (Harvey et al., 2025), optimizing the com-
putations of neural networks (Ahromi and Orts,
2024; Novikov et al., 2015), and in general any
large-scale optimization problem (Cichocki et al.,
2017), such as latent feature extraction (Stouden-
mire, 2018) and security (Aizpurua et al., 2025).
Their decomposition methods have been tested on
image classification tasks (Roberts et al., 2019; Rao
et al., 2020; Serafini and d’Avila Garcez, 2017),
word statistics, and document retrieval from large
corpora of text (Miller et al., 2021; Zhang et al.,
2019; Liu et al., 2005; Bouchard et al., 2015).
Tensors and the contraction operation between
them were also used in a model of meaning known
as “compositional distributional semantics” (Ba-
roni and Zamparelli, 2010; Maillard et al., 2014;
Grefenstette and Sadrzadeh, 2011; Yeung and Kart-
saklis, 2021). In this model, the meaning of each
word is either a vector or a higher-order tensor. The
orders of the tensors are determined by the gram-
matical roles of words. Meanings of nouns are vec-
tors, where as meanings of words with functional
roles such as adjectives and verbs are matrices and
cubes. DisCoCLIP is inspired by compositional
distributional semantics and the theory of tensor
networks. We denote the meaning of a piece of text
by a tensor network. In this tensor network, the ten-
sors encode meanings of words, the layout of the
tensor network represents the syntactic structure
of the sentence. Other tensor network layouts are
used as baselines to test how useful is encoding less
structure, such as word order and bags-of-words.
Another key novelty of our model is that it ex-
tends compositional distributional semantics to a
multimodal setting. Previous multimodal adap-
tations include (Lewis et al., 2024) for compo-
sitional concept learning, (Nazir and Sadrzadeh,
2024) for audio-text retrieval, and (Wazni et al.,
2024) for verb understanding in CLIP. However,
DisCoCLIP differs from these approaches in two
important ways. First, our model is more general:
It handles sentences of arbitrary syntactic structure,
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Figure 1: An illustration of the architecture of DisCoCLIP, which consists of a text encoder based on a structure-informed
tensor network of words, and a vision encoder based on a Vison Transformer (ViT). The Structural Parser converts the input text
into a tensor network, based on the chosen structure which could be any of the four types: Tree, Compact, Cups or Spider. The
tensor network is then contracted by the Tensor Network Contractor, which computes an optimal contracting order to obtain a

single vector representing the meaning of the input text. The

input image is processed by Vision Transformer (ViT) to obtain a

vector representation of the image. The text and image vectors are then used to compute a similarity score, which is used for

training the model and for downstream evaluation.

whereas prior work typically focuses on specific
constructions such as subject-verb-object (Lewis
et al., 2024; Wazni et al., 2024) or adjective-noun
pairs (Nazir and Sadrzadeh, 2024). Second, DisCo-
CLIP features an end-to-end pipeline trained with
a single objective function, in contrast to previous
methods that require a separate objective for their
different text and audio/image model components.
This unified approach enables more flexible and
scalable multimodal learning.

3 Basics of Tensor Networks

A tensor network is a collection of tensors con-
tracted together to form a new tensor. An order-
n tensor 1" is a multi-dimensional array T' &
R > Xdn where d; is the dimension of the i-th
index. Elements are denoted by 73, . ;,., with each
iy, ranging from O to dj_;. Scalars, vectors, and
matrices are tensors of order 0, 1, and 2, respec-
tively.

Tensor contractions. Tensors can be multiplied
together by contracting over a shared index, which
generalizes matrix multiplication. For example,
given two tensors A € R4 *d2 gnd B € Rd2xds
their contraction over the second index yields a new

scalar vector matrix order-3 tensor
dot-product matrix-vector bilinear form

o0 9o o¢o

Figure 2: Graphical representation of tensor networks.
A tensor is depicted as a node with one edge for each
index of the tensor. For example a scalar has no edge,
a vector has one edge, a matrix has two edges and an
order-3 tensor has 3 edges. An edge of a node can be
connected to another edge of another node, forming
a contraction, which is a generalised form of matrix
multiplication.

tensor C' € R xds.
da
Cigi = ZAihk By j,
k=1

This operation extends naturally to higher-order
tensors by summing over any shared index.

Cioipfiseniq = E Ay oipik e i

K1,y kor

X By, . k1
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where the indices ky, . . ., k, are summed over, rep-
resenting the contracted dimensions shared by A
and B. This operation generalizes matrix multipli-
cation and inner product to higher-order tensors.

Graphical representation. Tensor contractions
involving multiple tensors can be difficult to reason
about. The graphical representation of tensors, as
shown in Figure 2, provides a more intuitive way
of visualizing them. In this representation, tensors
are depicted as nodes and their indices as edges,
with edges common to two tensors indicating a
contraction.

Tensor decomposition. As the number of pa-
rameters grows exponentially with the tensor or-
der, computing with them becomes costly. Ten-
sor networks were originally introduced to effi-
ciently represent high-order tensors by decompos-
ing them into a network of lower-order tensors.
The number of parameters of an order-n tensor
T € Rboxdixdzx-Xdn j5 ojven by the product of
its dimensions, dodids - - - d,.

order-5 tensor Matrix Product State

2969606

didadsdads dib+ (do + ds + da)b* + dsb

Figure 3: The decomposition of an order-5 tensor into a
Matrix Product State (MPS). The red edges are called
the bonds and their dimension is called the bond dimen-
sion b. Below the tensors, we show the formulas for
the number of parameters required to represent the full
order-5 tensor (bottom left) and its MPS decomposition
(bottom right).

In many practical scenarios, representing a high-
order tensor with all of its exponentially many pa-
rameters is unnecessary. Instead, the tensor can
often be efficiently approximated or even exactly
represented by decomposing it into a network of
lower-order tensors. This decomposition, called
a tensor network, greatly reduces the number of
parameters and enables scalable computation.

A canonical example is the ground state of a
quantum many-body system, which can be ef-
ficiently represented by a Matrix Product State
(MPS) (Fannes et al., 1992), also known as a Ten-
sor Train. An MPS expresses a high-order tensor
as a sequence (or “train”) of lower-order tensors
connected by contracted indices, as illustrated in
Figure 3. The contractions between neighboring
tensors are called bonds and their dimensions are

Alice loves Bob Alice loves Bob
Tree Spider
Alice loves Bob START Alice loves Bob
Compact Cups

Figure 4: The four types of tensor networks considered in
this paper: Compact and Tree are based on the CCG gram-
mar, Cups preserves word order and Spider is a bag-of-words
model. Each rectangle represents a node in the tensor net-
work. The black dot in Spider is the copy node, which is
operationally equivalent to element-wise multiplication.

called bond dimensions. The dimension of each
bond index is the bond dimension b, which controls
the expressiveness and parameter count of the MPS.
The total number of parameters in the MPS is

n—1

(dl + dn)b + Z dkb27
k=2

assuming all bond dimensions are equal to b. This
is typically much smaller than the d;ds - - - d,, pa-
rameters required for a full tensor, making MPS an
efficient representation for high-order tensors. For
the rest of this paper, we will use a uniform dimen-
sion denoted by d and a uniform bond dimension
denoted by b for simplicity. We denote the num-
ber of parameters in an MPS representation of an
order-n tensor as

d =1
#MPS(n,d,b) = { "
2db + (n — 2)db?, n>2
(D

Other than MPS, other common tensor network
decompositions include the Tree Tensor Network
(TTN) (Shi et al., 2006), which arranges tensors in
a tree structure, and the Projected Entangled Pair
State (PEPS) (Verstraete and Cirac, 2004), which
arranges tensors in a 2D lattice. These decomposi-
tions are useful for different applications and can
be adapted to specific data structures.

4 Methodology

Our main contribution is to replace CLIP’s
Transformer-based text encoder with a tensor net-
work encoder, resulting in a new vision-language
model we call DisCoCLIP. In DisCoCLIP, the text
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encoder constructs sentence embeddings using ten-
sor networks that explicitly encode linguistic struc-
ture, while the image encoder remains the original
CLIP vision transformer. By varying the layout
of the tensor network, we can control the level of
syntactic and semantic information captured in the
text representation.

Given an image-caption pair, DisCoCLIP pro-
cesses them in the following steps (see Figure 1):

1. The sentence is parsed to extract its syntactic
structure.

2. A tensor network is constructed based on the
parse tree, where each word is represented by
a tensor node.

3. The tensor network is contracted to produce
a fixed-size vector embedding for the entire
sentence.

4. The image embedding is computed using a
Vision Transformer (ViT).

5. The text and image embeddings are compared
to compute a similarity score, which is used
for training the model and for downstream
evaluation.

For step 1, we use the state-of-the-art
BobcatParser (Clark, 2021) from the Lambeqg
library (Kartsaklis et al., 2021) to obtain the Com-
binatory Categorial Grammar parse trees of the
sentences (Ades and Steedman, 1982; Steedman,
1987, 2000) .

Combinatory Categorial Grammar (CCG) is a
highly expressive formalism for modeling natural
language syntax and semantics. In CCG, each word
is assigned a syntactic category that reflects both
its grammatical role and its combinatory potential.
Categories are either atomic (such as noun phrase
N P or sentence \S) or functional, where functional
categories specify how a word combines with its
arguments. Functional types take the form Y/ X or
Y\ X, indicating that the word expects an argument
of type X to its right (/) or left (\), and yields a
result of type Y. For example, adjectives have type
NP/N P, intransitive verbs have type S\ N P, and
transitive verbs have type (S\NP)/NP.

The combinatory rules of CCG allow for the
composition of these categories to cancel out the
functional types and yield a sentence S type. The
two main rules are forward application (>) and
backward application (<):

XY Y Y X\Y
X X =

where X and Y are any CCG types. These rules al-
low for the composition of words into phrases and
sentences, following the syntactic structure of the
language. For example, the sequence “Alice loves
Bob” can be reduced to a sentence S by first assign-
ing the atomic category N P to both “Alice” and
“Bob”, and the functional category (S\INP)/N P
to “love” and then applying the forward and back-
ward application rules as follows:

loves Bob
Alice (S\NP)/NP NP
NP S\NP
S <

Other CCG rules include forward and backward
composition, which are used to combine auxil-
iary verbs with their arguments, and forward and
backward cross-composition, used to combine cat-
egories with long distance dependencies such as
gapping. Another notable CCG rule is type-raising,
which enables specific combinations of categories,
e.g. from left to right. This feature helps the CCG
align with Psycholinguistic theories. For instance,
in English, it will allow categories to combine from
left to right and form incremental parses that sup-
port theories of human sentence processing.

A distributional compositional (DisCo) seman-
tics has been developed for CCG (Grefenstette and
Sadrzadeh, 2011; Yeung and Kartsaklis, 2021; Wi-
jnholds et al., 2020). This semantics assigns to
a word w with a CCG category composed of n
atomic categories a multilinear map f,, with n ar-
guments

fo:VixVoax - xV, =V,

Each V; is a finite-dimensional vector space over
the field of reals R. Equivalently, f,, can be repre-
sented by a tensor of in the space

fueVi®@Vh® - ® Vi

Here, each atomic type corresponds to an index
of the tensor. For example, a noun with the type
NP is assigned a vector (order-1 tensor), while
an adjective with the type N P/N P is assigned a
linear map that takes a vector and returns a vector,
which can be represented as a matrix (order-2 ten-
sor). A transitive verb with the type (S\NP)/NP
is assigned a bilinear map that takes two vectors
and returns another vector, i.e. a cube (an order-3
tensor), and so on. For the general formulae of
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these representations, see (Maillard et al., 2014)
and (Wijnholds et al., 2020).

Given the CCG parse tree, the word tensors are
composed by performing tensor contractions that
mirror the syntactic reductions specified by the tree.
Each time a combinatory rule (such as forward or
backward application) is applied in the parse, the
corresponding word tensors are contracted along
the appropriate indices. This process recursively
combines the tensors according to the grammatical
structure, ultimately yielding a single vector repre-
sentation for the entire sentence. Such semantics
was developed in (Maillard et al., 2014; Wijnholds
et al., 2020) and leads to the Compact tensor net-
work structure.

An alternative semantics presented in (Yeung
and Kartsaklis, 2021) assigns to every word a vec-
tor and models the grammatical compositions (rep-
resented by CCG rules such as forward and back-
ward application) by a shared order-3 tensor. This
tensor acts as a universal composition operator of
all compositional operators. This approach yields
the Tree tensor network structure, where the parse
tree topology is preserved but all internal nodes use
the same composition tensor to combine their child
representations.

4.1 Text Encoder Structures

We consider four types of tensor network structures:
Tree, Compact, Cups, and Spider, as illustrated
in Figure 4. Every tensor node in the networks is
a trainable parameter, which is learned during the
training process.

The Tree structure is based on the CCG parse
tree of the sentence, where each word is represented
as a vector node and an order-3 tensor is used to
compose these word nodes to form non-terminal
terms in the parse tree.

The Compact structure is a variant of the Tree
structure, where every non-terminal node in the
parse tree is absorbed by one of its parents, result-
ing in a more compact representation where some
word nodes become higher-order tensors.

The Cups structure is a variant of Tensor Train
(or MPS) where each word is an order-2 tensor,
connected in a chain to preserve word order. The
first word connects to a special start node while
the last word outputs the sentence embedding.

The Spider structure implements a bag-of-words
model, where each word is represented as a vector
node and all word nodes are contracted through a
special copy node to produce a single output vector.

This copy node, of order n, is a tensor C' € R?"
defined as

1 ifiqg =i =--- =iy,
Cirigysin = .
0 otherwise.

Contracting n — 1 indices of the copy node with
n — 1 word vectors yields their element-wise
(Hadamard) product, producing a multiplicative
bag-of-words sentence embedding.

Parameter count. Each tensor network struc-
ture has a different parameter count, determined by
the number and order of word tensors and any com-
position tensors. Let |V| be the vocabulary size.
For Compact, let |V"| be the number of words
with order-r tensors, and #MPS(r, d, b) the param-
eter count for an order-r MPS (see Eq. (1)). Table 1
summarizes the counts.

Structure Words Composition
Tree |V|d 2db + db?
Compact ) |V"|#MPS(r,d,b) 0
Spider |V|d 0
Cups |V|d? d

Table 1: Number of parameters for each tensor network
structure.

5 Contrastive Learning

We train DisCoCLIP using contrastive learning,
where the image encoder f (frozen CLIP) and the
tensor network text encoder g map image-caption
pairs (x,y) to embeddings (x,y). The goal is to
bring true (positive) pairs closer and push (nega-
tive) mismatched pairs apart in the joint embed-
ding space. For a batch of B positive pairs, all
non-matching image-caption combinations in the
batch (B(B — 1)) serve as negatives, following
the in-batch negative sampling of CLIP (Radford
et al., 2021). These are considered easy negatives,
as opposed to more challenging, hand-crafted hard
negatives.

We use the widely adopted InfoNCE
loss (van den Oord et al.,, 2018) to train the
model. Given a batch of B image-caption pairs
with embeddings x; = f(x;) and y; = g(y;), the
InfoNCE loss is

L= log Z]:XP(S(Xin)/T) @)

i=1 j=1 exp(s(x,y;)/7)

where 7 is a temperature parameter and s(x,y) is
the cosine similarity between the image embedding
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x and the caption embedding y. Here, the numer-
ator measures similarity for positive (matching)
pairs (¢ = j), while the denominator includes all
pairs in the batch, serving as negatives when ¢ # j.
The loss thus encourages higher similarity for true
pairs and lower for mismatched ones.

We evaluate our approach on two key benchmarks
for vision-language understanding: SVO-Probes
and ARO. The SVO-Probes dataset is designed to
test whether models can distinguish fine-grained
changes in the image which corresponds to varia-
tions in subject, verb, or object. The task is to de-
termine which of the two images correctly matches
a given caption. In contrast, the ARO (Attribution,
Relation, and Order) dataset assesses a model’s
ability to correctly compose meanings in a sentence.
The task is to determine which of the two cap-
tions correctly describes a given image. Together,
these datasets provide a comprehensive evaluation
of both compositional and structural language un-
derstanding in multimodal models.

5.1 SVO-Probes

For SVO-Probes, we prompted the language model
Llama-3.2-3B (Grattafiori et al., 2024) to cor-
rect grammatical and spelling mistakes as the orig-
inal dataset contained errors from crowdsourced
captions. The exact prompt used can be found in
the Appendix A. The images in the SVO-Probes
dataset were not available for download from the of-
ficial repository; therefore, we attempted to down-
load them from the Internet using the provided
URLSs on 2 May 2025. However, many of the URLs
were no longer active, and we were only able to
download 8,984 images of the total 14,097 images
in the dataset, resulting in a reduction of the dataset
size from 36,841 to 20,458 entries.

To ensure a reasonable train-test vocabulary over-
lap, we filtered out entries that contained words that
appeared fewer than 50 times in the entire dataset,
yielding 8,984 image-caption pairs split 60/20/20
for training, validation, and test, with no image
overlap between splits. We also introduced a new
dataset: SVO-Swap. This is a set of 95 evalua-
tion pairs created by swapping subjects and objects
(when both refer to humans or animals) in SVO-
Probes captions.

The SVO-Probes benchmark is divided into three
subsets: Subject, Verb, and Object. Each of these
corresponds to the specific component of the sen-
tence that differs between the two alternatives. This
structure enables a fine-grained evaluation of the

model’s ability to distinguish changes in the lin-
guistic roles of the words within a caption.

5.2 ARO

The ARO dataset consists of four different sub-
sets: Visual Genome Attribution (VG-A), Visual
Genome Relation (VG-R), COCO Order and Flickr
Order. The way these subsets are constructed was
to first gather a set of positive image-caption pairs,
and then apply a certain modification to the cap-
tions to form negative captions. In the VG-A subset,
positive pairs are chosen to be images with two ob-
jects and each gets an attribute. For example the
silver fork and the round plate contains a fork that
is silver, and a plate that is round. The correspond-
ing negative caption would be the round fork and
the silver plate, where the attributes for the two
objects are swapped. For the VG-R subset, posi-
tive pairs are images with a relation involving two
objects. For example For ARO-Attribution (with
28,748 entries) and ARO-Relation (with 23,937 en-
tries), we used a 70/15/15 split without frequency
filtering, as vocabulary overlap was sufficient.

5.3 Training

For each structure (Tree, Compact, Spider and
Cups), we trained the tensors for 10 epochs, us-
ing the Adamw optimizer (Loshchilov and Hutter,
2019) with a learning rate of 1073, a weight decay
of 1072 and a batch size of 64. We also experi-
mented with bond dimensions 2, 5, 10, 15 and 20 in
the MPS decomposition. Training was performed
on an Apple M1 MacBook with 16GB RAM, utiliz-
ing the PyTorch Metal Performance Shaders (mps)
backend to accelerate tensor operations on the GPU.
Each epoch required several minutes, and the total
training time for all experiments was approximately
one day. The code used for the experiments is avail-
able at github.com/kinianlo/discoclip.

5.4 Results

Table 2 reports our performance on SVO-Probes
and ARO. Although BLIP achieves the highest raw
scores on SVO-Probes subsets( Subjects (91.88),
Verbs (88.58), Objects (96.37)), our Compact
model remains a strong second overall (83.55) and
is the clear leader among non-BLIP approaches.
Notably, Compact scores higher on Verbs (82.42)
than on Subjects (80.74), reversing the typical
trend seen in all other models and underscoring
its structure-aware design for modeling action se-
mantics. On the SVO-Swap benchmark, Compact
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SVO-Probes SVO-Swap ARO

Subject Verb Object  Overall Attribution  Relation
Spider 83.29 7648 86.64 80.95 50.00 50.00 50.00
Cups 7425 7536 86.83  78.35 84.21 63.07 52.68
Tree 89.79 7940 85.88 83.66 47.37 55.11 52.36
Compact 80.74 8242 87.79 83.55 93.68 70.01 55.81
CLIP (ViT-B-32) 82.83 77.60 90.08 82.36 57.89 61.00 51.53
OpenCLIP (ViT-B-32) 85.15 81.41 93,51 85.71 63.16 59.13 50.71
BLIP (itm-base-coco) 91.88 88.58 96.37 91.56 \ 36.84 \ 78.46 52.90

Table 2: Results on the SVO-Probes, SVO-Swap and the ARO datasets. Best accuracies are bolded for each subset.

Dataset Caption v/ Positive image X Negative image
SVO-Probes A father holds a baby
Dataset Image \ v Positive caption X Negative caption
SVO-Swap A woman holds a A puppy holds a
puppy woman

. The bus is to the right The building is to the

ARO-Relation of the building right of the bus
The dark brown icing  The silver icing and the

ARO-Attribution

and the silver fork dark brown fork

Figure 5: Example entries from the datasets used in this work.

excels with 93.68, highlighting its robustness to ar-
gument perturbations. Finally, on ARO, Compact
outperforms every model on Relation attribution
(55.81) and closely matches BLIP on Attribution
(70.01), demonstrating that embedding syntactic
structure as an inductive bias without hard-negative
training yields consistently strong relational rea-
soning and verb understanding.

It is noteworthy that although BLIP achieved the
highest overall accuracy on SVO-Probes (91.56),
it performed poorly on our new SVO-Swap bench-
mark (36.84). The underlying causes of this dis-
crepancy remain under investigation.

By contrast, the baseline models Spider and
Cups deliver the poorest performance, underscor-
ing that correct structural encoding is essential for
compositional understanding. As a bag-of-words
model, Spider produces identical representations
for both candidate captions in SVO-Swap and ARO,
resulting in a flat 50 percent accuracy on these tasks.
This failure further illustrates the necessity of in-
corporating explicit linguistic structure rather than
relying solely on word co-occurrence.

Parameter Efficiency As shown in Table 1, our
Compact text encoder requires only 537,600 pa-
rameters on the SVO-Probes benchmark—over two
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Figure 6: Performance of models on the SVO-Probes
Subject, Verb, and Object subsets.
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Figure 7: Performance of models on the SVO-Swap and
ARO Attribution and Relation benchmarks.

orders of magnitude fewer than CLIP’s 63,428,097
and BLIP’s 137258 496—benefiting from its
tensor-train factorization and the relatively small
vocabulary size. On the ARO benchmark, Com-
pact uses 28,309,504 parameters—approximately
two times fewer than CLIP’s text encoder—while
still outperforming CLIP in both attribution and
relation accuracy.

Model SVO ARO
Spider 55,296 735,744
Cups 1,659,392 14,715,392
Tree 185, 856 797,184
Compact 537,600 28,309,504
CLIP 63,428,097
OpenCLIP 63,428,097
BLIP 137,258,496

Table 3: Parameter counts for each text encoder model.

6 Conclusion

In this work, we introduced DisCoCLIP, a
vision-language model that replaces the standard
Transformer-based text encoder with a structure-
informed tensor network. By leveraging the compo-
sitional layouts of tensor networks inspired by com-
positional distributional semantics and quantum-

inspired tensor decompositions, our approach ex-
plicitly encodes linguistic structure and achieves
competitive performance on challenging multi-
modal benchmarks such as SVO-Probes and ARO.
Our experiments demonstrate that structure-aware
tensor networks, particularly the Compact model
that was a dense variant of the syntactic parse
tree, can match or surpass classical neural mod-
els in tasks requiring fine-grained understanding
of sentence structure. Our model also uses sig-
nificantly fewer number of parameters in compar-
ison to Transformer-based models such as CLIP.
These results highlight the potential of tensor net-
work architectures as interpretable and parameter-
efficient alternatives for multimodal learning. Fu-
ture work will explore scaling these models to
larger datasets, working with complex datasets
such as Winoground (Thrush et al., 2022), explor-
ing the quantum connections and training circuit
ansatze, and extending the approach to more com-
plex linguistic phenomena.

7 Limitations

A limitation of this work is its evaluation on smaller,
curated datasets rather than the web-scale data used
to train many contemporary vision-language mod-
els. The SVO-Swap benchmark comprises only 95
evaluation pairs. Consequently, the performance
reported on this task is not statistically robust.

Our pipeline introduces a dependency on the
CCG parser. Errors from the parser can propagate
through the pipeline, resulting in ill-formed tensor
networks and inaccurate semantic representations.
In future work, longer and more complicated sen-
tences can be tested to see how parsing errors affect
the performance of DisCoCLIP.

The image encoder was kept frozen during train-
ing, meaning the text encoder learned to align with
a fixed set of visual features rather than co-adapting
with the image encoder. While this design choice
effectively isolates the contribution of the text en-
coder, training both the text and image encoder
could potentially yield further performance im-
provements.
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A Prompt for Grammatical Correction
for SVO-Probes

Listing 1: Prompt provided to Llama-3.2-3B-Instruct for
grammatical correction for caption in the SVO-Probes
dataset.

### System
You are a grammar assistant expert in
Combinatory Categorial Grammar.
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##4# Variables
Subject: {subj}
Verb: {verb}
Object: {obj}

##4+ Task

Turn the user’s caption fragment into a
single English sentence that:

- Is grammatically correct

- Has a valid CCG parse that leads to a
sentence output

— Has no spelling errors

- Has a main verb {verb} in simple
present tense only

- Has the subject ({subj}) first,
followed by the verb ({verb}), then
the object ({obj})

Additional rules:

- If the main verb is not {verb}, you
may remove parts of the user’s input

— If the user’s input is a question,
convert it into an affirmative
sentence.

If it’s already correct, repeat it
verbatim.
Respond xxonly** with the final sentence

### Example
Input: Girl standing in the grass.
Output: The girl stands in the grass.

Input: A person is telling the boy to
sit on the chair.
Output: The boy sits on the chair.

Input: The player backhands when he
plays tennis.
Output: The player plays a backhand when
he plays tennis.

Input: Can we take the kid for a walk on
the beach?
Output: The kid walks on the beach.

Input: Is this person resting under the
tree?
Output: The person rests under the tree.

### User
{input_sentence}
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