
Proceedings of the 14th Joint Conference on Lexical and Computational Semantics (*SEM 2025), pages 293–303
November 8-9, 2025 ©2025 Association for Computational Linguistics

Enhancing Readability-Controlled Text Modification with Readability
Assessment and Target Span Prediction

Fengkai Liu, John S. Y. Lee
Department of Linguistics and Translation

City University of Hong Kong
Hong Kong SAR, China

fengkaliu3-c@my.cityu.edu.hk, jsylee@cityu.edu.hk

Abstract

Readability-controlled text modification aims
to rewrite an input text so that it reaches a target
level of difficulty. This task is closely related to
automatic readability assessment (ARA) since,
depending on the difficulty level of the input
text, it may need to be simplified or complexi-
fied. Most previous research in LLM-based text
modification has focused on zero-shot prompt-
ing, without further input from ARA or guid-
ance on text spans that most likely require re-
vision. This paper shows that ARA models for
texts and sentences, as well as predictions of
text spans that should be edited, can enhance
performance in readability-controlled text mod-
ification.

1 Introduction

Readability-controlled text modification aims to
rewrite the input text so that it reaches a target level
of difficulty (Chi et al., 2023; Farajidizaji et al.,
2024). The nature of the modification depends
on whether the difficulty level of the input text is
higher, lower, or the same as the target level. If
higher, the system should perform text simplifica-
tion, which has been extensively studied (Agrawal
and Carpuat, 2023; Alva-Manchego et al., 2020b;
Mo and Hu, 2024; Štajner et al., 2017). If lower, the
system needs to “increase the lexical and syntactic
complexity of a text” (Berov and Standvoss, 2018),
a task that has been studied under various terms in-
cluding “textual embellishment” (Berov and Stand-
voss, 2018), “text elaboration” (Farajidizaji et al.,
2024) and “complexification” (Chi et al., 2023). In
Table 1, for example, the input text is simplified to
the target level “elementary” and complexified to
the “advanced” level, but is left unchanged when
the target level is “intermediate”, since it is already
at the intermediate level.

In the most recent study on readability-
controlled text modification (Farajidizaji et al.,
2024), zero-shot prompting of Large Language

Input
(inter-
mediate
level)

Argentina is unhappy that the US
outdoor clothing retailer, Patago-
nia, is claiming a domain name
that has been known far longer
as a region of spectacular beauty
that also has its own parliament
...

Output
for target
level “ele-
mentary”

Argentina is unhappy that the US
outdoor clothing retailer, Patago-
nia wants a domain name that ...

Output
for target
level
“interme-
diate”

Argentina is unhappy that the US
outdoor clothing retailer, Patago-
nia, is claiming a domain name
that has been known far longer
as a region of spectacular beauty
that ...

Output
for target
level “ad-
vanced”

Argentina has lodged an ex-
pression of its unhappiness that
the US outdoor clothing retailer,
Patagonia, is claiming a domain
name that ...

Table 1: Example input and outputs for readability-
controlled text modification at the target levels “elemen-
tary”, “intermediate”, and “advanced”

Models (LLMs) has been shown capable of nudg-
ing the difficulty level of a text towards the target
level, in terms of the Flesch Reading-Ease Score
(FRES) (Kincaid et al., 1975). There was no at-
tempt, however, to further improve the proposed
method using training data from text modification
or automatic readability assessment (ARA) (Mar-
tinc et al., 2021), which is directly relevant to
readability-controlled text modification. Since an
ARA model estimates the difficulty level of a text,
it can help determine whether and how much mod-
ification is needed, and in which parts of the input
text.

This paper investigates whether ARA and text
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modification training data can improve the perfor-
mance of readability-controlled text modification.
Specifically, we address the following research
questions:

ARA data Can text modification performance be
improved with automatic assessment of the
difficulty of a text and/or of individual sen-
tences?

Text modification data Can text modification per-
formance be improved with automatic identi-
fication of text spans that require editing?

The rest of the paper is organized as follows.
After a review of previous research (Section 2), we
describe the proposed auxiliary models for guiding
the text modification process (Section 3), and the
prompt that incorporates information from these
auxiliary models (Section 4). We then present our
dataset (Section 5) and report automatic (Section 6)
and human (Section 7) evaluation results.

2 Previous work

Readability-controlled text modification may be
viewed as a paraphrasing task (Barzilay and Lee,
2003) with an additional constraint, namely, that
the output must be at the target level of difficulty.
To our knowledge, there have been only three pub-
lished studies on text modification. Trott and Riv-
ière (2024) assessed the ability of GPT-4 Turbo to
make a text easier or harder, but did not require the
output to reach a specific difficulty level. Chi et al.
(2023) focused on text modification at the sentence
level. T5 models were fine-tuned on sentence pairs
from text simplification datasets; for sentence com-
plexification, T5 models were fine-tuned with the
inputs and outputs reversed. Most related to our
work, Farajidizaji et al. (2024) generated versions
of the input text at different target FRES, using
zero-shot prompting of ChatGPT and Llama-2. In
terms of the readability of the modified texts, their
best model achieved 24.2% accuracy in reaching
the target FRES. In terms of the content of the mod-
ified texts, however, no evaluation was reported
because of the lack of gold outputs.

Other studies have focused exclusively on either
text complexification or text simplification. For the
former task, Berov and Standvoss (2018) trained
an LSTM model on the inverse of WikiLarge, a
simplification corpus based on simple and standard
English Wikipedia. The model is then applied to
complexify the texts in a story corpus. Naskar et al.

(2019) adopted a similar LSTM encoder-decoder,
and reported both BLEU and human evaluation.

For text simplification, early studies tended to
take the relative approach, i.e., to make the input
text easier but without specifying a target difficulty
level or audience (Belder and Moens, 2010; Kaji-
wara et al., 2013; Paetzold and Specia, 2017; Sid-
dharthan, 2002). Recent work has increasingly
recognized the need for text simplification to an ab-
solute target level (Štajner et al., 2017). Nishihara
et al. (2019) used lexical and syntactic complexity
features, while Yanamoto et al. (2022) applied deep
reinforcement learning using a reward calculated
based on the difference between the difficulty of the
output sentence and the target difficulty. Agrawal
et al. (2021) used a non-autoregressive model to
iteratively edit the source sentence. Agrawal and
Carpuat (2023) predicts low-level control tokens
for text simplification. Similar to this work, more
recent studies have exploited LLMs. For example,
the SimplifyMyText system rewrites the input text
in plain language (Färber et al., 2025). In the Ex-
pertEase system, LLM-based agents collaborate in
text simplification playing the roles of the expert,
the teacher, and the student (Mo and Hu, 2024).

3 Approach

Readability-controlled text modification requires
judgment on text difficulty, and on the kinds of
content that are most suitable for revision. There-
fore, it may potentially benefit from auxiliary mod-
els that can assess the difficulty of sentences (Sec-
tion 3.1) and texts (Section 3.2), and predict the text
spans that require revision (Section 3.3). For LLM-
based text modification, the information produced
by these auxiliary models can be incorporated into
the prompt (Section 4).

3.1 Sentence ARA (Sent ARA) Model

Generally, it is not necessary to rewrite every sen-
tence in a text, even when transforming the text
to a distant target difficulty level. To make judi-
cious changes, it could be useful to highlight the
sentences that most likely require revision, i.e., the
easiest or the most complex sentences.

A sentence-level ARA model predicts the com-
plexity of an individual sentence (Brunato et al.,
2018; Garbacea et al., 2021; Liu et al., 2025; Lu
et al., 2020; Schicchi et al., 2020; Štajner et al.,
2017). This information can help guide the LLM
in identifying sentences that deviate most from the
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With the owners out of the cats’ line of vi-
sion, researchers played recordings of three
strangers calling the cats’ names followed by
a call from the cat’s owner and then by the call
of another stranger. advanced
Researchers charted the cats’ reactions by mea-
suring a number of responses, including head
movements, tail and ear movements, eye dila-
tion and vocalization or whether they moved
their paws. advanced
When strangers called their names, the cats
had no reaction to the voices whatsoever.
intermediate

Table 2: Example output of the Sent ARA Model (Sec-
tion 3.1), which labels each sentence in the input text
with its difficulty level.

*With *the *owners *out *of *the *cats *’
*line *of *vision *, *researchers *played
*recordings *of *three *strangers *calling *the
*cats *’ *names *followed *by *a *call *from
*the *cat *’s *owner *and *then *by *the *call
*of *another *stranger *. Researchers charted
the cats ’ reactions by measuring a number of
responses *, *including head movements , tail
and ear movements , eye dilation and *vocal-
ization *or whether they moved their paws .
When strangers called their names , the cats
had no reaction to the voices whatsoever .

Table 3: Example output of the Target Span Prediction
Model (Section 3.3): words predicted by the model to
require revision are marked with asterisks.

target difficulty level. Table 2 shows an example
assessment, which labels the level of each sentence
in a text as “elementary”, “intermediate”, or “ad-
vanced”.

3.2 Text ARA Model

As opposed to sentence-level ARA, a text-level
ARA model (Martinc et al., 2021) assesses the
overall difficulty level of a text. This model can
identify input texts that are already at the target
difficulty level, and therefore do not require any
modification. Further, since the LLM may not be
able to modify the input text to its target level in
one round (Farajidizaji et al., 2024), this model can
also determine the necessity of an additional round
of modification.

3.3 Target Span Prediction Model

As a preliminary step before text modification,
it could be useful to identify the words that re-
quire revision (Chen and Meurers, 2019; Collins-
Thompson, 2014; Liu et al., 2024). For example,
complex word identification can serve as the first
step in a text simplification pipeline to identify the
target words, i.e., the difficult vocabulary items that
should be replaced (Gooding and Kochmar, 2019;
Paetzold and Specia, 2016; Shardlow, 2014).

In the context of text modification, we will use
the term target span to refer to the parts of the input
text that should be edited. Example input-output
pairs of text simplification and complexification
can be used for training a tagger that predicts these
spans. Compared to the Sent ARA Model (Sec-
tion 3.1), this model can provide more fine-grained
guidance. In the example shown in Table 3, both
sentences and individual words (e.g., “including”)
have been predicted to require editing.

4 Prompt implementation

The system prompt (Table 9 in Appendix A.1) de-
scribes the text modification task. The average
FRES (Kincaid et al., 1975) is provided for each
difficulty level, since the LLM may not be familiar
with the difficulty scale.

Table 4 shows the user prompt and the auxiliary
models (Section 3) from which the content is de-
rived. The prompt states both the target difficulty
level, as well as the difficulty level of the source
text (“elementary”, “intermediate”, or “advanced”),
as estimated by the Text ARA Model (Section 3.2).

In the input text, asterisks are placed on each
word that is predicted to require editing, according
to the Target Span Prediction Model (Section 3.3).
Finally, each sentence in the input text is shown
with its difficulty level, as estimated by the Sent
ARA Model (Section 3.1).

As demonstrations, two sample input texts are
shown with their gold output text and gold predic-
tions from the Sent ARA, Text ARA and Target
Span Prediction Models1.

4.1 Proposed prompts

The following variations of the proposed prompt
were implemented:

SentARA+Span The full prompt (Table 4).

1Using the actual rather than gold predictions from these
models led to slightly worse performance.
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Prompt template Model
Rewrite the following
<text_ara_output> pas-
sage at the <target_level>
level.

Text
ARA

Tokens starting with a ’*’ sym-
bol in the source text indicate the
words that were changed from
the source passage to the rewrit-
ten passage.

<demonstrations>

Source passage: Target
<target_span_output> Span

Prediction

Difficulty of individual sentences
in source passage:

Sent
ARA

<sent_ara_output>

Rewritten passage:

Table 4: Prompt for text modification (left), which
makes use of information provided by the auxiliary
models (right): <target_level> is the target dif-
ficulty level; <text_ara_output> is the predicted
level of the input text; <target_span_output> is
the input text with target span predictions (Table 3);
<sent_ara_output> is the predicted level of each sen-
tence in the input text (Table 2); <demonstrations>
are the two sample input/output pairs

SentARA Information from the Target Span Pre-
diction Model is omitted.

SentARA+Span+Ling The full prompt, with lin-
guistic features (Section 4.3) added.

SentARA+Span×n The full prompt, iteratively is-
sued until the Text ARA Model predicts the
input text has reached the target level, up to a
maximum of n iterations.

4.2 Chain-of-thought prompts
Chain-of-thought (CoT) guides LLMs in generat-
ing their own intermediate steps for completing a
task. CoT reasoning has led to robust performance
in multiple NLP tasks (Brown et al., 2020; Chen
et al., 2019; Ling et al., 2017; Wei et al., 2022). We
implemented the following CoT prompts:

CoT The prompt uses the instruction “Let’s think

step by step” (Kojima et al., 2022) to obtain
the reasoning for text modification. The LLM-
generated reasoning is then included after the
input text in the prompt, which does not use
any information from the auxiliary models.

CoT (zero-shot) Same as above, except that no
sample input/outputs are provided.

4.3 Baseline prompts

Linguistic features have been shown to be effective
for text simplification (Agrawal et al., 2021; Mad-
dela et al., 2021; Mo and Hu, 2024; Nishihara et al.,
2019; Yanamoto et al., 2022). To identify the most
salient features, we extracted all available features
in the Lexical Complexity Analyzer (Lu, 2012) and
calculate their correlation with the difficulty lev-
els of the text in our training data. According to
the Pearson Correlation Coefficient (Table 10 in
Appendix A.2), the top 5 features are Root Text-
to-Token Ratio (TTR), which measures lexical di-
versity; Corrected TTR, a refined version of TTR
accounting for text length; Number of Different
Words, which counts the number of unique words;
the Uber Index, a composite, holistic measure for
lexical complexity and diversity; and L2, the pro-
portion of content words. The following baseline
prompts were implemented:

Ling This prompt includes only the statement:
“The measurements of the five linguis-
tic features of the source passages are
<ling_feats>”, where <ling_feats> refers
to the five features mentioned above.

Vanilla No linguistic feature or auxiliary model is
used.

Vanilla (Zero-shot) Same as above, and no sam-
ple input/outputs are given.

5 Data

Newsela (Xu et al., 2015) is a graded parallel cor-
pus derived from 1,911 news articles. For each
article, simplified versions have been composed by
professional editors for students between Grade 2
and Grade 12.

To facilitate learning of the revision patterns
across the spectrum of difficulty levels, for each of
these 1,911 articles, we retrieved three versions that
span the grades: one version between Grades 2 and
5, which we will refer to as the “elementary” level
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(ele); one version between Grades 6 and 8, the “in-
termediate” level (int); and one version between
Grades 9 and 12, the “advanced” level (adv).

In our experiments, each of these 5,733
texts is to be revised to all three target levels
{ele,int,adv}. Since the level of the source
text is not disclosed to the system, it does
not know whether the text should be simpli-
fied (int->ele, adv->ele, adv->int), complex-
ified (ele->int, ele->adv, int->adv), or left un-
changed (ele->ele, int->int, adv->adv).

6 Automatic Evaluation

6.1 Implementation details
We used Meta-Llama-3.1-8B-Instruct2 for all
prompts (Section 4). The auxiliary models were
implemented as follows:

Sent ARA Model Following the approach pro-
posed by Liu and Lee (2023), we trained a
BART-large (Lewis et al., 2019) model to clas-
sify a sentence 3 at the ele, int, or adv level.

Text ARA Model Following the approach pro-
posed by Lee et al. (2021), we trained a neu-
ral ARA model by fine-tuning BART (Lewis
et al., 2020) on the Newsela dataset.4

Target Span Prediction Model We trained a tag-
ger to label each word in the source text as
REVISE or KEEP. As shown in Table 3, the
words tagged as REVISE will be asterisked in
the source text in the prompt. The gold labels
were derived from the sentence-aligned text
pairs from Newsela (Section 5), with sentence
alignments automatically produced by SentAl-
ign 5 (Steingrímsson et al., 2023). All words
in a source sentence that are not in the aligned
target sentence are considered REVISE; all
words in a source sentence that is not aligned
to any target sentence are also considered
REVISE, since they are deleted. We trained
six separate RoBERTa-based (Liu et al., 2019)
sequence taggers6 to cover all combinations
of source and target levels ({ele,int,adv}).

2meta-llama/Meta-Llama-3.1-8B-Instruct
3We used the BartForSequenceClassification model

from the transformers library of HuggingFace (Wolf et al.,
2020)

4We used the pre-trained base version of BART from Hug-
gingface (Wolf et al., 2020).

5https://github.com/steinst/SentAlign
6We used the RobertaForTokenClassification model

from HuggingFace (Wolf et al., 2020).

We also attempted training these three models us-
ing several other transformers, but did not produce
any significant improvement in performance.

6.2 Evaluation metrics

The output text should have the target complexity
and appropriate content. Complexity is evaluated
with two metrics. The first, Mean Absolute Er-
ror (MAE) in FRES, is the difference between the
FRES of the output text and the FRES of the gold
text. We also report Accuracy, i.e. whether the
output text is at the target level of difficulty. The
difficulty level of the output text is estimated with
the Text ARA Model (Section 3.2).

The content quality of the output text is evalu-
ated with four metrics. To determine the degree
of meaning preservation, the semantic similarity
between the source text and output text is evaluated
using BERTScore (Zhang et al., 2019). Further,
the output text is compared against the gold text
using three widely adopted metrics in text simplifi-
cation evaluation: BLEU (Papineni et al., 2002)7,
SARI (Xu et al., 2016)8, and D-SARI (Sun et al.,
2021) which aims at document-level simplifica-
tion9.

6.3 Results

6.3.1 Auxiliary models
To construct the prompt for each input text (Ta-
ble 4), we obtained outputs from the auxiliary mod-
els (Section 3) using 5-fold cross validation. The
Text ARA Model achieved an accuracy of 98.87%
on the three-way classification of difficulty level
(ele, int, or adv). The high accuracy validates its
reliability as an evaluation metric for text complex-
ity (Section 6.2). In contrast, the use of FRES, even
with score thresholds optimized on the Newsela
dataset, would yield only 66.08% accuracy on the
three-way classification of difficulty level.

The Sent ARA Model performed at 0.680 accu-
racy and 0.674 F1-score on the three-way classifi-
cation of difficulty level for sentences. The Target
Span Prediction Model attained 0.454 precision and

7The NLTK (Bird, 2006) implementation was used.
8The EASSE simplification evaluation suite (Alva-

Manchego et al., 2019) was used.
9The implementation by Sun et al.

(2021) (https://github.com/RLSNLP/
Document-level-text-simplification) was used.
include D-SARI incorporates several penalty factors, in
addition to the add, keep and delete scores in SARI. The same
weights for these scores were used for both text simplification
and development.
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Aux. Model Prompt method D-SARI SARI BLEU BertScore Accuracy MAE ↓
Nil Vanilla (zero-shot) 16.18 43.35 39.73 0.878 0.512 16.83

CoT (zero-shot) 17.90 43.38 45.18 0.875 0.588 16.36
Vanilla 15.08 43.22 41.74 0.890 0.584 11.80
CoT 18.32 42.96 50.70 0.890 0.614 10.76
Ling 16.05 42.51 47.08 0.902 0.487 8.52

Sent ARA SentARA 17.48 41.20 45.33 0.901 0.720 9.19
Sent ARA SentARA+Span 21.38 49.39 52.28 0.904 0.609 7.74
and Target SentARA+Span+Ling 20.34 46.48 51.30 0.908 0.559 7.83
Span SentARA+Span×2 22.69 49.22 52.80 0.902 0.688 7.74
Prediction SentARA+Span×3 22.66 49.16 52.72 0.902 0.698 7.80

Table 5: Text modification performance using different auxiliary models (↓ means smaller is better)

Task Prompt P R
Overall Vanilla (zero-shot) 0.640 0.479

SentARA 0.642 0.549
SentARA+Span 0.694 0.603

Simp. Vanilla (zero-shot) 0.644 0.482
SentARA 0.639 0.547
SentARA+Span 0.665 0.568

Comp. Vanilla (zero-shot) 0.635 0.476
SentARA 0.645 0.551
SentARA+Span 0.719 0.634

Table 6: Performance in identifying text spans to edit
(without regard to the quality of the final output), with
breakdown into simplification (simp.) and complexifi-
cation (comp.)

0.650 recall when simplifying texts, and 0.448 pre-
cision and 0.657 recall when complexifying texts.

6.3.2 Effect of Sentence ARA
Table 5 presents experimental results on text mod-
ification. When none of the auxiliary models is
used (“Nil” row in Table 5), CoT prompting gave
the best Accuracy (0.614), D-SARI (18.32) and
BLEU (50.70) scores, though it was outperformed
by the CoT (zero-shot) prompt in terms of SARI.
Both of these CoT prompts improved performance
over their vanilla version. Consistent with Wei et al.
(2022) and Kojima et al. (2022), the self-generated
reasoning steps were helpful in guiding the LLM
in performing text modification. The linguistic fea-
tures (Section 4.3) led to the best result in terms of
MAE (8.52) and BertScore (0.902).

The use of the Sent ARA Model led to the high-
est Accuracy (0.720). To better understand the
effect of this auxiliary model, we measured its pre-
cision and recall in identifying text spans for revi-
sion, without considering the quality of the actual
revision. As shown in Table 6, the gains of the

Sent ARA prompt over the Vanilla baseline were
mostly due to the recall (0.549 vs. 0.479). This
suggests that the ARA predictions helped the LLM
in selecting sentences for revision that were missed
by the baseline.

However, the use of the Sent ARA Model did
not generally improve the quality of the modified
text. It was outperformed by the CoT and Ling
prompts in most metrics other than Accuracy.

6.3.3 Effect of Target Span Prediction
Incorporating predictions of the target spans (Sen-
tARA+Span) resulted in the best overall perfor-
mance (Table 5). These predictions helped pro-
duce output texts that resembled the gold texts
to a greater extent. In terms of the content, Sen-
tARA+Span attained higher D-SARI, SARI and
BLEU scores compared to all baselines. As shown
in Table 6, it yielded higher precision (0.694) and
recall (0.603) than SentARA, likely because it was
able to make judicious choices in selecting individ-
ual words for revision, whereas SentARA provided
guidance only at the sentence level. In terms of
complexity, it also produced outputs that are clos-
est to the gold texts in FRES (7.74 MAE). However,
it was outperformed by the SentARA prompt on
Accuracy. This suggests that, if the overriding ob-
jective is to achieve the target difficulty level, then
the use of sentence ARA alone could be worth
considering.

Although the addition of linguistic features (Sen-
tARA+Span+Ling) further increased BERTScore,
it did not help improve the quality of text modifi-
cation on the other metrics. This suggests that the
LLM may have difficulty interpreting the linguistic
features and their implications.

6.3.4 Effect of Text ARA
Initial modification. As discussed in Section 6.3.1,
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Prompt method Task D-SARI SARI BLEU BertScore Accuracy MAE ↓
SentARA+Span Simp. 22.84 46.30 45.21 0.892 0.440 8.42

Comp. 19.91 52.47 59.34 0.916 0.777 7.06
SentARA+Span Simp. 25.42 55.81 59.74 0.928 0.685 7.14
(intermediate only) Comp. 20.07 60.97 58.32 0.913 0.675 6.14

Table 7: Breakdown of text modification performance into simplification (Simp.) and complexification (Comp.),
based on (top) all input texts; (bottom) intermediate input texts only (↓ means smaller is better)

the Text ARA Model has a much higher accuracy
in estimating the difficulty level of a text than the
use of FRES. For text modification, it was thus
effective in determining whether the input text is
already at the target difficulty level, or requires
modification. Only 1.13% of the input texts under-
went unnecessary modification; conversely, only
0.50% of the input texts failed to undergo modifi-
cation, due to incorrect estimation from this model.
The corresponding percentages would have been
33.92% and 24.95%, respectively, if FRES were
used for this purpose.

Iterative modifications. In terms of the con-
tent of the modified texts, an additional round of
modification (SentARA+Span×2) further improved
the BLEU and D-SARI scores. A third iteration
(SentARA+Span×3), however, led to a slight de-
cline in performance, likely because repeated mod-
ifications may exacerbate the biases inherent in
LLMs (Gallegos et al., 2024; Yu et al., 2024). In
terms of text complexity, while the Accuracy im-
proved as expected, a second iteration had no effect
on MAE (7.74) and a third one led to negative im-
pact (7.80).

6.3.5 Simplification vs. complexification
To analyze the differences between text simplifi-
cation and complexification, we compare the per-
formance of the best prompt (SentARA+Span) on
these two tasks. As shown in the top of Table 7,
complexification appears to be an easier task than
simplification, offering better performance on all
but one metric (D-SARI). Complexification often
requires inserting new content at appropriate places
in a text, which could be more challenging and
subjective than removing existing content in sim-
plification. This may explain its lower score for
D-SARI, which puts more emphasis on the quality
of document-level organization.

A potential confounding factor is the length of
the input text. The input texts that required simpli-
fication were on average longer, since they were
originally at the intermediate and advanced levels;

those that required complexification were shorter,
since they were taken from the intermediate and
elementary levels. To avoid this bias, the bottom
of Table 7 considers only the input texts at the in-
termediate level. Simplification now offers better
performance in terms of BLEU and BERTScore.
This may be due to the wider array of choices when
selecting more complex words or sentence struc-
tures, in comparison to selecting simpler ones. In
terms of complexity, the gap between the two tasks
is narrower for both Accuracy and MAE, but more
research is needed to explain the difference.

7 Human evaluation

7.1 Evaluation metrics
The quality of text modification was evaluated by
two human judges, a master and a PhD student
in Linguistics. Similar to previous schemes (Alva-
Manchego et al., 2020a; Yang et al., 2023), Fluency
and Meaning were annotated on a 5-point Likert
scale (1=Strongly disagree, 5=Strongly agree):

• Fluency: The output text is fluent and free of
grammatical errors.

• Meaning: The output text adequately pre-
serves the meaning of the source text.

To accommodate both simplification and com-
plexification, Complexity was scored from -5 to
+5:

• Complexity: A score of +5 means the output
text is much more complex and harder to un-
derstand than the source input; 0 means they
are comparable in complexity; and -5 means
the output text is much easier.

7.2 Evaluation set-up
Two source texts were randomly selected at each
difficulty level (ele, int and adv). Each of these
six texts was paired with four modified versions,
namely, its modified version at the two other lev-
els as produced by the Vanilla (zero-shot) and
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Modification Source->target Fluency Meaning Complexity
type level Zero-shot Proposed Zero-shot Proposed Zero-shot Proposed
Text Overall 4.00 4.17 3.17 3.50 -3.50 -3.50
Simp. adv->int 4.00 4.00 3.50 4.00 -3.00 -2.50

adv->ele 4.00 4.00 3.00 3.00 -3.50 -4.00
int->ele 4.00 4.50 3.00 3.50 -4.00 -4.00

Text Overall 3.50 3.17 4.00 4.17 +3.00 +3.50
Comp. int->adv 3.50 3.00 4.50 5.00 +3.50 +4.00

ele->int 4.00 3.00 3.00 3.50 +3.00 +2.50
ele->adv 3.00 3.50 4.50 4.00 +2.50 +4.00

Table 8: Human evaluation scores on Fluency, Meaning and Complexity (Section 7)

SentARA+Span×2 models. The two human judges
independently scored these 24 text pairs on Com-
plexity, Fluency and Meaning (Section 7.1).

7.3 Results

The human evaluation results are shown in Table 8.
The two judges achieved a Cohen’s kappa (Cohen,
1968) of 0.67 for Fluency, 0.88 for Meaning, and
0.85 for Complexity, all at/above a substantial level
of agreement.

Meaning. The proposed model
(SentARA+Span×2) achieved a higher Meaning
score than the zero-shot baseline in four of the six
settings. It was slightly outperformed in adv->ele
and tied at ele->adv. As both of these settings
required greater modification (distance of two
levels rather than one), the proposed model was
more likely to make changes that altered the
original meaning.

Fluency. The proposed model performed better
in simplification, but it slightly underperformed in
complexification, particularly with two-level mod-
ifications. While the auxiliary models help the
proposed model in modifying the content and diffi-
culty, they do not necessarily improve the fluency
of the output text, which sometimes contains awk-
ward phrasing.

Complexity. Both models were capable of revis-
ing the input text towards the required complexity
level, obtaining positive Complexity scores when
the level of the input text was lower than the tar-
get (complexification needed), and negative scores
when its level was higher than the target (simpli-
fication needed). When simplifying adv texts, the
proposed model succeeded in differentiating be-
tween the target levels ele and int, reducing text
complexity to a much greater degree for the former
(-4.00) than the latter (-2.50). A smaller difference
was observed for the zero-shot baseline (-3.50 vs. -

3.00). When complexifying ele texts, the proposed
model was again able to make a sharper distinction,
producing a more sophisticated output for the adv
target grade (+4.00) than for int (+2.50). The
zero-shot model failed to do so and produced an
adv output (+2.50) that is easier than the int output
(+3.00).

8 Conclusion

Human editors often need to tailor a text for read-
ers at different proficiency levels. Readability-
controlled text modification aims to rewrite an in-
put text so that it reaches a target level of difficulty.
Depending on the difficulty of the input text, it
may need to be simplified or complexified. This
paper has presented the first study on LLM-based
readability-controlled text modification that lever-
ages ARA and prediction of target spans, i.e. the
parts of the input text that require editing.

We trained ARA models that can predict the dif-
ficulty level of a sentence or a text, and taggers that
predict whether each word should be revised. The
information from these auxiliary models are then
incorporated into the prompt for the LLM. Experi-
mental results on the Newsela corpus showed that
both the ARA models and the target span prediction
model improved the quality of the modified text.
In future work, we plan to evaluate this approach
on other text genres, and investigate whether fine-
tuning an LLM on text modification data can lead
to further performance gains.
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A Appendix

A.1 System prompt

You are a professional expert in modifying texts
into a target difficulty level. The Flesch Reading-
Ease Score (FRES) measures the readability of
the text:

The averaged FRES for elementary texts is
<aver_ele_FRES>.
The averaged FRES for intermediate texts is
<aver_int_FRES>.
The averaged FRES for advanced texts is
<aver_adv_FRES>.

Table 9: System prompt

A.2 Linguistic Features

Rank Feature Correl.
1 Root TTR 0.684
2 Corrected TTR 0.684
3 Number of Different Words 0.628
4 Uber Index 0.610
5 LS2 0.546

Table 10: The five lexical features that are most corre-
lated with readability levels of the texts in our dataset.
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