Latent Traits and Cross-Task Transfer: Deconstructing Dataset Interactions in LLM Fine-tuning

Shambhavi Krishna 1,* Atharva Naik 1,* Chaitali Agarwal 1,* Sudharshan Govindan 1,* Haw-Shiuan Chang 1,† Taesung Lee 2,‡

*Equal contribution

¹University of Massachusetts Amherst ²Meta {shambhavikri,atharvashrik,cragarwal,sgovindan}@umass.edu hschang@cs.umass.edu, elca4u@gmail.com

Abstract

Large language models are increasingly deployed across diverse applications. This often includes tasks LLMs have not encountered during training. This implies that enumerating and obtaining the high-quality training data for all tasks is infeasible. Thus, we often need to rely on transfer learning using datasets with different characteristics, and anticipate out-ofdistribution requests. Motivated by this practical need, we propose an analysis framework, building a transfer learning matrix and dimensionality reduction, to dissect these cross-task interactions. We train and analyze 10 models to identify latent abilities (e.g., Reasoning, Sentiment Classification, NLU, Arithmetic) and discover the side effects of the transfer learning. Our findings reveal that performance improvements often defy explanations based on surface-level dataset similarity or source data quality. Instead, hidden statistical factors of the source dataset, such as class distribution and generation length proclivities, alongside specific linguistic features, are actually more influential. This work offers insights into the complex dynamics of transfer learning, paving the way for more predictable and effective LLM adaptation.

1 Introduction

Large Language Models (LLMs) demonstrate remarkable capabilities across diverse tasks, yet their deployment in real-world applications faces significant practical constraints. Cost and latency considerations render giant all-purpose models impractical for many use cases, driving widespread adoption of task-specific fine-tuning. However, this approach encounters a fundamental challenge: high-

Figure 1: Illustration of our motivations. LLMs such as Llama can be equipped with many different performance enhancers such as LoRA fine-tuned on a specific dataset. Our goal is to discover the potential impacts on out-of-domain tasks and side effects of each equipment.

quality training data for target tasks is often unavailable or proprietary. Moreover, deployed LLMs routinely face out-of-distribution (OOD) requests that extend beyond their fine-tuning scope. This is especially true for agentic systems, which rely heavily on cross-domain skill transfer to perform diverse sequences of tasks. These realities necessitate a deeper understanding of transfer learning.

Traditional transfer learning research has pri-

[†] Corresponding author.

[‡]This work was partly done when the author was at Anthropic.

marily focused on scenarios where source and target tasks share the same domain, assuming that similar or related in-domain data provides useful signal for the target task. However, the diverse task landscape that modern LLMs navigate demands deeper understanding of OOD transfer effects. Our experiments using Low-Rank Adaptation (LoRA) reveal counterintuitive transfer behaviors: fine-tuning on one dataset can yield surprising performance improvements or degradations on seemingly unrelated tasks, often defying expectations based on semantic similarity (illustrated conceptually in Figure 1). This unpredictability creates significant challenges for practitioners selecting optimal source datasets for fine-tuning, particularly in resource-constrained environments where training efficiency is paramount, or when acquiring pre-trained LoRA adapters from service providers without clear transferability guarantees.

In this paper, we propose a framework to analyze how the source fine-tuning dataset influences the performances on the target datasets in transfer learning and use this framework to systematically characterize the OOD generalization of an LLM using multiple LoRA adapters. Our analysis framework first constructs a performance matrix across different source and target tasks. We apply Principal Component Analysis (PCA) to this matrix to uncover latent abilities or "traits" that fine-tuned LLMs acquire from the transfer learning. We demonstrate that straightforward factors like source data quality or simple source-target similarity often fail to explain observed transfer learning effects. Instead, we highlight the critical role of more subtle, "hidden" statistical properties of the source training data (e.g., output length distribution, label imbalance) and learned sensitivities to specific linguistic features.

Our work aims to provide actionable insights into the selection of the source dataset for fine-tuning, fostering a deeper understanding of the interactions among the datasets and guiding the development of more robust LLM adaptation strategies. In our experiments, we fine-tune the Llama 3.2 3B base model (Dubey et al., 2024) using LoRA and systematically evaluate models fine-tuned on one dataset across datasets for math, coding, natural language inference, sentiment, and toxicity detection tasks to map diverse data interactions. Through analyzing the fine-tuned LLM and datasets, we observe several surprising cross-domain interactions, including: (1) the impact of source data generation

length on fine-tuned model outputs; (2) asymmetric enhancement through out-of-domain fine-tuning datasets; and (3) the profound effects of source label imbalance on both in-domain and OOD performance.

2 Related Work

The transfer learning of fine-tuning language models is investigated by several existing works (Vu et al., 2020; Chang and Lu, 2021; Parvez and Chang, 2021; Weller et al., 2022; Padmakumar et al., 2022; Li et al., 2024b; Schulte et al., 2024; Yang et al., 2024; Li et al., 2024a). Most studies focus on identifying similar tasks for positive transfer effect through fully fine-tuning small language models. Instead, our work focuses on modeling the impact of LoRA fine-tuning and discovering the often-overlooked side effect of the source training datasets including out-of-domain and out-ofdistribution datasets. Compared to the full finetuning, Biderman et al. (2024); Ghosh et al. (2024) find LoRA "learns less and forgets less", which potentially preserves out-of-domain base model capabilities better. This is one of the main reasons behind LoRA's effectiveness and popularity. Nevertheless, we demonstrate that LoRAs, which are fine-tuned on many source datasets, could still cause several types of undesirable side effects when being evaluated on a wide range of target tasks.

Methodologically, our analysis framework is related to Ruan et al. (2024), which employs PCA to analyze observational scaling laws and the predictability of LLM performance across different model sizes and tasks. Some recent findings also support our discoveries of hidden factors. For example, Zhang et al. (2025) report that instruction fine-tuning with coding data can sometimes negatively impact mathematical reasoning. Guha et al. (2025) find that the length distribution of the instruction tuning training data could affect the LLMs' code generation ability. Min et al. (2022); Kung and Peng (2023); Guha et al. (2025) discover that the format of the fine-tuning data might be more important than its content or correctness. Our work confirms their findings and provides a more comprehensive list of latent traits that influence LoRAs' performance.

3 Methodology

In our framework, we first prepare N representative tasks/datasets of interest and fine-tune LLMs

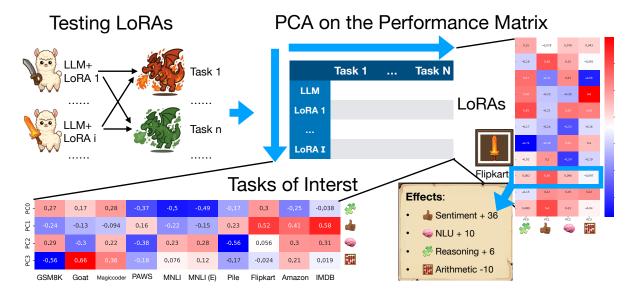


Figure 2: Discovering the latent traits of LoRA through PCA. The performance matrix stores the performance of I LoRAs on N tasks. A PCA factorizes the performance matrix into two matrices: the top four eigenvectors/bases in the bottom left and the linear weights that combine the eigenvectors/bases in the right. More red means the values are higher. Based on the eigenvectors, we identify the meaning of each principal component as our latent traits, and we can use the linear weights of the LoRA trained on Flipkart as its influence to the other datasets through the traits.

on these N datasets to acquire I fine-tuned LLM variants. In this paper, we use LoRA to fine-tune LLMs, but the framework could be applied to any fine-tuning method (e.g., full fine-tuning, prompt tuning (Lester et al., 2021), BitFit (Zaken et al., 2022), etc.) or any variants of LLMs (e.g., incontext learning or chain of thoughts).

Viewing each fine-tuned LoRA adapter as a specialized piece of equipment in a practitioner's toolkit, a crucial challenge is selecting the right tool for a new task. The conventional approach assumes a tool's effectiveness is dictated by its labeled domain, for instance, using a 'sentiment' adapter for a sentiment task. However, these tools might come with unexpected side-effects and hidden capabilities driven by the latent statistical properties of their training data, not just their domain.

To solve this issue, we evaluate the I fine-tuned LLMs on the N datasets on their accuracy, and organize the pairwise results into a $I \times N$ performance matrix as shown in Figure 2. Note that since our goal is to measure the impact on out-of-domain tasks, we focus more on relative gains, rather than the absolute performance numbers.

Throughout this paper, we denote the base LLM as M; a model fine-tuned on a dataset D as M["D"]; and the output performance of such a model on the evaluation data X is denoted M["D"](X). For example, M["Flipkart"](GSM8K) refers to the score of the model fine-tuned on the Flipkart dataset

and tested on GSM8K. In the performance matrix, M["Flipkart"](GSM8K) corresponds to the row for Flipkart and column for GSM8K.

To understand the overall characteristics and transfer learning impact across these datasets, we decompose the performance matrix using PCA. Each principal component corresponds to a group and the tasks with high values in the corresponding eigenvector belong to the group. In this way, similar evaluation tasks whose LLM scores have high correlations will cluster together. We can then use the common attribute of the tasks in a group as its name - a standard practice to make the abstract mathematical components interpretable. Guided by the PCA results, we discover the transfer learning patterns among the tasks of interest and further investigate the outliers in the performance matrix. We then conduct analyses to identify the factors that could explain the patterns and outliers.

4 Experimental Setup

We curate a diverse set of datasets spanning mathematical reasoning (MetaMath (Yu et al., 2024), GSM8K (Cobbe et al., 2021), and Goat (Liu and Low, 2023)), code generation (Magicoder (ISE-UIUC, 2023)), Natural Language Inference (NLI) (PAWS (Zhang et al., 2019) and MNLI (Williams et al., 2018)), Sentiment analysis (Flipkart Sentiment (KayEe), Amazon Reviews (Zhang and Yassir, 2022), and IMDB Reviews (Maas et al., 2011)),

Fine-tuned on	GSM8K	Goat	Magicoder	PAWS	MNLI	MNLI (E)	Pile	Flipkart	Amazon	IMDB
None (Original LLM)	9.78	6.36	21.55	46.30	33.30	33.75	38.45	63.55	31.80	51.45
MetaMath	44.96	5.40	20.50	44.55	34.65	32.95	42.25	46.10	21.60	49.65
Goat	13.42	24.65	21.65	44.55	33.10	35.10	47.15	57.85	25.45	53.00
Magicoder	19.18	8.45	29.38	45.70	33.35	34.10	37.35	70.90	28.10	51.15
PAWS	8.57	7.75	20.75	70.05	34.90	33.15	49.05	12.10	21.85	46.80
MNLI (Eng.)	9.33	6.00	20.55	57.65	69.50	83.45	51.10	5.85	37.70	53.50
Pile	12.66	8.16	21.47	56.35	35.70	33.65	85.25	83.90	32.80	51.00
Flipkart	14.59	5.96	21.84	55.55	33.65	36.25	49.10	92.65	38.70	77.15
Amazon	12.97	9.15	22.48	55.45	39.10	38.35	47.90	39.95	61.25	69.05
IMDB	12.78	6.96	22.19	55.40	34.00	34.70	46.35	85.55	31.40	91.45

Table 1: Model fine-tuning and cross-task evaluation results (% Automatic Accuracy or Accuracy from LLM-as-a-Judge). Each model was fine-tuned on a single dataset (leftmost column) and evaluated across multiple target tasks (column headers). MNLI (E) refers to MNLI English.

and toxicity detection (Pile (Korbak, 2024)). For more information about the datasets refer to Table 6 in Appendix A.1.

We employ Low-Rank Adaptation (LoRA) with rank 64 to fine-tune the Llama 3.2 3B base model M on each source dataset to get a fine-tuned M[Dataset]. ¹ For all tasks, we report the accuracy using LLM-as-a-Judge. ² Specifically, we use Llama 3.3 70B Instruct (Dubey et al., 2024) to judge if the generated answers are the same as the ground truth answer (see Appendix B for prompt). For each dataset, 10,000 samples are randomly chosen from its training split, and 2,000 from the test split unless specified otherwise. Model training specifics are detailed in Section A.2.

5 Results and Analyses

In this section, we show the analysis on how the statistical properties drive transfer learning regardless of the domain similarity. We show various statistical properties and their effects on performance for both in-domain transfer and out-of-domain transfer. The overall cross-task performance matrix is summarized in Table 1.

5.1 PCA Results

The results of PCA on the performance matrix are visualized in Figure 2. The first four eigenvectors, which explain around 75% of the total variance in the performance matrix, are presented at the bottom-left of the figure and each column corresponds to a target evaluation task in Table 1.

The first principal component (PC0) assigns positive values to GSM8K, Goat, Magicoder, and Flipkart, suggesting that PC0 measures the reasoning performance of LoRAs. Surprisingly, Flipkart is also included in the group. The second principal component (PC1) group consists of PAWS, Pile, Flipkart, Amazon, and IMDB, which are mostly sentiment classification datasets except for PAWS. The PC2 groups GSM8K, Magicoder, MNLI, MNLI (E), Amazon, and IMDB together, so we believe the group represents the general natural language understanding (NLU) performance. Finally, PC3 highlights the performance differences between GSM8K and Goat. Table 1 shows that LoRA fine-tuned on MetaMath actually decreases the performance on Goat. We hypothesize that this is because Goat tests the arithmetic for large numbers while GSM8K only requires the arithmetic for small numbers. Thus, we annotate PC3 as LoRAs' ability of performing arithmetic for large numbers due to its large positive value to Goat. The positive values of Magicoder and Amazon might indicate that solving these tasks also require this arithmetic skill.

According to our annotation of every principal component, we can characterize LoRA fine-tuned by every source dataset based on the values projected to each principal component. For example, the table on the right side of Figure 2 shows that LoRA from the Flipkart sentiment classification task improves sentiment ability the most as expected. Besides, it also slightly improves the NLU and reasoning ability of LLMs while degrading the arithmetic performance.

5.2 Analyzing Side Effects of Cross-Task Transfer Systematically

To map the behaviors of transfer learning, we categorize them using the 2×2 table in Table 2. This

¹MetaMath is designed for training, so we replace Meta-Math with GSM8K in evaluation.

²While widely used for scalable evaluation, we acknowledge that the LLM-as-a-Judge method may introduce its own inherent biases, a potential limitation of our evaluation framework

Unintuitive Side Effect Analyses LORA from a dissimilar task LORA trained on a similar task do not necessarily lead to more improvements LORA trained on coding improves math, but the reverse is not true Balanced source class distribution could make the target prediction more imbalanced to the company of the company

Figure 3: Unintuitive side effects of using LoRA adapters as specialized 'tools'. This figure illustrates surprising behaviors where a tool's performance is not predicted by its label: domain similarity can be misleading, skill transfer is often asymmetric, and hidden statistical properties like class balance and output length proclivities are transferred to new tasks with unexpected consequences.

table helps explain the counterintuitive results observed in our experiments: why a LoRA trained on the tasks from a different domain (e.g., a 'code generation' adapter) might surprisingly outperform an in-domain one for a specific mathematical task, or why two seemingly identical 'sentiment' LoRAs can have vastly different effects on the target task. The following sections will deconstruct the specific properties of these LoRAs, analyzing their generation length proclivities (Section 5.3), internal class distributions (Section 5.4), learned linguistic sensitivities (Section 5.5), and the correctness of the labels (Section 5.6) to explain the surprising dynamics. We illustrate the most notable side effects in Figure 3.

5.3 Length Distribution

We observe that performance changes sometimes align with the length distributions of the fine-tuning and evaluation datasets, a characteristic learned by the model that influences output length on the target task. For example, while both Meta-Math/GSM8K and Goat are Math domain datasets, Goat has a significantly shorter generation length distribution

	Same Domain	Different Domain	
Different Stats	Unexpected Transfer • Amazon → Flipkart (both sentiment) shows poor transfer. • Flipkart (balanced vs. imbalanced) yields divergent results on other sentiment tasks.	Asymmetric & Negative Transfer • Asymmetric Transfer: Code → Math (+9.4) but Math → Code (-1.05). • Math → Sentiment shows strong negative transfer (e.g., Flipkart, -17.45).	
Similar Stats	Traditional Expectation • IMDB → IMDB shows strong in-domain performance (91.45%). • MNLI → MNLI (E) is also strong (83.45%).	Surprising Positive Transfer • Length Similarity: Code → Math transfer outperforms in-domain Math → Math. • Linguistic Transfer: Classification → Math improves reasoning.	

Table 2: A summary for cross-task side effects.

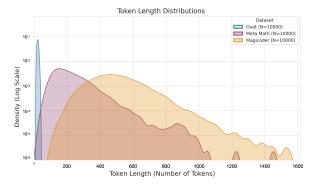


Figure 4: Generation length differences across Meta Math, Goat and Magicoder datasets.

(Figure 4). Fine-tuning on Magicoder, a code dataset with a length distribution more similar to Meta-Math/GSM8K's, proved more effective on GSM8K (+9.40 gain) than fine-tuning on the indomain Goat dataset (+3.64 gain). This suggests that matching generation length proclivities can be crucial for positive transfer.

However, this phenomenon is sophisticated and influenced by several interacting factors (detailed in Appendix D):

- Interpolation of Lengths: Models fine-tuned on generation tasks often produce outputs whose lengths interpolate between the base model's tendencies and those of the fine-tuning data.
- Classification Task Influence: Fine-tuning on classification datasets generally preserves the base model's generation length on OOD generation tasks, unless the classification data itself has a strong length bias.
- Dataset-Specific Length Transfer: Certain

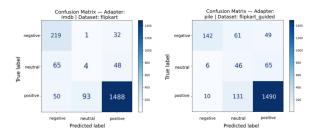


Figure 5: Confusion Matrices on Flipkart: *M*[IMDB] (left) vs. *M*[Pile] (right).

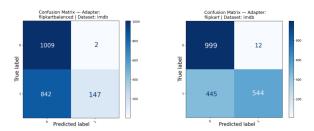


Figure 6: Confusion Matrices on IMDB (binary): M[Flipkart(Balanced)] (left) vs. M[Flipkart(Imbalanced)] (right) : 0=negative, 1=positive.

datasets (e.g., Pile) can impart distinct length tendencies that transfer to OOD tasks.

• Length Bias in Classification Inputs: Correlations between input text length and class labels in a source classification dataset can be learned and transferred, affecting predictions on target classification tasks.

These findings suggest that generation length is a transferable latent trait. Models exhibit a form of "inertia", blending prior generation habits with newly learned ones from the fine-tuning data. This has implications for multi-task learning, as unintended output lengths could affect downstream performance or introduce subtle biases.

5.4 Class Distribution

In classification tasks, the model needs to learn the features of the input and predict a series of tokens representing a class. We find that fine-tuning can shift this output class distribution in unexpected ways for both in-domain and out-of-domain tasks. Notice that when analyzing the class distributions, we can often ignore the impact of the length distribution because the outputs of the classification tasks are typically only a couple of tokens.

With the high similarity between the classification tasks, we could observe positive transfer between classification tasks for many dataset pairs

Model (FT on)	Pile	Flipkart	Amazon	IMDB
Original LLM	38.45	63.55	31.80	51.45
Pile	85.25	83.90	32.80	51.00
Flipkart-imb.	39.10	92.65	38.70	77.15
Flipkart-bal.	50.05	N/A	38.80	57.80
Amazon	47.90	39.95	61.25	69.05
IMDB	46.35	85.55	31.40	91.45

Table 3: Label Imbalance Effects on Classification Tasks. Flipkart-bal. means Flipkart-balanced, Flipkart-imb, means Flipkart-imbalanced.

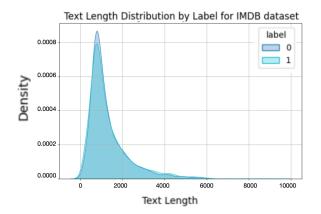
(Table 3). For example, M[Pile](Flipkart) improves performance to 83.90%, and M[IMDB](Flipkart) improves to 85.55%, as compared to 63.55% from M(Flipkart). Moreover, we observed that prediction bias could be learned and applied to a different task, both in domain and across domains. For instance, Figure 5 shows that M[Pile] predicts 'neutral' more often on Flipkart than M[IMDB], which suggests that training on Pile (toxicity) might increase sensitivity to ambiguous language, while IMDB training (binary sentiment) pushes for definitive positive/negative calls.

To further isolate the effect of label distribution from the task itself, we increase the negative class ratio from around 20% to 50%. The newly created dataset is called Flipkart-balanced, while the original Flipkart is called Flipkart-imb. Comparing LoRA M[Flipkart-balanced] with M[Flipkart], Table 3 highlights target-dependent effects due to the class distribution similarity and the dissimilarity between the fine-tuning and evaluation datasets. M[Flipkart-balanced](Pile) performs better than M[Flipkart-imb.](Pile)(50.05% vs. 39.10%), while M[Flipkart-imb.](IMDB) is better (77.15% vs. 57.80%). Balancing may help tasks needing unbiased signals (toxicity - Pile), while natural imbalance can preserve useful priors for OOD tasks with similar distributions (sentiment - IMDB).

Figure 6 compares *M*[Flipkart-imb.](IMDB) and *M*[Flipkart-balanced](IMDB), which demonstrates a bias towards predicting 'negative', especially *M*[Flipkart-balanced]. This might be linked to learning spurious features like the input length and predicting long inputs as negative because negative reviews in Flipkart are longer than positive reviews, unlike IMDB's more uniform lengths as shown in Figure 7.

5.5 Transferring from Classification to Math

Fine-tuning on classification datasets shows a surprising ability to improve performance on mathe-



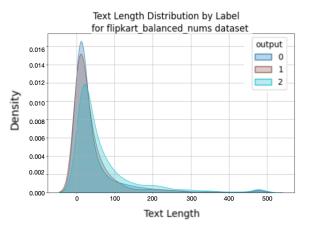


Figure 7: Text length distribution of each sentiment label from the kernel density estimation (KDE) for IMDB (left: 0=negative, 1=positive) and Flipkart (right: 0=positive, 1=neutral, 2=negative).

Model Fine-tuned on	GSM8K Acc. (%)	Goat Acc. (%)
None (Original LLM)	9.78	6.36
Flipkart (Imbalanced)	14.59	5.96
Flipkart (Balanced)	13.00	6.50
Amazon	12.97	9.15
IMDB	12.78	6.96
Pile	12.66	8.16
PAWS	8.57	7.75
MNLI (Eng.)	9.33	6.00

Table 4: Performance of models fine-tuned on classification datasets, evaluated on GSM8K and Goat.

matical reasoning tasks, particularly GSM8K. Table 4 shows that several LoRAs trained on classification tasks improved GSM8K accuracy over the original LLM. For example, *M*[Flipkart] achieves 14.59%, which is much higher than 9.78 from *M*. This gain was less pronounced on Goat, a more arithmetic-focused dataset, suggesting the improvement is more related to linguistic reasoning than raw calculation.

One initial hypothesis was that overall stylistic similarity (Wegmann et al., 2022) or semantic similarity³ between source classification datasets and target math datasets might predict transfer. However, these broad similarities did not consistently correlate with the observed improvements on GSM8K, indicating that more nuanced factors are at play. For example, Figure 8 highlights that MNLI has very high similarities with MetaMath while there is almost no positive transfer between them. In contrast, Flipkart could significantly improve GSM8K, while being stylistically very dissimilar to MetaMath.

Instead, our analysis (detailed in Appendix F) suggests that the improvement stems from an en-

(a) Stylistic Similarity Matrix Between Datasets.

(b) Semantic Similarity Matrix Between Datasets.

Figure 8: Stylistic Similarity (top) and Semantic Similarity (bottom) Matrices.

hanced sensitivity to specific linguistic structures crucial for understanding and deconstructing word problems. Key observations include:

³MiniLM-L6-v2 from https://www.sbert.net/

- Sensitivity to Syntactic Cues: The fine-tuned LoRAs significantly improve the model's ability to interpret the grammatical structure of word problems, which is essential for translating text into correct mathematical operations. For example, Figure 9 shows that the model becomes better at identifying dependency relations like oprd (operand), which flags a number as an object to be acted upon, and parataxis, which links related clauses together. This enhanced syntactic proficiency is not just a linguistic improvement; it is the mechanism that allows the model to more reliably deconstruct complex sentences into accurate logical and mathematical steps. A failure to parse these cues correctly often leads to building the wrong equation (e.g., adding numbers that should be multiplied).
- Asymmetric Transfer: Our analysis revealed a significant asymmetric skill transfer. For example, classification datasets such as Flipkart, Amazon and IMDB improve the performance on GSM8K (+4.81, +3.19, +3.00, respectively), but training on MetaMath did not improve on Flipkart, Amazon and IMDB (-17.45, -10.20, -1.80). Similarly, a strong positive transfer from code to math was observed, where *M*[Magicoder] improved performance (+9.4) while the inverse resulted in -1.05.
- Handling of Arithmetic Operations: LoRAs fine-tuned on classification datasets lead to consistent gains in math reasoning, especially for high-frequency operations like addition, subtraction, and division (see Figure 17 in the appendix). This improvement appears to be linked to the model's increased ability to attend to relevant tokens and avoid premature termination, leading to more complete reasoning chains.

These findings highlight that fine-tuning on classification tasks can, perhaps counter-intuitively, refine a model's linguistic processing in ways beneficial for structured reasoning tasks like mathematics, beyond what simple dataset similarity would predict.

5.6 Importance of Labels

To further understand what drives performance, especially the linguistic understanding gained during fine-tuning, we investigated the direct role of labels.

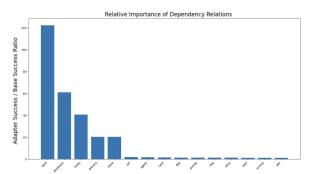


Figure 9: Performance ratio (LoRA success / original LLM success) on math problems. Gains on relations like oprd show the model's improved ability to parse grammatical structure is the key driver of its success.

Model (Fine-tuned on)	Flipkart	IMDB	GSM8K
M[Amazon]	15.85%	48.65%	3.34%
<i>M</i> [Amazon-mislabeled]	16.75%	48.80%	4.02%

Table 5: Impact of Fine-tuning on Wrong Labels Compared to Correct Labels (% Accuracy).

We tested if LoRAs are sensitive to incorrect labels. Interestingly, fine-tuning on Amazon reviews where labels are deliberately mislabeled yielded similar or even slightly better performance on OOD tasks like IMDB and GSM8K (Table 5), suggesting models can pick up underlying data structures even with noisy labels, or that the mislabeling process inadvertently created patterns beneficial for other tasks.

6 Conclusion

Our investigation into the cross-task dynamics of Low-Rank Adaptation (LoRA) confirms that transfer learning behavior is often unintuitive and defies explanations based on task domains or surface level dataset similarity. This work introduced a systematic framework to dissect these interactions, revealing that performance on target tasks is more influenced by the transfer of latent statistical and linguistic traits learned from a source dataset. We established the existence of these phenomena, such as asymmetric skill transfer and the impact of the class distribution, providing a new lens through which to view the fine-tuning process.

Our work paves the way for a more predictable and engineering-driven discipline around LLM adaptation. The logical next step is to move toward a modular approach, creating a "tool-belt" of skill adapters for agentic systems. An agent could then dynamically load a "conciseness adapter" for

summarization or a "syntactic-parser adapter," like the one we observed emerging from classification data, for complex instruction understanding. While we demonstrated these dynamics on the Llama 3 architecture with LoRA, a critical next step is to validate and expand these findings across a broader range of models and adaptation methods to assess their scalability. By pursuing these avenues of modularity and prediction, we can build more robust and capable AI agents.

Acknowledgments

We are also deeply grateful to the valuable feed-back from Mengxue Zhang, Wenlong Zhao, Dhruv Agarwal, and Prof. Andrew McCallum. This work was supported in part by Center for Data Science and in part by the Center for Intelligent Information Retrieval. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.

References

- Dan Biderman, Jacob P. Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John Patrick Cunningham. 2024. LoRA Learns Less and Forgets Less. *Trans. Mach. Learn. Res.*, 2024.
- Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. Software available from wandb.com.
- Ting-Yun Chang and Chi-Jen Lu. 2021. Rethinking Why Intermediate-Task Fine-Tuning Works. In *Findings of the Association for Computational Linguistics: EMNLP 2021*. Association for Computational Linguistics.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math Word Problems. *CoRR*, abs/2110.14168.
- Michael Han Daniel Han and Unsloth team. 2023. Unsloth.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and et al. 2024. The Llama 3 Herd of Models. *CoRR*, abs/2407.21783.
- Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Ramaneswaran S., Deepali Aneja, Zeyu Jin, Ramani Duraiswami, and Dinesh Manocha. 2024. A Closer Look at the Limitations of Instruction Tuning.

- In Forty-first International Conference on Machine Learning, ICML 2024.
- Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, and et al. 2025. OpenThoughts: Data Recipes for Reasoning Models. *Preprint*, arXiv:2506.04178.
- Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large Language Models. In *The Tenth International Conference on Learning Representations, ICLR* 2022.
- ISE-UIUC. 2023. Magicoder-oss-instruct-75k. https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K. Accessed: 2025-03-09.
- KayEe. Flipkart Sentiment Analysis. https://huggingface.co/datasets/KayEe/flipkart_sentiment_analysis. Accessed: 2025-04-27.
- Tomek Korbak. 2024. Pile Toxicity Balanced. https://huggingface.co/datasets/tomekkorbak/pile-toxicity-balanced. Accessed: 2025-04-27.
- Po-Nien Kung and Nanyun Peng. 2023. Do Models Really Learn to Follow Instructions? An Empirical Study of Instruction Tuning. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023*. Association for Computational Linguistics.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Memory Management for Large Language Model Serving with PagedAttention. In *Proceedings of the 29th Symposium on Operating Systems Principles, SOSP 2023*. ACM.
- Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for Parameter-Efficient Prompt Tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021*. Association for Computational Linguistics.
- Dongyue Li, Aneesh Sharma, and Hongyang R. Zhang. 2024a. Scalable Multitask Learning Using Gradient-based Estimation of Task Affinity. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024*. ACM.
- Yingya Li, Timothy Miller, Steven Bethard, and Guergana Savova. 2024b. Identifying Task Groupings for Multi-Task Learning Using Pointwise V-Usable Information. *CoRR*, abs/2410.12774.
- Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat: Fine-tuned llama outperforms gpt-4 on arithmetic tasks. *Preprint*, arXiv:2305.14201.

- Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*. Association for Computational Linguistics.
- Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022*. Association for Computational Linguistics.
- Vishakh Padmakumar, Leonard Lausen, Miguel Ballesteros, Sheng Zha, He He, and George Karypis. 2022. Exploring the Role of Task Transferability in Large-Scale Multi-Task Learning. In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022*. Association for Computational Linguistics.
- Md. Rizwan Parvez and Kai-Wei Chang. 2021. Evaluating the Values of Sources in Transfer Learning. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021. Association for Computational Linguistics.
- Yangjun Ruan, Chris J. Maddison, and Tatsunori Hashimoto. 2024. Observational Scaling Laws and the Predictability of Language Model Performance. *CoRR*, abs/2405.10938.
- David Schulte, Felix Hamborg, and Alan Akbik. 2024. Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024*. Association for Computational Linguistics.
- Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew Mattarella-Micke, Subhransu Maji, and Mohit Iyyer. 2020. Exploring and predicting transferability across nlp tasks. *Preprint*, arXiv:2005.00770.
- Anna Wegmann, Marijn Schraagen, and Dong Nguyen. 2022. Same Author or Just Same Topic? Towards Content-Independent Style Representations. In *Proceedings of the 7th Workshop on Representation Learning for NLP, RepL4NLP@ACL 2022*. Association for Computational Linguistics.
- Orion Weller, Kevin D. Seppi, and Matt Gardner. 2022. When to Use Multi-Task Learning vs Intermediate Fine-Tuning for Pre-Trained Encoder Transfer Learning. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022*. Association for Computational Linguistics.

- Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018. Association for Computational Linguistics.
- Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng-Ann Heng, and Wai Lam. 2024. Unveiling the Generalization Power of Fine-Tuned Large Language Models. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024*. Association for Computational Linguistics.
- Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. 2024. Meta-Math: Bootstrap Your Own Mathematical Questions for Large Language Models. In *The Twelfth International Conference on Learning Representations, ICLR* 2024.
- Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 2022. BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 1–9. Association for Computational Linguistics.
- Xiang Zhang and Acharki Yassir. 2022. Amazon Reviews for SA fine-grained 5 classes.
- Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and Linda Ruth Petzold. 2025. Unveiling the Impact of Coding Data Instruction Fine-Tuning on Large Language Models Reasoning. In AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence. AAAI Press.
- Yuan Zhang, Jason Baldridge, and Luheng He. 2019. PAWS: Paraphrase Adversaries from Word Scrambling. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019*. Association for Computational Linguistics.

A Experimental Specifics

A.1 Dataset

Table 6 lists the datasets we considered for our analyses, ranging from generation to classification tasks, across different domains, class and length distributions, etc.

A.2 Implementation

We use the Llama 3.2 3B model (Dubey et al., 2024) as our base model. Fine-tuning is performed using LoRA (Hu et al., 2022) with a rank of 64 and an alpha of 32, applied to q_{proj} , k_{proj} , v_{proj} , o_{proj} , $gate_{proj}$, up_{proj} , and $down_{proj}$ layers. We use the AdamW optimizer with a cosine learning rate schedule. The Unsloth library (Daniel Han and team, 2023) is utilized for efficient training with gradient checkpointing. Experiments are tracked using Weights & Biases (W&B) (Biewald, 2020), and vLLM (Kwon et al., 2023) is used for optimized batch inference.

B LLM-as-a-Judge Prompt

The following prompt was used with Llama 3.3 70B Instruct to evaluate the model-generated outputs against the given ground truth for generation tasks. The LLM was instructed to provide a binary score (0 or 1) without explanations.

```
<|begin_of_text|><|start_header_id|>
system<|end_header_id|>
```

Your job is to check whether the AI's answer is correct.

Compare it with the correct answer and score it as either 0 if the AI's answer is wrong or 1 if it is correct.

DO NOT provide any explanations.<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Correct Answer: {groundtruth_column}
AI Answer: {Model generated output}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

Score:

This prompt ensured a strict, explanation-free evaluation of the model's responses based on the provided ground truth.

C PCA Details

To increase the diversity of the LLM variants in the performance matrix before running PCA, we also test a few-shot baseline on Llama 3.2 1B base model. Its accuracy is 14.11 on GSM8K, 7.00 on Goat, 18.87 on Magicoder, 55.45 on PAWS, 40.35 on MNLI, 52.60 on MNLI (E), 52.55 on Pile, 90.95 on Flipkart, 48.35 on Amazon, 74.85 on IMDB. We use 5 shots for Amazon, 2 shots for Pile and IMDB, and 3 shots for the rest of the datasets.

The rows of the linear weight matrix on the right side of Figure 2 correspond to zero-shot Llama 3.2 3B base, few-shot Llama 3.2 1B base model, LoRA from GSM8K, LoRA from Goat, LoRA from Magicoder, LoRA from PAWS, LoRA from MNLI (E), LoRA from Pile, LoRA from Flipkart, LoRA from Amazon, LoRA from IMDB (from top to bottom). Finally, before PCA, we normalize the average and standard deviation of each column to make every task, regardless of the magnitude of its accuracy, have similar importance in the PCA.

D Detailed Analysis of Length Distribution Effects

This appendix elaborated on the observed effects of training data length distribution on model behavior, as summarized in the main paper.

- Interpolation Effect in Generation Tasks: As shown in Figure 10, fine-tuning on generation tasks (e.g., Magicoder) leads to output lengths on other generation tasks (e.g., GSM8K, Goat) that often represent a blend. The model doesn't strictly adhere to the new dataset's length profile nor entirely retain the base model's, but rather finds an intermediate distribution.
- Classification Task Influence on Generation Length: Fine-tuning on classification tasks (e.g., Amazon Sentiment) generally preserves the base model's generation length distribution when tested on generation tasks (Figure 11). The fine-tuning seems to focus more on discriminative features for classification rather than altering fundamental generative properties like typical output length, unless the classification dataset itself has a very strong and unusual length characteristic.
- Dataset-Specific Tendencies: *M*[Pile] toxicity led to significantly longer outputs on generation tasks compared to other classification datasets, indicating that dataset-specific length characteristics can be transferred as latent traits (Figure 12).
- Length Bias in Classification: Analysis of token lengths per class (e.g., in IMDB, PAWS,

Dataset	Domain	Characteristics	Class Labels / Distribution
MetaMath (Yu et al., 2024)	Math	Multi-step reasoning	Generation
Goat (Liu and Low, 2023)	Math	Short arithmetic	Generation (95% inputs < 500 chars)
GSM8K (Cobbe et al., 2021)	Math	Grade school math problems	Generation (75% inputs < 25 chars)
Magicoder (ISE- UIUC, 2023)	Code	Code reasoning/generation	Generation (80% input < 1.5k chars)
PAWS (Zhang et al., 2019)	NLI	Paraphrase identification	2-way (paraphrase/not), 50% each
MNLI (Williams et al., 2018)	NLI	Natural language inference	3-way (0-contradiction, 1-entailment, 2-neutral), 33.3% each
Flipkart Sentiment (KayEe)	Sentiment	Customer reviews	3-way (81.2% positive, 13.9% negative, 4.9% neutral)
Amazon Reviews (Zhang and Yassir, 2022)	Sentiment	Product reviews	5-way (1-5 stars), 20% each
IMDB Reviews (Maas et al., 2011)	Sentiment	Movie reviews	2-way (1-positive, 0-negative), 50% each
Pile (Toxicity) (Korbak, 2024)	Toxicity	Text toxicity detection	2-way (1-toxic, 0-non-toxic), 50% each

Table 6: Overview of datasets used in experiments.

Amazon - see Figure 15) reveals that base models can have biases (e.g., shorter sentences as positive sentiment). Fine-tuning can either reinforce or alter these biases depending on the training data's length characteristics per class. For example, the PAWS analysis (Figure 15) showed that the base model was biased towards shorter sentences, which Flipkart and Magicoder inherit. However, models fine-tuned on PAWS and Pile show different length biases when evaluated on IMDB (Figure 13) Similarly, IMDB analysis (see Figure 15) showed that the base model is biased towards shorter sentences as being positive.

E Length Bias for Classification Tasks

Figures 13, 14, 15 show how the base and adapter do in predicting classes in a classification task and their distribution across True Positive, False Positive, True Negative and False Negative.

F Detailed Analysis of Classification Adapter Effects on Math Performance

This appendix provides a more detailed look at how fine-tuning on classification datasets impacts performance on mathematical reasoning tasks, particularly GSM8K.

F.1 Linguistic Feature Importance Details

The improvement from classification adapters on GSM8K appears linked to enhanced sensitivity to

linguistic structures crucial for understanding word problems.

- Correlation of Math Features: We analyzed the correlation between various mathematical features in word problems and the improvement in model performance when using adapters (Figure 16). Features like "num_values", "has_comparison", and "num_entities" showed negative correlations, suggesting problems with these features are less likely to show improvement with the tested adapters. Conversely, features like "has_unit_conversion" and "num_questions" showed positive (or less negative) correlations, indicating adapters might handle these better.
- Part-of-Speech (POS) Tags: Comparing POS tag distributions in problems solved successfully by adapter-tuned models versus the base model reveals differences (Figure 18). For instance, if adapter success cases show a higher count of *NOUNs*, it suggests adapters better handle noun-rich problems.

F.2 Analysis by Number of Steps

We defined a heuristic "number of steps" to loosely quantify problem complexity by summing counts of questions, explicit sentences, mathematical operations, comparisons, and conditional statements.

 Generally, adapter-tuned models showed varying performance improvements over the base

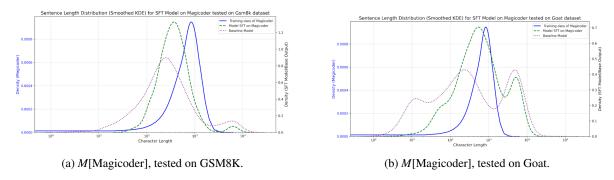


Figure 10: Generation length distribution when fine-tuned on a generation task (M[Magicoder]) and tested on other generation tasks.

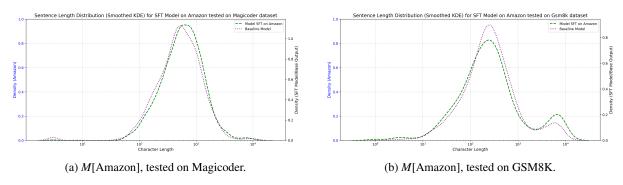


Figure 11: Generation length distribution when fine-tuned on a classification task (M[Amazon]) and tested on generation tasks.

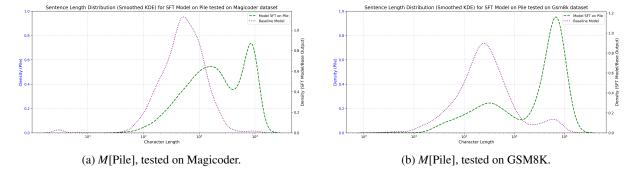


Figure 12: Generation length distribution when fine-tuned on Pile and tested on generation tasks.

model depending on the number of steps, often outperforming for lower to moderate step counts (Figure 19).

• A peculiar dip in adapter performance relative to the base model was consistently observed for problems estimated to have 10 steps (Figure 20). Analysis of these 10-step problems revealed they predominantly involved 'money' domain and 'multiplication' or 'addition' operations (Figures 21a, 21b). The base model excelled on these specific 10-step problems, while adapter performance decreased.

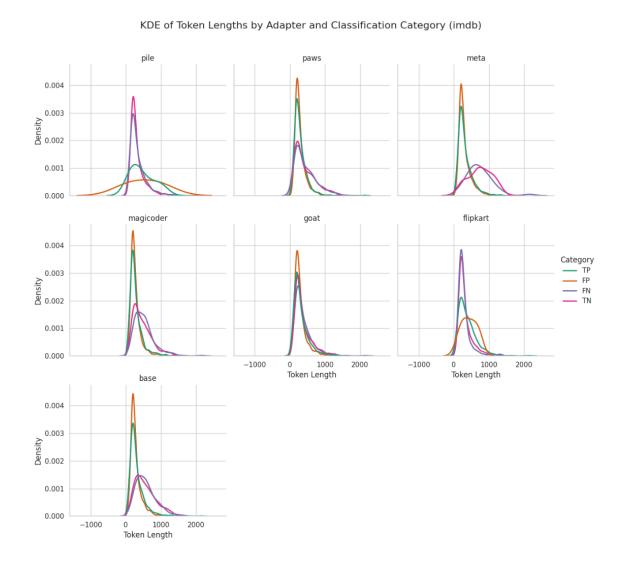


Figure 13: KDE of Token Lengths by Adapter and Classification Category (IMDB). TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative.

KDE of Token Lengths by Adapter and Classification Category (paws)

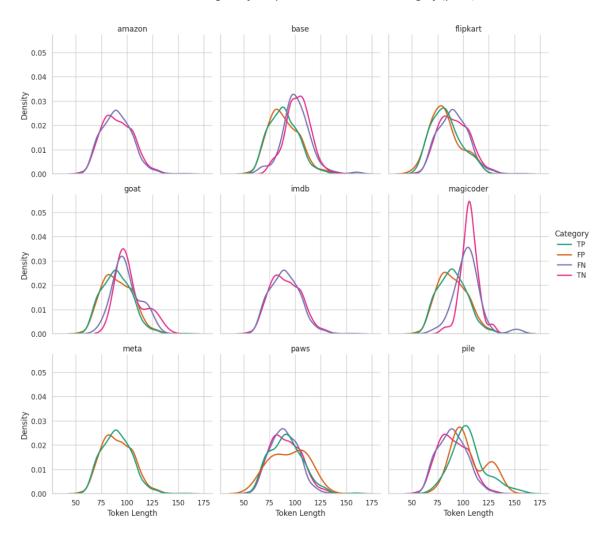
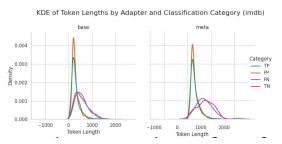
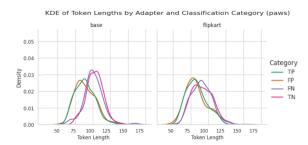


Figure 14: KDE of Token Lengths by Adapter and Classification Category (PAWS). TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative.





(a) KDE of Token Lengths of Original LLM and Meta-Math on IMDB $\,$

(b) KDE of Token Lengths of Original LLM and Flipkart on IMDB $\,$

Figure 15: KDE of Token Lengths by Adapter and Classification Category. TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative.

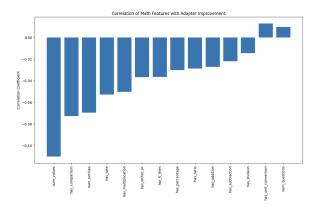


Figure 16: Correlation of Math Features in Word Problems with Adapter Improvement on GSM8K.

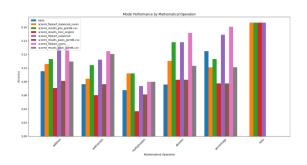


Figure 17: Adapter wise performance improvement on GSM8K clustered by arithmetic operations.

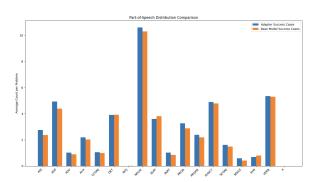


Figure 18: Part-of-Speech Distribution Comparison in GSM8K Problems (Adapter Success Cases vs. Base Model Success Cases).

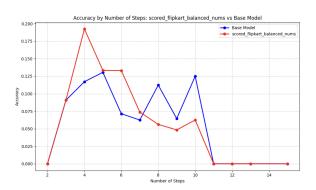


Figure 19: Accuracy by Number of Steps: M[Flipkart Balanced (Numeric)] vs Original LLM on GSM8K.

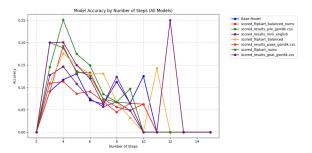
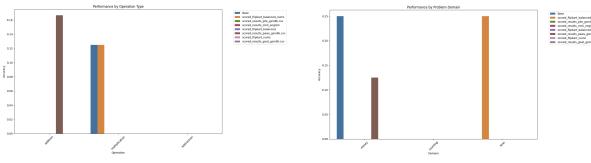


Figure 20: Model Accuracy by Number of Steps on GSM8K, highlighting the 10-step region.



(a) Performance by Operation Type for 10-Step Problems.

(b) Performance by Problem Domain for 10-Step Problems.

Figure 21: Analysis of 10-Step GSM8K problems where base model outperforms adapters.