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Abstract

Large language models are increasingly de-
ployed across diverse applications. This of-
ten includes tasks LLMs have not encountered
during training. This implies that enumerating
and obtaining the high-quality training data for
all tasks is infeasible. Thus, we often need to
rely on transfer learning using datasets with
different characteristics, and anticipate out-of-
distribution requests. Motivated by this prac-
tical need, we propose an analysis framework,
building a transfer learning matrix and dimen-
sionality reduction, to dissect these cross-task
interactions. We train and analyze 10 models
to identify latent abilities (e.g., Reasoning, Sen-
timent Classification, NLU, Arithmetic) and
discover the side effects of the transfer learn-
ing. Our findings reveal that performance im-
provements often defy explanations based on
surface-level dataset similarity or source data
quality. Instead, hidden statistical factors of the
source dataset, such as class distribution and
generation length proclivities, alongside spe-
cific linguistic features, are actually more influ-
ential. This work offers insights into the com-
plex dynamics of transfer learning, paving the
way for more predictable and effective LLM
adaptation.

1 Introduction

Large Language Models (LLMs) demonstrate re-
markable capabilities across diverse tasks, yet their
deployment in real-world applications faces signifi-
cant practical constraints. Cost and latency consid-
erations render giant all-purpose models impracti-
cal for many use cases, driving widespread adop-
tion of task-specific fine-tuning. However, this ap-
proach encounters a fundamental challenge: high-
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Name: LoRA trained by Flipkart

Effects: 

• 👍 Sentiment + 36


• 🧠 NLU + 10


• 🧩 Reasoning + 6


• 🧮 Arithmetic -10

Description: Flipkart is a sentiment 
classification dataset with a 
imbalanced class distribution

Side Effects: 

• Disturb the 

Distribution of 
Unrelated Class


• Longer Means 
more Positive

Figure 1: Illustration of our motivations. LLMs such
as Llama can be equipped with many different perfor-
mance enhancers such as LoRA fine-tuned on a specific
dataset. Our goal is to discover the potential impacts on
out-of-domain tasks and side effects of each equipment.

quality training data for target tasks is often unavail-
able or proprietary. Moreover, deployed LLMs rou-
tinely face out-of-distribution (OOD) requests that
extend beyond their fine-tuning scope. This is espe-
cially true for agentic systems, which rely heavily
on cross-domain skill transfer to perform diverse
sequences of tasks. These realities necessitate a
deeper understanding of transfer learning.

Traditional transfer learning research has pri-
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marily focused on scenarios where source and tar-
get tasks share the same domain, assuming that
similar or related in-domain data provides useful
signal for the target task. However, the diverse
task landscape that modern LLMs navigate de-
mands deeper understanding of OOD transfer ef-
fects. Our experiments using Low-Rank Adap-
tation (LoRA) reveal counterintuitive transfer be-
haviors: fine-tuning on one dataset can yield sur-
prising performance improvements or degradations
on seemingly unrelated tasks, often defying ex-
pectations based on semantic similarity (illustrated
conceptually in Figure 1). This unpredictability cre-
ates significant challenges for practitioners select-
ing optimal source datasets for fine-tuning, particu-
larly in resource-constrained environments where
training efficiency is paramount, or when acquiring
pre-trained LoRA adapters from service providers
without clear transferability guarantees.

In this paper, we propose a framework to ana-
lyze how the source fine-tuning dataset influences
the performances on the target datasets in trans-
fer learning and use this framework to systemat-
ically characterize the OOD generalization of an
LLM using multiple LoRA adapters. Our analysis
framework first constructs a performance matrix
across different source and target tasks. We ap-
ply Principal Component Analysis (PCA) to this
matrix to uncover latent abilities or "traits" that
fine-tuned LLMs acquire from the transfer learning.
We demonstrate that straightforward factors like
source data quality or simple source-target similar-
ity often fail to explain observed transfer learning
effects. Instead, we highlight the critical role of
more subtle, "hidden" statistical properties of the
source training data (e.g., output length distribu-
tion, label imbalance) and learned sensitivities to
specific linguistic features.

Our work aims to provide actionable insights
into the selection of the source dataset for fine-
tuning, fostering a deeper understanding of the in-
teractions among the datasets and guiding the devel-
opment of more robust LLM adaptation strategies.
In our experiments, we fine-tune the Llama 3.2 3B
base model (Dubey et al., 2024) using LoRA and
systematically evaluate models fine-tuned on one
dataset across datasets for math, coding, natural lan-
guage inference, sentiment, and toxicity detection
tasks to map diverse data interactions. Through
analyzing the fine-tuned LLM and datasets, we ob-
serve several surprising cross-domain interactions,
including: (1) the impact of source data generation

length on fine-tuned model outputs; (2) asymmetric
enhancement through out-of-domain fine-tuning
datasets; and (3) the profound effects of source
label imbalance on both in-domain and OOD per-
formance.

2 Related Work

The transfer learning of fine-tuning language mod-
els is investigated by several existing works (Vu
et al., 2020; Chang and Lu, 2021; Parvez and
Chang, 2021; Weller et al., 2022; Padmakumar
et al., 2022; Li et al., 2024b; Schulte et al., 2024;
Yang et al., 2024; Li et al., 2024a). Most studies
focus on identifying similar tasks for positive trans-
fer effect through fully fine-tuning small language
models. Instead, our work focuses on modeling
the impact of LoRA fine-tuning and discovering
the often-overlooked side effect of the source train-
ing datasets including out-of-domain and out-of-
distribution datasets. Compared to the full fine-
tuning, Biderman et al. (2024); Ghosh et al. (2024)
find LoRA “learns less and forgets less”, which
potentially preserves out-of-domain base model
capabilities better. This is one of the main rea-
sons behind LoRA’s effectiveness and popularity.
Nevertheless, we demonstrate that LoRAs, which
are fine-tuned on many source datasets, could still
cause several types of undesirable side effects when
being evaluated on a wide range of target tasks.

Methodologically, our analysis framework is re-
lated to Ruan et al. (2024), which employs PCA
to analyze observational scaling laws and the pre-
dictability of LLM performance across different
model sizes and tasks. Some recent findings also
support our discoveries of hidden factors. For
example, Zhang et al. (2025) report that instruc-
tion fine-tuning with coding data can sometimes
negatively impact mathematical reasoning. Guha
et al. (2025) find that the length distribution of
the instruction tuning training data could affect the
LLMs’ code generation ability. Min et al. (2022);
Kung and Peng (2023); Guha et al. (2025) discover
that the format of the fine-tuning data might be
more important than its content or correctness. Our
work confirms their findings and provides a more
comprehensive list of latent traits that influence
LoRAs’ performance.

3 Methodology

In our framework, we first prepare N representa-
tive tasks/datasets of interest and fine-tune LLMs
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Effects: 

• 👍  Sentiment + 36


• 🧠  NLU + 10


• 🧩  Reasoning + 6


• 🧮  Arithmetic -10
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Figure 2: Discovering the latent traits of LoRA through PCA. The performance matrix stores the performance of I
LoRAs on N tasks. A PCA factorizes the performance matrix into two matrices: the top four eigenvectors/bases in
the bottom left and the linear weights that combine the eigenvectors/bases in the right. More red means the values
are higher. Based on the eigenvectors, we identify the meaning of each principal component as our latent traits, and
we can use the linear weights of the LoRA trained on Flipkart as its influence to the other datasets through the traits.

on these N datasets to acquire I fine-tuned LLM
variants. In this paper, we use LoRA to fine-tune
LLMs, but the framework could be applied to any
fine-tuning method (e.g., full fine-tuning, prompt
tuning (Lester et al., 2021), BitFit (Zaken et al.,
2022), etc.) or any variants of LLMs (e.g., in-
context learning or chain of thoughts).

Viewing each fine-tuned LoRA adapter as a
specialized piece of equipment in a practitioner’s
toolkit, a crucial challenge is selecting the right tool
for a new task. The conventional approach assumes
a tool’s effectiveness is dictated by its labeled do-
main, for instance, using a ‘sentiment’ adapter for
a sentiment task. However, these tools might come
with unexpected side-effects and hidden capabil-
ities driven by the latent statistical properties of
their training data, not just their domain.

To solve this issue, we evaluate the I fine-tuned
LLMs on the N datasets on their accuracy, and
organize the pairwise results into a I ×N perfor-
mance matrix as shown in Figure 2. Note that since
our goal is to measure the impact on out-of-domain
tasks, we focus more on relative gains, rather than
the absolute performance numbers.

Throughout this paper, we denote the base LLM
as M; a model fine-tuned on a dataset D as M["D"];
and the output performance of such a model on the
evaluation data X is denoted M["D"](X). For ex-
ample, M["Flipkart"](GSM8K) refers to the score
of the model fine-tuned on the Flipkart dataset

and tested on GSM8K. In the performance matrix,
M["Flipkart"](GSM8K) corresponds to the row for
Flipkart and column for GSM8K.

To understand the overall characteristics and
transfer learning impact across these datasets, we
decompose the performance matrix using PCA.
Each principal component corresponds to a group
and the tasks with high values in the correspond-
ing eigenvector belong to the group. In this way,
similar evaluation tasks whose LLM scores have
high correlations will cluster together. We can then
use the common attribute of the tasks in a group as
its name - a standard practice to make the abstract
mathematical components interpretable. Guided
by the PCA results, we discover the transfer learn-
ing patterns among the tasks of interest and further
investigate the outliers in the performance matrix.
We then conduct analyses to identify the factors
that could explain the patterns and outliers.

4 Experimental Setup

We curate a diverse set of datasets spanning math-
ematical reasoning (MetaMath (Yu et al., 2024),
GSM8K (Cobbe et al., 2021), and Goat (Liu and
Low, 2023)), code generation (Magicoder (ISE-
UIUC, 2023)), Natural Language Inference (NLI)
(PAWS (Zhang et al., 2019) and MNLI (Williams
et al., 2018)), Sentiment analysis (Flipkart Senti-
ment (KayEe), Amazon Reviews (Zhang and Yas-
sir, 2022), and IMDB Reviews (Maas et al., 2011)),
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Fine-tuned on GSM8K Goat Magicoder PAWS MNLI MNLI (E) Pile Flipkart Amazon IMDB

None (Original LLM) 9.78 6.36 21.55 46.30 33.30 33.75 38.45 63.55 31.80 51.45
MetaMath 44.96 5.40 20.50 44.55 34.65 32.95 42.25 46.10 21.60 49.65
Goat 13.42 24.65 21.65 44.55 33.10 35.10 47.15 57.85 25.45 53.00
Magicoder 19.18 8.45 29.38 45.70 33.35 34.10 37.35 70.90 28.10 51.15
PAWS 8.57 7.75 20.75 70.05 34.90 33.15 49.05 12.10 21.85 46.80
MNLI (Eng.) 9.33 6.00 20.55 57.65 69.50 83.45 51.10 5.85 37.70 53.50
Pile 12.66 8.16 21.47 56.35 35.70 33.65 85.25 83.90 32.80 51.00
Flipkart 14.59 5.96 21.84 55.55 33.65 36.25 49.10 92.65 38.70 77.15
Amazon 12.97 9.15 22.48 55.45 39.10 38.35 47.90 39.95 61.25 69.05
IMDB 12.78 6.96 22.19 55.40 34.00 34.70 46.35 85.55 31.40 91.45

Table 1: Model fine-tuning and cross-task evaluation results (% Automatic Accuracy or Accuracy from LLM-as-a-
Judge). Each model was fine-tuned on a single dataset (leftmost column) and evaluated across multiple target tasks
(column headers). MNLI (E) refers to MNLI English.

and toxicity detection (Pile (Korbak, 2024)). For
more information about the datasets refer to Table 6
in Appendix A.1.

We employ Low-Rank Adaptation (LoRA) with
rank 64 to fine-tune the Llama 3.2 3B base model
M on each source dataset to get a fine-tuned
M[Dataset]. 1 For all tasks, we report the accu-
racy using LLM-as-a-Judge. 2 Specifically, we
use Llama 3.3 70B Instruct (Dubey et al., 2024) to
judge if the generated answers are the same as the
ground truth answer (see Appendix B for prompt).
For each dataset, 10,000 samples are randomly cho-
sen from its training split, and 2,000 from the test
split unless specified otherwise. Model training
specifics are detailed in Section A.2.

5 Results and Analyses

In this section, we show the analysis on how the sta-
tistical properties drive transfer learning regardless
of the domain similarity. We show various statisti-
cal properties and their effects on performance for
both in-domain transfer and out-of-domain trans-
fer. The overall cross-task performance matrix is
summarized in Table 1.

5.1 PCA Results

The results of PCA on the performance matrix are
visualized in Figure 2. The first four eigenvectors,
which explain around 75% of the total variance
in the performance matrix, are presented at the
bottom-left of the figure and each column corre-
sponds to a target evaluation task in Table 1.

1MetaMath is designed for training, so we replace Meta-
Math with GSM8K in evaluation.

2While widely used for scalable evaluation, we acknowl-
edge that the LLM-as-a-Judge method may introduce its own
inherent biases, a potential limitation of our evaluation frame-
work.

The first principal component (PC0) assigns pos-
itive values to GSM8K, Goat, Magicoder, and Flip-
kart, suggesting that PC0 measures the reasoning
performance of LoRAs. Surprisingly, Flipkart is
also included in the group. The second princi-
pal component (PC1) group consists of PAWS,
Pile, Flipkart, Amazon, and IMDB, which are
mostly sentiment classification datasets except
for PAWS. The PC2 groups GSM8K, Magicoder,
MNLI, MNLI (E), Amazon, and IMDB together, so
we believe the group represents the general natural
language understanding (NLU) performance. Fi-
nally, PC3 highlights the performance differences
between GSM8K and Goat. Table 1 shows that
LoRA fine-tuned on MetaMath actually decreases
the performance on Goat. We hypothesize that this
is because Goat tests the arithmetic for large num-
bers while GSM8K only requires the arithmetic for
small numbers. Thus, we annotate PC3 as LoRAs’
ability of performing arithmetic for large numbers
due to its large positive value to Goat. The positive
values of Magicoder and Amazon might indicate
that solving these tasks also require this arithmetic
skill.

According to our annotation of every principal
component, we can characterize LoRA fine-tuned
by every source dataset based on the values pro-
jected to each principal component. For example,
the table on the right side of Figure 2 shows that
LoRA from the Flipkart sentiment classification
task improves sentiment ability the most as ex-
pected. Besides, it also slightly improves the NLU
and reasoning ability of LLMs while degrading the
arithmetic performance.

5.2 Analyzing Side Effects of Cross-Task
Transfer Systematically

To map the behaviors of transfer learning, we cate-
gorize them using the 2× 2 table in Table 2. This
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Unintuitive Side Effect Analyses

Task

LoRA from a 
similar task

LoRA from a 
dissimilar task

🤏?👍?

LoRA trained on a similar task do not necessarily lead to more improvements

📐 💻
👍

📐 💻
🤏

LoRA trained on coding improves math, but the reverse is not true

Balanced source class distribution could make the target prediction more imbalanced

Short MediumLong

+
LoRA modifies the output lengths, which affects the prediction of another task

Randomly switching the classes when training LoRA also not reduce improvement

👍 👍

Figure 3: Unintuitive side effects of using LoRA
adapters as specialized ‘tools’. This figure illustrates
surprising behaviors where a tool’s performance is not
predicted by its label: domain similarity can be mis-
leading, skill transfer is often asymmetric, and hidden
statistical properties like class balance and output length
proclivities are transferred to new tasks with unexpected
consequences.

table helps explain the counterintuitive results ob-
served in our experiments: why a LoRA trained
on the tasks from a different domain (e.g., a ‘code
generation’ adapter) might surprisingly outperform
an in-domain one for a specific mathematical task,
or why two seemingly identical ‘sentiment’ LoRAs
can have vastly different effects on the target task.
The following sections will deconstruct the specific
properties of these LoRAs, analyzing their genera-
tion length proclivities (Section 5.3), internal class
distributions (Section 5.4), learned linguistic sen-
sitivities (Section 5.5), and the correctness of the
labels (Section 5.6) to explain the surprising dy-
namics. We illustrate the most notable side effects
in Figure 3.

5.3 Length Distribution

We observe that performance changes sometimes
align with the length distributions of the fine-tuning
and evaluation datasets, a characteristic learned by
the model that influences output length on the target
task. For example, while both Meta-Math/GSM8K
and Goat are Math domain datasets, Goat has a
significantly shorter generation length distribution

Same Domain Different Domain

Different Stats Unexpected Negative
Transfer
• Amazon → Flipkart (both

sentiment) shows poor
transfer.

• Flipkart (balanced vs. im-
balanced) yields diver-
gent results on other sen-
timent tasks.

Asymmetric & Negative
Transfer
• Asymmetric Transfer:

Code → Math (+9.4) but
Math → Code (-1.05).

• Math → Sentiment shows
strong negative transfer
(e.g., Flipkart, -17.45).

Similar Stats Traditional Expectation
• IMDB → IMDB shows

strong in-domain perfor-
mance (91.45%).

• MNLI → MNLI (E) is
also strong (83.45%).

Surprising Positive Trans-
fer
• Length Similarity: Code

→ Math transfer outper-
forms in-domain Math →
Math.

• Linguistic Transfer: Clas-
sification → Math im-
proves reasoning.

Table 2: A summary for cross-task side effects.

Figure 4: Generation length differences across Meta
Math, Goat and Magicoder datasets.

(Figure 4). Fine-tuning on Magicoder, a code
dataset with a length distribution more similar to
Meta-Math/GSM8K’s, proved more effective on
GSM8K (+9.40 gain) than fine-tuning on the in-
domain Goat dataset (+3.64 gain). This suggests
that matching generation length proclivities can be
crucial for positive transfer.

However, this phenomenon is sophisticated and
influenced by several interacting factors (detailed
in Appendix D):

• Interpolation of Lengths: Models fine-tuned
on generation tasks often produce outputs
whose lengths interpolate between the base
model’s tendencies and those of the fine-
tuning data.

• Classification Task Influence: Fine-tuning
on classification datasets generally preserves
the base model’s generation length on OOD
generation tasks, unless the classification data
itself has a strong length bias.

• Dataset-Specific Length Transfer: Certain
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Figure 5: Confusion Matrices on Flipkart: M[IMDB]
(left) vs. M[Pile] (right).

Figure 6: Confusion Matrices on IMDB
(binary): M[Flipkart(Balanced)] (left) vs.
M[Flipkart(Imbalanced)] (right) : 0=negative,
1=positive.

datasets (e.g., Pile) can impart distinct length
tendencies that transfer to OOD tasks.

• Length Bias in Classification Inputs: Cor-
relations between input text length and class
labels in a source classification dataset can be
learned and transferred, affecting predictions
on target classification tasks.

These findings suggest that generation length is
a transferable latent trait. Models exhibit a form
of “inertia”, blending prior generation habits with
newly learned ones from the fine-tuning data. This
has implications for multi-task learning, as unin-
tended output lengths could affect downstream per-
formance or introduce subtle biases.

5.4 Class Distribution

In classification tasks, the model needs to learn the
features of the input and predict a series of tokens
representing a class. We find that fine-tuning can
shift this output class distribution in unexpected
ways for both in-domain and out-of-domain tasks.
Notice that when analyzing the class distributions,
we can often ignore the impact of the length dis-
tribution because the outputs of the classification
tasks are typically only a couple of tokens.

With the high similarity between the classifica-
tion tasks, we could observe positive transfer be-
tween classification tasks for many dataset pairs

Model (FT on) Pile Flipkart Amazon IMDB

Original LLM 38.45 63.55 31.80 51.45
Pile 85.25 83.90 32.80 51.00
Flipkart-imb. 39.10 92.65 38.70 77.15
Flipkart-bal. 50.05 N/A 38.80 57.80
Amazon 47.90 39.95 61.25 69.05
IMDB 46.35 85.55 31.40 91.45

Table 3: Label Imbalance Effects on Classification
Tasks. Flipkart-bal. means Flipkart-balanced, Flipkart-
imb, means Flipkart-imbalanced.

(Table 3). For example, M[Pile](Flipkart) improves
performance to 83.90%, and M[IMDB](Flipkart)
improves to 85.55%, as compared to 63.55% from
M(Flipkart). Moreover, we observed that predic-
tion bias could be learned and applied to a different
task, both in domain and across domains. For in-
stance, Figure 5 shows that M[Pile] predicts ‘neu-
tral’ more often on Flipkart than M[IMDB], which
suggests that training on Pile (toxicity) might in-
crease sensitivity to ambiguous language, while
IMDB training (binary sentiment) pushes for defini-
tive positive/negative calls.

To further isolate the effect of label distribution
from the task itself, we increase the negative class
ratio from around 20% to 50%. The newly cre-
ated dataset is called Flipkart-balanced, while the
original Flipkart is called Flipkart-imb. Comparing
LoRA M[Flipkart-balanced] with M[Flipkart], Ta-
ble 3 highlights target-dependent effects due to the
class distribution similarity and the dissimilarity
between the fine-tuning and evaluation datasets.
M[Flipkart-balanced](Pile) performs better than
M[Flipkart-imb.](Pile)(50.05% vs. 39.10%), while
M[Flipkart-imb.](IMDB) is better (77.15% vs.
57.80%). Balancing may help tasks needing unbi-
ased signals (toxicity - Pile), while natural imbal-
ance can preserve useful priors for OOD tasks with
similar distributions (sentiment - IMDB).

Figure 6 compares M[Flipkart-imb.](IMDB) and
M[Flipkart-balanced](IMDB), which demonstrates
a bias towards predicting ‘negative’, especially
M[Flipkart-balanced]. This might be linked to
learning spurious features like the input length and
predicting long inputs as negative because negative
reviews in Flipkart are longer than positive reviews,
unlike IMDB’s more uniform lengths as shown in
Figure 7.

5.5 Transferring from Classification to Math

Fine-tuning on classification datasets shows a sur-
prising ability to improve performance on mathe-
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Figure 7: Text length distribution of each sentiment label from the kernel density estimation (KDE) for IMDB (left:
0=negative, 1=positive) and Flipkart (right: 0=positive, 1=neutral, 2=negative).

Model Fine-tuned on GSM8K Acc. (%) Goat Acc. (%)

None (Original LLM) 9.78 6.36
Flipkart (Imbalanced) 14.59 5.96
Flipkart (Balanced) 13.00 6.50
Amazon 12.97 9.15
IMDB 12.78 6.96
Pile 12.66 8.16
PAWS 8.57 7.75
MNLI (Eng.) 9.33 6.00

Table 4: Performance of models fine-tuned on classifi-
cation datasets, evaluated on GSM8K and Goat.

matical reasoning tasks, particularly GSM8K. Ta-
ble 4 shows that several LoRAs trained on classifi-
cation tasks improved GSM8K accuracy over the
original LLM. For example, M[Flipkart] achieves
14.59%, which is much higher than 9.78 from M.
This gain was less pronounced on Goat, a more
arithmetic-focused dataset, suggesting the improve-
ment is more related to linguistic reasoning than
raw calculation.

One initial hypothesis was that overall stylis-
tic similarity (Wegmann et al., 2022) or semantic
similarity3 between source classification datasets
and target math datasets might predict transfer.
However, these broad similarities did not consis-
tently correlate with the observed improvements
on GSM8K, indicating that more nuanced factors
are at play. For example, Figure 8 highlights that
MNLI has very high similarities with MetaMath
while there is almost no positive transfer between
them. In contrast, Flipkart could significantly im-
prove GSM8K, while being stylistically very dis-
similar to MetaMath.

Instead, our analysis (detailed in Appendix F)
suggests that the improvement stems from an en-

3MiniLM-L6-v2 from https://www.sbert.net/

(a) Stylistic Similarity Matrix Between Datasets.

(b) Semantic Similarity Matrix Between Datasets.

Figure 8: Stylistic Similarity (top) and Semantic Simi-
larity (bottom) Matrices.

hanced sensitivity to specific linguistic structures
crucial for understanding and deconstructing word
problems. Key observations include:
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• Sensitivity to Syntactic Cues: The fine-tuned
LoRAs significantly improve the model’s abil-
ity to interpret the grammatical structure of
word problems, which is essential for trans-
lating text into correct mathematical opera-
tions. For example, Figure 9 shows that the
model becomes better at identifying depen-
dency relations like oprd (operand), which
flags a number as an object to be acted upon,
and parataxis, which links related clauses to-
gether. This enhanced syntactic proficiency
is not just a linguistic improvement; it is the
mechanism that allows the model to more re-
liably deconstruct complex sentences into ac-
curate logical and mathematical steps. A fail-
ure to parse these cues correctly often leads
to building the wrong equation (e.g., adding
numbers that should be multiplied).

• Asymmetric Transfer: Our analysis revealed
a significant asymmetric skill transfer. For
example, classification datasets such as Flip-
kart, Amazon and IMDB improve the perfor-
mance on GSM8K (+4.81, +3.19, +3.00, re-
spectively), but training on MetaMath did not
improve on Flipkart, Amazon and IMDB (-
17.45, -10.20, -1.80). Similarly, a strong posi-
tive transfer from code to math was observed,
where M[Magicoder] improved performance
(+9.4) while the inverse resulted in -1.05.

• Handling of Arithmetic Operations: LoRAs
fine-tuned on classification datasets lead to
consistent gains in math reasoning, especially
for high-frequency operations like addition,
subtraction, and division (see Figure 17 in the
appendix). This improvement appears to be
linked to the model’s increased ability to at-
tend to relevant tokens and avoid premature
termination, leading to more complete reason-
ing chains.

These findings highlight that fine-tuning on classifi-
cation tasks can, perhaps counter-intuitively, refine
a model’s linguistic processing in ways beneficial
for structured reasoning tasks like mathematics, be-
yond what simple dataset similarity would predict.

5.6 Importance of Labels

To further understand what drives performance, es-
pecially the linguistic understanding gained during
fine-tuning, we investigated the direct role of labels.

Figure 9: Performance ratio (LoRA success / original
LLM success) on math problems. Gains on relations
like oprd show the model’s improved ability to parse
grammatical structure is the key driver of its success.

Model (Fine-tuned on) Flipkart IMDB GSM8K

M[Amazon] 15.85% 48.65% 3.34%
M[Amazon-mislabeled] 16.75% 48.80% 4.02%

Table 5: Impact of Fine-tuning on Wrong Labels Com-
pared to Correct Labels (% Accuracy).

We tested if LoRAs are sensitive to incorrect la-
bels. Interestingly, fine-tuning on Amazon reviews
where labels are deliberately mislabeled yielded
similar or even slightly better performance on OOD
tasks like IMDB and GSM8K (Table 5), suggesting
models can pick up underlying data structures even
with noisy labels, or that the mislabeling process
inadvertently created patterns beneficial for other
tasks.

6 Conclusion

Our investigation into the cross-task dynamics of
Low-Rank Adaptation (LoRA) confirms that trans-
fer learning behavior is often unintuitive and de-
fies explanations based on task domains or surface
level dataset similarity. This work introduced a
systematic framework to dissect these interactions,
revealing that performance on target tasks is more
influenced by the transfer of latent statistical and
linguistic traits learned from a source dataset. We
established the existence of these phenomena, such
as asymmetric skill transfer and the impact of the
class distribution, providing a new lens through
which to view the fine-tuning process.

Our work paves the way for a more predictable
and engineering-driven discipline around LLM
adaptation. The logical next step is to move to-
ward a modular approach, creating a "tool-belt" of
skill adapters for agentic systems. An agent could
then dynamically load a "conciseness adapter" for
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summarization or a "syntactic-parser adapter," like
the one we observed emerging from classification
data, for complex instruction understanding. While
we demonstrated these dynamics on the Llama 3
architecture with LoRA, a critical next step is to
validate and expand these findings across a broader
range of models and adaptation methods to assess
their scalability. By pursuing these avenues of mod-
ularity and prediction, we can build more robust
and capable AI agents.
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A Experimental Specifics

A.1 Dataset

Table 6 lists the datasets we considered for our
analyses, ranging from generation to classification
tasks, across different domains, class and length
distributions, etc.

A.2 Implementation

We use the Llama 3.2 3B model (Dubey et al.,
2024) as our base model. Fine-tuning is performed
using LoRA (Hu et al., 2022) with a rank of 64
and an alpha of 32, applied to qproj , kproj , vproj ,
oproj , gateproj , upproj , and downproj layers. We
use the AdamW optimizer with a cosine learning
rate schedule. The Unsloth library (Daniel Han and
team, 2023) is utilized for efficient training with
gradient checkpointing. Experiments are tracked
using Weights & Biases (W&B) (Biewald, 2020),
and vLLM (Kwon et al., 2023) is used for opti-
mized batch inference.

B LLM-as-a-Judge Prompt

The following prompt was used with Llama 3.3
70B Instruct to evaluate the model-generated out-
puts against the given ground truth for generation
tasks. The LLM was instructed to provide a binary
score (0 or 1) without explanations.
<|begin_of_text|><|start_header_id|>
system<|end_header_id|>

Your job is to check whether the AI's answer is correct.

Compare it with the correct answer and
score it as either 0
if the AI's answer is wrong or 1 if it is correct.

DO NOT provide any explanations.<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Correct Answer: {groundtruth_column}
AI Answer: {Model generated output}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

Score:

This prompt ensured a strict, explanation-free eval-
uation of the model’s responses based on the pro-
vided ground truth.

C PCA Details

To increase the diversity of the LLM variants in
the performance matrix before running PCA, we
also test a few-shot baseline on Llama 3.2 1B base
model. Its accuracy is 14.11 on GSM8K, 7.00 on
Goat, 18.87 on Magicoder, 55.45 on PAWS, 40.35

on MNLI, 52.60 on MNLI (E), 52.55 on Pile, 90.95
on Flipkart, 48.35 on Amazon, 74.85 on IMDB. We
use 5 shots for Amazon, 2 shots for Pile and IMDB,
and 3 shots for the rest of the datasets.

The rows of the linear weight matrix on the right
side of Figure 2 correspond to zero-shot Llama 3.2
3B base, few-shot Llama 3.2 1B base model, LoRA
from GSM8K, LoRA from Goat, LoRA from Magi-
coder, LoRA from PAWS, LoRA from MNLI (E),
LoRA from Pile, LoRA from Flipkart, LoRA from
Amazon, LoRA from IMDB (from top to bottom).
Finally, before PCA, we normalize the average and
standard deviation of each column to make every
task, regardless of the magnitude of its accuracy,
have similar importance in the PCA.

D Detailed Analysis of Length
Distribution Effects

This appendix elaborated on the observed effects of
training data length distribution on model behavior,
as summarized in the main paper.

• Interpolation Effect in Generation Tasks:
As shown in Figure 10, fine-tuning on gen-
eration tasks (e.g., Magicoder) leads to out-
put lengths on other generation tasks (e.g.,
GSM8K, Goat) that often represent a blend.
The model doesn’t strictly adhere to the new
dataset’s length profile nor entirely retain the
base model’s, but rather finds an intermediate
distribution.

• Classification Task Influence on Generation
Length: Fine-tuning on classification tasks
(e.g., Amazon Sentiment) generally preserves
the base model’s generation length distribu-
tion when tested on generation tasks (Figure
11). The fine-tuning seems to focus more on
discriminative features for classification rather
than altering fundamental generative proper-
ties like typical output length, unless the clas-
sification dataset itself has a very strong and
unusual length characteristic.

• Dataset-Specific Tendencies: M[Pile] - tox-
icity - led to significantly longer outputs on
generation tasks compared to other classifica-
tion datasets, indicating that dataset-specific
length characteristics can be transferred as la-
tent traits (Figure 12).

• Length Bias in Classification: Analysis of
token lengths per class (e.g., in IMDB, PAWS,
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Dataset Domain Characteristics Class Labels / Distribution

MetaMath (Yu et al.,
2024)

Math Multi-step reasoning Generation

Goat (Liu and Low,
2023)

Math Short arithmetic Generation (95% inputs < 500 chars)

GSM8K (Cobbe
et al., 2021)

Math Grade school math problems Generation (75% inputs < 25 chars)

Magicoder (ISE-
UIUC, 2023)

Code Code reasoning/generation Generation (80% input < 1.5k chars)

PAWS (Zhang et al.,
2019)

NLI Paraphrase identification 2-way (paraphrase/not), 50% each

MNLI (Williams
et al., 2018)

NLI Natural language inference 3-way (0-contradiction, 1-entailment, 2-
neutral), 33.3% each

Flipkart Sentiment
(KayEe)

Sentiment Customer reviews 3-way (81.2% positive, 13.9% negative,
4.9% neutral)

Amazon Reviews
(Zhang and Yassir,
2022)

Sentiment Product reviews 5-way (1-5 stars), 20% each

IMDB Reviews
(Maas et al., 2011)

Sentiment Movie reviews 2-way (1-positive, 0-negative), 50% each

Pile (Toxicity) (Kor-
bak, 2024)

Toxicity Text toxicity detection 2-way (1-toxic, 0-non-toxic), 50% each

Table 6: Overview of datasets used in experiments.

Amazon - see Figure 15) reveals that base
models can have biases (e.g., shorter sen-
tences as positive sentiment). Fine-tuning can
either reinforce or alter these biases depending
on the training data’s length characteristics
per class. For example, the PAWS analysis
(Figure 15) showed that the base model was
biased towards shorter sentences, which Flip-
kart and Magicoder inherit. However, models
fine-tuned on PAWS and Pile show different
length biases when evaluated on IMDB (Fig-
ure 13) Similarly, IMDB analysis (see Figure
15) showed that the base model is biased to-
wards shorter sentences as being positive.

E Length Bias for Classification Tasks

Figures 13, 14, 15 show how the base and adapter
do in predicting classes in a classification task and
their distribution across True Positive, False Posi-
tive, True Negative and False Negative.

F Detailed Analysis of Classification
Adapter Effects on Math Performance

This appendix provides a more detailed look at
how fine-tuning on classification datasets impacts
performance on mathematical reasoning tasks, par-
ticularly GSM8K.

F.1 Linguistic Feature Importance Details
The improvement from classification adapters on
GSM8K appears linked to enhanced sensitivity to

linguistic structures crucial for understanding word
problems.

• Correlation of Math Features: We ana-
lyzed the correlation between various math-
ematical features in word problems and
the improvement in model performance
when using adapters (Figure 16). Features
like "num_values", "has_comparison", and
"num_entities" showed negative correlations,
suggesting problems with these features are
less likely to show improvement with the
tested adapters. Conversely, features like
"has_unit_conversion" and "num_questions"
showed positive (or less negative) correlations,
indicating adapters might handle these better.

• Part-of-Speech (POS) Tags: Comparing
POS tag distributions in problems solved suc-
cessfully by adapter-tuned models versus the
base model reveals differences (Figure 18).
For instance, if adapter success cases show a
higher count of NOUNs, it suggests adapters
better handle noun-rich problems.

F.2 Analysis by Number of Steps
We defined a heuristic "number of steps" to loosely
quantify problem complexity by summing counts
of questions, explicit sentences, mathematical op-
erations, comparisons, and conditional statements.

• Generally, adapter-tuned models showed vary-
ing performance improvements over the base
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(a) M[Magicoder], tested on GSM8K. (b) M[Magicoder], tested on Goat.

Figure 10: Generation length distribution when fine-tuned on a generation task (M[Magicoder]) and tested on other
generation tasks.

(a) M[Amazon], tested on Magicoder. (b) M[Amazon], tested on GSM8K.

Figure 11: Generation length distribution when fine-tuned on a classification task (M[Amazon]) and tested on
generation tasks.

(a) M[Pile], tested on Magicoder. (b) M[Pile], tested on GSM8K.

Figure 12: Generation length distribution when fine-tuned on Pile and tested on generation tasks.

model depending on the number of steps, of-
ten outperforming for lower to moderate step
counts (Figure 19).

• A peculiar dip in adapter performance relative
to the base model was consistently observed
for problems estimated to have 10 steps (Fig-
ure 20). Analysis of these 10-step problems
revealed they predominantly involved ‘money’
domain and ‘multiplication’ or ‘addition’ op-
erations (Figures 21a, 21b). The base model
excelled on these specific 10-step problems,
while adapter performance decreased.
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Figure 13: KDE of Token Lengths by Adapter and Classification Category (IMDB). TP: True Positive, FP: False
Positive, FN: False Negative, TN: True Negative.
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Figure 14: KDE of Token Lengths by Adapter and Classification Category (PAWS). TP: True Positive, FP: False
Positive, FN: False Negative, TN: True Negative.

(a) KDE of Token Lengths of Original LLM and Meta-Math
on IMDB

(b) KDE of Token Lengths of Original LLM and Flipkart on
IMDB

Figure 15: KDE of Token Lengths by Adapter and Classification Category. TP: True Positive, FP: False Positive,
FN: False Negative, TN: True Negative.
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Figure 16: Correlation of Math Features in Word Prob-
lems with Adapter Improvement on GSM8K.

Figure 17: Adapter wise performance improvement on
GSM8K clustered by arithmetic operations.

Figure 18: Part-of-Speech Distribution Comparison in
GSM8K Problems (Adapter Success Cases vs. Base
Model Success Cases).

Figure 19: Accuracy by Number of Steps: M[Flipkart
Balanced (Numeric)] vs Original LLM on GSM8K.

Figure 20: Model Accuracy by Number of Steps on
GSM8K, highlighting the 10-step region.
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(a) Performance by Operation Type for 10-Step Problems. (b) Performance by Problem Domain for 10-Step Problems.

Figure 21: Analysis of 10-Step GSM8K problems where base model outperforms adapters.
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