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Abstract

In this work, we investigate the relationship be-
tween the quality of explanations produced by
different models and the amount of implicit
knowledge they are able to provide beyond
the input. We approximate explanation quality
through accuracy on a downstream task with
a standardized pipeline (GEISER) and study
its correlation with three different association
measures, each capturing different aspects of
implicitness, defined as a combination of rel-
evance and novelty. We conduct experiments
with three SOTA LLMs on four tasks involving
implicit knowledge, with explanations either
confirming or contradicting the correct label.
Our results demonstrate that providing quality
explanations consistently improves the accu-
racy of LLM predictions, even when the models
are not explicitly trained to take explanations
as input, and underline the correlation between
implicit content delivered by the explanation
and its effectiveness.1

1 Introduction

Large Language Models (LLMs) excel at numer-
ous language processing tasks, including text gen-
eration, translation, and question answering (Tou-
vron et al., 2023; OpenAI, 2023). Still, understand-
ing their reasoning is challenging, hindering trust
and adoption in high-stakes domains (Hase et al.,
2020; Kaneko and Okazaki, 2023; Kotonya and
Toni, 2020; Atanasova et al., 2020). One approach
towards “intrinsic explainability” is to have LLMs
generate explanations for their predictions. Exist-
ing methods, like pipeline models (Wiegreffe et al.,
2020) and self-rationalizing models (Lei et al.,
2016), often focus on extractive rationales suit-
able for information extraction (Jacovi et al., 2021).
However, complex reasoning tasks require free-text
explanations, especially when implicit knowledge

1Code and data available here github.com/
andreazaninello/geiser.

is involved (Wiegreffe et al., 2021). Also, gen-
erating explanations raises concerns about their
faithfulness, as LLMs might produce plausible-
sounding explanations with no genuine connection
to their reasoning (Narang et al., 2020). This is
particularly problematic for implicit knowledge,
which relies on the model’s internal representations
of the world (McClelland et al., 2020).

With the rise of retrieval-augmented generation
(RAG, Lewis et al. (2020)), language models are in-
creasingly supplemented with external information,
such as explanations, retrieved from knowledge
bases or provided via in-context learning (ICL).
The effectiveness of these approaches depends on
the quality of the retrieved or injected text, which
serves as additional context for the model’s rea-
soning. While traditional RAG studies focus on
improving retrieval mechanisms (e.g., optimizing
factual correctness), less attention has been paid
to evaluating the quality of explanations used in
these frameworks. Recent work by He et al. (2024)
shows that augmenting ICL with natural language
explanations (NLEs) improves model robustness.
However, their study focuses on performance bene-
fits rather than the quality of different explanation
types, and their evaluation is limited to downstream
accuracy without assessing what makes an expla-
nation effective in guiding a model’s decision.

Our work addresses this gap by providing a prin-
cipled evaluation of explanation quality, particu-
larly in sentence pair reasoning tasks, measured by
downstream task performance. Moreover, we show
that explanation effectiveness correlates with the
degree of implicit content, i.e., novel yet relevant
information they provide. We test this hypothesis
by examining the relationship between explanation
effectiveness and three metrics approximating nov-
elty and relevance, and show that they have high,
yet different correlation with explanation quality
according to the examined task.

The main contributions of this paper are:

212

github.com/andreazaninello/geiser
github.com/andreazaninello/geiser


• we propose GEISER, a standardized pipeline
to evaluate the effectiveness of different types
of explanations using LLM relation predic-
tions on tasks involving varying degrees of
implicit reasoning and external knowledge;

• using the proposed pipeline, we report exper-
imental results on different kinds of explana-
tions (human- and machine-generated), across
three LLMs, four tasks and two languages;

• through our analysis, we introduce “implicit
knowledge” as a key factor of explanation
quality, and study different metrics to estimate
it, showing its correlation with explanation
effectiveness.

2 Related Work

The role of explanations in NLP has been exten-
sively studied. For instance, Cambria et al. (2023)
provide a comprehensive survey of natural lan-
guage explanation generation approaches, and
Hartmann and Sonntag (2022) examine the ben-
efits of explanations for improving NLP models.
Paranjape et al. (2021) focus on template-based
explanations, while Lampinen et al. (2022) and Ye
and Durrett (2022) highlight the advantages of in-
context explanations for complex reasoning tasks.
Jansen et al. (2016) provide a comprehensive char-
acterization of different kinds of explanations, each
one with different insight into model behavior.

Traditionally, explanation quality has been as-
sessed using automated metrics like BLEU (Pap-
ineni et al., 2002), ROUGE (ROUGE, 2004), or
BERT-Score (Zhang et al., 2019), which compare
outputs to human-written references. However,
these metrics may not fully capture explanation
quality or align with human judgment, and collect-
ing human references is often costly. More recently,
(human) simulatability scores have emerged as an
alternative to overlap metrics, based on the idea that
explanation quality can be defined as the “utility
to an end-user” (Kim et al., 2016). This approach
evaluates how explanations improve predictive per-
formance on downstream tasks rather than overlap
with ground truth explanations and, while humans
were initially the predictors (Wiegreffe et al., 2021),
trained models now automate this process, showing
strong correlations with human judgments (Hase
et al., 2020). For example, Pruthi et al. (2022)
measures explanation quality by training a student

model on teacher-generated explanations for down-
stream tasks.

Prior work has largely focused on eliciting expla-
nations from models or evaluating them based on
task performance, our work shifts the focus toward
understanding how explanations can reveal implicit
knowledge, offering a novel perspective on expla-
nation quality assessment. While, to the best of our
knowledge, there are no previous works addressing
implicit content measures directly, in the context
of information retrieval, relevance and novelty have
been recognized as key aspects of novelty detection
tasks (Ghosal et al., 2022, 2018), and similarly to us
exploit Textual Entailment (Bentivogli et al., 2011)
for sentence level novelty mining. Metrics such
as the cosine similarity between high-dimensional
embeddings has been traditionally used to quantify
semantic similarity of texts, but has also been re-
cently questioned as a faithful representation (Steck
et al., 2024). Other works, on the other hand, have
focused on estimating the causal strength between
textual fragments, and proposed learned metrics
such as CEQ (Du et al., 2022) or CESAR (Cui et al.,
2024), in the attempt to improve more simplistic
yet effective metrics such as Pointwise Mutual In-
formation (PMI).

3 Methodology

We address the problem of explaining the semantic
relationship between two textual fragments under
the assumption that the relationship involves im-
plicit knowledge, and the hypothesis that explana-
tions eliciting more implicit knowledge represent
higher-quality explanations.

3.1 Explanatory task

Given a pair of sentences < s1, s2 >, and a seman-
tic relation r between s1 and s2 (e.g., s1 temporally
precedes s2, s1 is caused by s2, s1 contradicts s2,
etc.). The task consists in a model M1 generating
an explanation ei for the relation r and then in a
model M2 using the explanation ei to predict the
relation r for the same sentence pair, when r is
not given. The goal is to support the hypothesis
that using explanations results in better predictions,
and that an increase in prediction accuracy corre-
sponds to higher explanation effectiveness, as well
as investigate the correlation between explanation
quality, implicit information elicitation, and rela-
tion prediction.
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3.2 The GEISER Pipeline
To estimate the quality of the explanations, we
propose GEISER (Generation and evaluation of
Explanations for Implicit SEmantic Relations) a
three-step methodology inspired by work on human
simulatability scores.

Step 1: Generate Explanations with M1. Given
an explanatory task, we ask a model M1 to gener-
ate a set of possible explanations E for the semantic
relation rc for the sentence pair < s1, s2 >. We
assume ground truth relations Rc from human an-
notators, as they guarantee explanations consistent
with the actual semantic relations of the sentence
pair.

M1(s1, s2, rc) ⇒ E

As we are interested in comparing different expla-
nations E = {e1, e2, . . . en} for the same sentence
pair and the same relation rc (e.g., a counterfactual
explanation vs. a why-explanation) each expla-
nation ei is generated independently, prompting
a generative model for each specific explanation
type. In Section 5 we define in detail the set E of
explanation types.2

Step 2: Predict Relation with M2. Here, model
M2 is asked to predict a semantic relation rp be-
tween s1 and s2 given one individual explanation
ei in E, injected into the input along with the sen-
tence pair. Adding one explanation ei is meant to
potentially add new information, implicit in s1 and
s2, that can help the model M2 predict the correct
relation rc.

M2(s1, s2, ei) ⇒ rp

The two models used in step 1 and step 2, M1

and M2, might be the same model, in which case
the goal is to assess the self-consistency of the
model (generate the explanation and then use it for
prediction), or two different models, in which case
the goal is to have an independent assessment of
the explanation quality. M1 must be a generative
model, as it has to produce the set of explanations
E, while M2 is a generative model performing a
classification task.

Step 3: Evaluate M1’s Explanations through
M2’s performance. Our final goal is to assess
the quality of the explanations in E generated by
M1. Intuitively, the quality of an explanation ei

2To keep under control our experimental setting, we as-
sume only one semantic relation rc for a given sentence pair.

depends on its ability to provide useful content to
solve a relation prediction task: the more ei is use-
ful to the model M2 to predict the correct relation
rc, the better its effectiveness, taken as a proxy of
the quality of ei. Accordingly, here we assume that
the M2 performance is an indicator of the explana-
tion effectiveness, such that better explanations are
those that contribute to better prediction accuracy.
Given an explanation ei in the set E, its effective-
ness relative to a model M2 is given by the ability
of the model to predict a relation rp that approxi-
mates the correct relation rc for a given sentence
pair.

Effectiveness(ei,M2) = rp ≈ rc

In practice, overall accuracy of a model M2 on a
relation prediction task is used as a proxy metric for
explanation effectiveness. There are two interest-
ing aspects to be considered. First, the difference
between the relation prediction of the M2 model
without and with ei: this is an indicator of the abso-
lute effectiveness of a certain explanation. Second,
as an aggregation metric, the relative ranking of all
explanations in Et ∈ E given by the M2 accuracy
according to their type and how they were gener-
ated: this will give us an indication of whether an
explanation type or a generative model is better
(i.e., more effective) than another.

3.3 Measuring Implicit Content via
Explanation–Input Association Measures

We want to explore whether better explanations
are those that are able to introduce highly relevant
implicit knowledge, i.e., not present in the sentence
pair < s1, s2 >, that the M2 model can use for
predicting rp. Intuitively, a good explanation for
an implicit knowledge-based relationship should
maximize both its novelty, i.e., it has to bring new,
implicit content with respect to < s1, s2 >, and its
relevance with respect to < s1, s2 >, i.e., it has to
be grounded to entities and events mentioned in the
sentences (Ghosal et al., 2018).

As a first step towards validating this hypothesis,
we define the amount of implicitness of an explana-
tion ei as the combination of relevance and novelty
of ei with respect to a sentence pair < s1, s2 >.

We operationalise the implicit content calcula-
tions comparing three different association mea-
sures between the input sentences < s1, s2 > and
the explanation ei: Causal Strength (CS), Entail-
ment Probability, and Cosine Similarity. These are
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intended to variously reflect how well an explana-
tion relates to the input sentences s1 and s2, while
bringing new, potentially useful information.

Causal Strength
Firstly, we consider the metric of CAUSAL

STRENGTH (CS) as proposed by Cui et al. (2024),
which—in its original formulation—aggregates
token-level associations between a cause sequence
C (length n) and an effect sequence E (length m).
However, following Du et al. (2022), in our set-
ting the cause sequence C is obtained by taking the
maximum value obtained by calculating the causal
strength either between a. the concatenation of
s1 and the explanation and the effect sequence E
(corresponding to s2) or 2. s1 as C and the concate-
nation of the explanation and s2 as E. The method
uses causal token embeddings from a BERT model
pre-trained on a cause–effect corpus, and attention
weights to focus on the most relevant token pairs.

Formally, the score is defined as:

CS(C,E) =
n∑

i=1

m∑

j=1

aij

∣∣∣∣
c⊤i ej

∥ci∥∥ej∥

∣∣∣∣

where ci and ej are the token embeddings of C and
E, and aij are normalized attention weights over to-
ken pairs (

∑
i,j aij = 1). This attention-weighted

absolute cosine similarity captures both semantic
alignment and token-level causal informativeness.

Intuitively, this metric emphasizes token pairs
that are both semantically aligned (via cosine simi-
larity) and deemed important by the attention mech-
anism—highlighting explanatory tokens that are
both novel and causally relevant. This implemen-
tation, known as CESAR (Cui et al., 2024), yields
more robust predictions of causal strength changes
when additional information (e.g., supporters or
defeaters) is introduced.

Entailment Probability
Secondly, we consider the probability of entail-
ment, also referred to as NATURAL LANGUAGE

INFERENCE (NLI), calculated via a pre-trained
NLI model. Given an explanation exp, an input
statement s1, and a target statement s2, we define:

NLI(exp, s1, s2) = PNLI

(
s1 ∧ exp |= s2

)
.

This directional measure, while theoretically cap-
turing both relevance and novelty, may in practice
favour relatedness over new information, and its re-
liability is limited by the accuracy of the underlying
NLI model.

Cosine Similarity

Thirdly, we consider simply comparing the CO-
SINE SIMILARITY (COS) of the embedding vectors
eexp and es1,s2 :

COS(eexp, es1,s2) =
eexp · es1,s2

∥eexp∥ ∥es1,s2∥
.

This measure captures semantic relatedness but not
novelty, and can be sensitive to embedding behav-
iors (e.g., scale-invariance may obscure frequency
effects).

In summary (Table 1), CS offers an interpretable
balance of novelty and relevance; NLI aligns
closely with the conceptual role of explanations,
though reliability is tied to model strength and may
not fully reflect novelty; COS, on the other hand, is
easy to compute but lacks novelty sensitivity. For
this reason, we hypothesize that CS should bet-
ter align with explanation effectiveness, as defined
above, and thus positively correlate with accuracies
at the system level.

Measure Relevance Novelty Reliability

CS yes yes Corpus-based, robust
NLI yes no Theoretical, model-limited
COS yes no Fast, but surface-level

Table 1: Overview of implicit content measures and
their features.

4 Tasks and Datasets

We use four datasets that propose tasks involv-
ing different kinds of reasoning and eliciting im-
plicit or external knowledge to various extents. All
datasets provide either human-generated or human-
collected and curated explanations (which we use
as the gold baseline, see Section 5)3

e-SNLI (Natural Language Inference). A ver-
sion of the Stanford Natural Language Infer-
ence (SNLI) corpus, includes 570k sentence pairs
(which we use as s1 and s2) labeled for three entail-
ment classes: “entailment”, “contradiction”, and
“neutrality”; each pair is enriched with 3 human-
written, natural language explanations (Camburu
et al., 2018), which we use in concatenation as our
“gold” explanations.

3An example of how each dataset is preprocessed in the
GEISER pipeline is provided in the Appendix.
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StrategyQA (Multi-hop Question Answering).
A question-answering dataset designed to require
multiple-step strategic reasoning and/or implicit
knowledge to answer a question. The dataset (Geva
et al., 2021) comprises 2,780 strategy questions
(which we use as s2) with answer “yes” or “no”
(labels), its decomposition into multi-step reason-
ing paths (which we use in combination as gold
explanations) and evidence paragraphs giving the
context of the question (which we use as s1).

e-CARE (Causality). A dataset focused on
causal reasoning, featuring human-annotated ex-
planations for the causal questions, The dataset
consists of 21k causal reasoning questions with
both correct and incorrect answers (Du et al., 2022).
We accommodate this dataset into our experimen-
tal setup by pairing both input sentences as s1 and,
for each pair, ask the question represented by s2,
focusing on whether the first sentence is the cause
of the second (label “yes”) or not (label “no”).

e-RTE-3-it (Recognizing Textual Entailment in
Italian). A dataset in Italian for Recognizing
Textual Entailment (RTE), featuring pairs of texts-
hypotheses and human-written, manually curated
explanations for the entailment relation (Zaninello
et al., 2023). It consists of 1,600 sentence pairs
(which we use as s1 and s2, respectively) and is
annotated with the same labels as e-SNLI.

5 Explanation Types

We test two different modes of explanation genera-
tion: explanations that confirm the given relation-
ship between s1 and s2, explaining why it holds
(why, gold) and explanations that potentially con-
tradict the relationship between s1 and s2 explain-
ing the circumstances when the relationship may
not hold (counterfactual).

Why explanations. This kind of machine-
generated explanation (why) is the most typical
way to provide an explanation, i.e., the answer to a
“why” question. In our setting, a why explanation
is an answer to the question “Why is rc the relation
holding between s1 and s2?”.

Gold explanations. These explanations (gold)
are the explanations provided in the original dataset,
either directly written or manually checked by hu-
mans given the correct relation rc, thus falling into
the label-confirming explanation type like why ex-
planations. While the quality of human-generated

explanations is generally considered high (e.g., we
expect that they point out relevant and implicit in-
formation), there is no guarantee that, when used by
a model M2, they will perform better than model-
generated ones. Therefore, for the purposes of this
study, we evaluate them along with the generated
ones and take them as a strong baseline, rather than
consider them a target or reference explanation.

Counterfactual explanations. In our setting, a
counterfactual (cf) explanation (Wachter et al.,
2017; Verma et al., 2022) explicitly contradicts the
golden label. It originates from the following ques-
tion: “What are the conditions in which relation
rc may not hold for s1 and s2?”. The aim of these
explanations is to test the robustness of models to
potentially false or misleading information, as well
as highlight how different models may be differ-
ently sensitive to explanation injection4.

6 Experiments

6.1 Experimental Setup

Models. We utilize three open-access language
models of comparable size, which we com-
bine as both M1 and M2: Llama-3-8B-Instruct
(Team Llama et al., 2024), Gemma-7b-it (Gemma
et al., 2024) and DeepSeek-R1-Distill-Qwen-7B
(DeepSeek-AI et al., 2025; Qwen et al., 2025).

To compute Cosine Similarity (Section 3.3),
we use sentence-transformers/all-MiniLM-L6-v2
(Wang et al., 2020). For Entailment, we use the
pre-trained NLI model deberta-large (Liu et al.,
2019), fine-tuned on the Multi-Genre NLI dataset
(Williams et al., 2018).

Prompting and Inference Details. Our imple-
mentation leverages the HuggingFace’s lm_eval
harness library to ensure consistent and repro-
ducible evaluation across tasks. For M1 genera-
tion, we use the output type generate_until. We
employ greedy decoding for all experiments, and
all prompts are constructed in English (so that all
explanations are returned in English, regardless
of input)5. For M2 prediction, we use the multi-
ple_choice output type, which calculates logits for
a given set of labels.

4See prompts and example explanations in the Appendix.
5Due to computational constraints, we used the first 800

examples from the test sets of each dataset to keep genera-
tion within our capacity limits. This approach allowed us to
maintain a balance between comprehensive evaluation and
practical feasibility.
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noexp gold cf-llama-m1 cf-gemma-m1 cf-deepsk-m1 why-llama-m1 why-gemma-m1 why-deepsk-m1

ESNLI (3 labels)

llama-m2 0.54 0.71 0.34 0.44 0.59 0.72 0.89 0.95
gemma-m2 0.61 0.79 0.53 0.46 0.61 0.76 0.90 0.95

deepseek-m2 0.34 0.34 0.40 0.36 0.61 0.45 0.70 0.96
all-m2 0.50 0.61 0.42 0.42 0.60 0.64 0.83 0.95

SQA (2 labels)

llama-m2 0.64 0.78 0.62 0.66 0.46 0.80 0.75 0.91
gemma-m2 0.62 0.68 0.55 0.58 0.50 0.81 0.75 0.88

deepseek-m2 0.45 0.45 0.43 0.38 0.52 0.45 0.45 0.77
all-m2 0.57 0.64 0.53 0.54 0.49 0.69 0.65 0.85

ECARE (2 labels)

llama-m2 0.53 0.56 0.51 0.54 0.61 0.81 0.76 0.91
gemma-m2 0.48 0.71 0.54 0.51 0.62 0.92 0.75 0.94

deepseek-m2 0.48 0.49 0.50 0.48 0.59 0.53 0.54 0.83
all-m2 0.50 0.59 0.52 0.51 0.61 0.75 0.68 0.89

ERTEIT (3 labels)

llama-m2 0.48 0.53 0.29 0.26 0.20 0.70 0.62 0.67
gemma-m2 0.44 0.49 0.23 0.19 0.20 0.70 0.59 0.67

deepseek-m2 0.48 0.48 0.50 0.38 0.20 0.58 0.53 0.67
all-m2 0.47 0.50 0.34 0.28 0.20 0.66 0.58 0.67

Table 2: Accuracy of M2 models across the four datasets and explanation types, using explanations generated by
M1. Explanations marked as noexp and gold represent the baselines. Values are reported as accuracy scores of each
M2 model and as mean across all M2 models (all-m2), with standard errors omitted for brevity. The best-performing
explanation type for each M2 is boldfaced.

To make generated explanations comparable to
gold explanations, we ask M1 to explain in approx.
3 sentences. To include the explanations in Step 2,
we prompt M2 to use a “hint” to give its answer,
represented by the explanation.

Anonymization to Prevent Label Leakage. To
ensure that the explanations do not simply suggest
the right answer without genuinely being informa-
tive, we “anonymize” them by substituting each
explicit reference to the labels with a placeholder
(XXX) using regular expressions to fetch either the
label (e.g. “YES” and “NO”) or words directly
connected to the relation (e.g. “contradict”, “con-
tradiction” etc.). Moreover, we explicitly ask the
M1 model to avoid stating the answer directly when
generating the explanation.

6.2 Evaluation

Baselines. We select two baselines: no explana-
tion given (noexp), where the model M2 performs
0-shot relation rp prediction; human explanation
(gold), where we use the explanation provided in
the original dataset as the hint, providing a strong
baseline. Gold explanations too, like the generated
ones, underwent the process of anonymisation.

Explanation quality. For explanation quality
through GEISER, we calculate the average accu-
racy (acc) of each M2 model separately using ei-
ther the explanations generated by the same model
(M1 = M2), or by another model (M1 ̸= M2).
We report average accuracy for each explanation
type/M1, and both separately and ensembling by
M2, along with the accuracy obtained by with gold
and noexp baselines (Table 2).

Correlation with Implicitness. To study the cor-
relation of the selected implicitness measures (CS,
COS, NLI) with explanation quality, we report
the average score separately for each explanation
type/M1, each ranging from 0 to 1 (Table 3. Then,
we calculate the Pearson correlation coefficient (r)
(p = 0.05), to assess the linear relationship be-
tween each M2 accuracy for all explanation types
in each dataset, and the association measure for the
same system for that dataset.

7 Results and Discussion

Accuracy Trends. In Table 2 we report the per-
formances on the GEISER experiments for the four
datasets under different explanation types, both
with M1 = M2 and M1 ̸= M2. Results are re-
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noexp gold cf-llama-m1 cf-gemma-m1 cf-deepsk-m1 why-llama-m1 why-gemma-m1 why-deepsk-m1

ESNLI (3 labels)

Causal Strength 0.45 0.69 0.48 0.51 0.65 0.61 0.67 0.81
Cosine Similarity 0.05 0.70 0.48 0.46 0.48 0.44 0.56 0.47
Entailment prob. 0.34 0.42 0.12 0.13 0.82 0.22 0.23 0.77

SQA (2 labels)

Causal Strength 0.55 0.70 0.53 0.58 0.71 0.64 0.69 0.77
Cosine Similarity 0.05 0.58 0.75 0.78 0.69 0.75 0.83 0.76
Entailment prob. 0.08 0.03 0.07 0.08 0.62 0.10 0.17 0.89

ECARE (2 labels)
Causal Strength 0.50 0.85 0.52 0.53 0.61 0.65 0.64 0.73

Cosine Similarity 0.06 0.46 0.55 0.51 0.44 0.61 0.63 0.45
Entailment prob. 0.44 0.20 0.17 0.13 0.81 0.29 0.19 0.88

ERTEIT (3 labels)

Causal Strength 0.60 0.71 0.47 0.53 0.53 0.72 0.70 0.80
Cosine Similarity 0.05 0.75 0.44 0.48 0.39 0.45 0.63 0.46
Entailment prob. 0.58 0.38 0.29 0.27 0.87 0.50 0.45 0.93

Table 3: Mean association measures (Causal Strength, Cosine Similarity, Entailment probability) across datasets,
models, and explanation types. The noexp and gold columns indicate the baselines results using no-explanation
and the human-generated ones. The remaining columns indicate results obtained by counterfactual cf or why
explanations generated by the three LLMs as M1.

ported both separately for the different M2 models,
as well as the average accuracy across all models
(all-m2).

The best scoring task was ESNLI with why expla-
nations written by Deepseek, which also presents
the largest gain over the noexp baseline (from
0.34 to 0.96 with Deepseek both as M1 and M2).
Despite presenting a very similar task, the lower
scoring dataset and the smallest gains were with
ERTEIT (min. 0.20 with cf, max. 0.70 with
LLama’s why). This seems to indicate that the
models still struggle with languages other than En-
glish, or are possibly mislead by the language shift
between the input (Italian) and the explanations
(English).

The preferred explanations were those of
Deepseek with all M2s in all tasks, with the excep-
tion of ERTEIT, where Llama-m2 and Gemma-m2
scored higher with Llama-m1’s why explanations.

Label-confirming explanations (why) consis-
tently led to the highest accuracy across all datasets
and models, confirming that explanations aligned
with the gold label can meaningfully support the
m2 model’s decision-making. On the other hand,
label-contradicting explanations generally scored
lower than the noexp baseline, as was expected,
indicating that “bad” explanations can indeed be
detrimental to the model’s accuracy. However,
there are a few cases where cf explanations im-

proved over the noexp baseline, specifically on
ESNLI and ECARE and mainly with Deepseek-
m2’s explanations. We manually inspected a sam-
ple of the cf explanations that led to a correct pre-
diction, and noticed a common trend: in fact, in
these cases either the model “refused” to support
the opposite label, or it produced a long “chain of
thought” style explanation which was truncated,
and therefore did not contain the section of the
explanation supporting the opposite label. This
was especially the case with Deepseek, which
produced an initial “reasoning” independently of
the supported relationship, which was helpful for
the downstream model to predict the correct la-
bel. Finally, it is worth noticing that machine-
generated why explanations consistently outper-
form the human-generated ones (gold), which
nonetheless are beneficial to prediction accuracy
compared to noexp.

Association Measures. We computed three as-
sociation measures between the explanation and
the input: causal strength, cosine similarity, and
entailment probability (Table 3). Label-confirming
explanations showed higher values on all three
measures compared to other conditions. For ex-
ample, in SQA, the average causal strength and
cosine similarity were highest (0.64 and 0.75, re-
spectively) for label-confirming explanations, in-
dicating a stronger semantic and causal link to the
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input. This confirms that these metrics are not only
sensitive to novelty but also to relevance (cf be-
ing new information, which is not relevant for the
correct label). On the other hand, entailment proba-
bility showed more variation across datasets, likely
due to inherent differences in how entailment is
interpreted in each task.

Correlations with Accuracy. To identify which
measures best predict explanation utility, we corre-
lated the association measures with accuracy across
all explanation types (gold, cf, why) and generative
models (Table 4). While all measures generally
show a positive correlation with accuracy, Causal
strength showed the highest and most significant
correlation across all datasets (e.g., 0.86 for llama-
m2 in ESNLI, 0.90 for all-m2 in ERTEIT). This
suggests that the extent to which an explanation
causally supports the input is a reliable predictor
of its usefulness. Cosine similarity and entailment
probability were weaker and less consistent predic-
tors, though entailment reached high correlations
in specific cases (e.g., 0.91 for deepseek-m2 on
SQA).

Implications. These results suggest that inject-
ing label-confirming explanations improves model
performance, particularly when the explanations
exhibit strong causal links to the input. Among
the evaluated association measures, causal strength
emerges as the most promising indicator of expla-
nation quality. This highlights its potential as a
diagnostic tool for filtering or scoring explanations
before injection. Cosine similarity and entailment
probability offer additional, though less robust, sig-
nals.

8 Conclusion

In this study, we tested the effects of explanations
on LLMs, showing that they can significantly im-
prove their accuracy in predicting relations between
sentences. This improvement is consistent across
different models, datasets, and explanation types.
Our experiments also show a correlation between
explanation effectiveness and the degree of implicit
knowledge conveyed by the explanations, suggest-
ing that explanations that introduce novel and rel-
evant information are more likely to be helpful to
LLMs. Furthermore, our analysis reveals that dif-
ferent LLMs exhibit varying sensitivity to different
explanation types. Our findings contribute to re-
search on the role of explanations in enhancing

CS COS NLI

ESNLI

llama-m2 0.86 0.29 0.45
gemma-m2 0.33 0.33 0.33
deepseek-m2 0.63 0.19 0.63
all-m2 0.68 0.28 0.53

SQA

llama-m2 0.42 0.21 0.14
gemma-m2 0.54 0.21 0.21
deepseek-m2 0.71 0.13 0.91
all-m2 0.62 0.21 0.48

ECARE

llama-m2 0.43 0.37 0.46
gemma-m2 0.66 0.47 0.47
deepseek-m2 0.36 0.08 0.80
all-m2 0.54 0.36 0.53

ERTEIT

llama-m2 0.92 0.20 0.18
gemma-m2 0.93 0.18 0.18
deepseek-m2 0.70 0.13 -0.02
all-m2 0.90 0.18 0.17

Table 4: Pearson correlation coefficient (r), between M2

accuracy across the four datasets and the three associa-
tion measures: Causal Strength (CS), Cosine Similarity
(COS) and Entailment probability (NLI). The boldfaced
figures indicate statistical significance according to a
t-test with n− 2 degrees of freedom, and p = 0.05.

LLM performance. By understanding the nuances
of model sensitivity to different explanation types
and the ways in which explanations contribute to
implicit knowledge acquisition, we can develop
more effective techniques for explaining and im-
proving the reasoning capabilities of LLMs. Future
work should explore how to automatically generate
or filter explanations with high causal alignment to
further boost downstream model performance.

Limitations

We focus on a specific type of NLP task involv-
ing implicit knowledge and investigate the impact
of explanations on relation prediction. Further
research is needed to extend these findings to a
broader range of NLP tasks and model architec-
tures.

Our measurement of implicitness relies on met-
rics like cosine nli and casual strength, which do
not distinguish between relevance and novelty, and
may not fully capture the nuanced nature of implicit
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knowledge in language. Finer-grained techniques
are needed for a comprehensive evaluation of im-
plicitness. Future work should explore additional
features, such as explanation length and syntac-
tic complexity, to better understand their interplay
with model performance.

We utilized a controlled experimental setup,
where explanations are provided in a specific for-
mat and injected into the model during inference.
Real-world applications might involve more com-
plex scenarios with less controlled input and output
formats.

Also, while our study focused on sentence-pair
tasks, the GEISER pipeline can in principle be
extended to multi-hop reasoning chains and other
explanation-rich settings by iteratively injecting in-
termediate explanations, which we plan to explore
in future work.
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Appendix

Illustrative Examples from the Four Datasets

Example 1 — ESNLI (with gold explanation)

Task Input

Premise: This church choir sings to the masses as they sing joyous songs from the book at a church.
Hypothesis: The church is filled with song.
Label: entailment

Prediction Prompt (with gold explanation)

Your task is to predict the entailment relationship (entailment, neutral, contradiction) between a premise
and a hypothesis given a hint.
Premise: This church choir sings to the masses as they sing joyous songs from the book at a church.
Hypothesis: The church is filled with song. Hint: "Filled with song" is a rephrasing of "choir sings to
the masses." Hearing song brings joyousness in the church. If the choir sings, then the church is filled
with song. Answer:

Example 2 — SQA (with noexp explanation)

Task Input

Context: The Police = English rock band.
Question: Could the members of The Police perform lawful arrests?
Label: no

Prediction Prompt (with noexp explanation)

Your task is to answer a question with ’yes’ or ’no’ given a context and a hint.
Context: The Police = English rock band. Question: Could the members of The Police perform lawful
arrests? Hint: None. Answer:

Example 3 — ECARE (with why explanation)

Task Input

Sentence 1: The woman gave birth to a child.
Sentence 2: The child brought psycho-physical phenomena on a new life.
Label: yes

Generation Prompt

Your task is to explain in approx. 3 sentences the answer to a question given a pair of sentences,
without stating the answer directly.
Sentence 1: The woman gave birth to a child. Sentence 2: The child brought psycho-physical
phenomena on a new life. Question: Is sentence 1 the cause of sentence 2? Answer = yes Explanation
(max 3 sentences, avoid stating the answer directly):
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Prediction Prompt (with why explanation by DeepSeek)

Your task is to answer a question with ’yes’ or ’no’ given a pair of sentences and a hint.
Sentence 1: The woman gave birth to a child. Sentence 2: The child brought psycho-physical
phenomena on a new life. Question: Is sentence 1 the cause of sentence 2? Hint: Sentence 1 describes
an event that happened before Sentence 2. In many cases, the XXX of an event is the immediate
preceding event. Additionally, if Sentence 1 directly leads to Sentence 2, such as in the scenario where
the woman gave birth to a child, it can be inferred that Sentence 1 is the XXX of Sentence 2. Answer:

Example 4 — ERTEIT (with cf explanation)

Task Input

Premise: Claude Chabrol (nato il 24 giugno 1930) è un regista francese diventato famoso negli ultimi
40 anni sin dal suo primo film, Le Beau Serge, per le sue agghiaccianti storie di omicidi, tra cui Le
Boucher.
Hypothesis: Le Beau Serge è stato diretto da Chabrol.
Label: entailment

Generation Prompt

Your task is to convince me in approx. 3 sentences that the entailment relationship between a premise
and a hypothesis is WRONG, without stating the relationship directly.
Premise: Claude Chabrol [...] Le Beau Serge [...] Hypothesis: Le Beau Serge è stato diretto da Chabrol.
Entailment relationship: entailment. Explanation (max 3 sentences, avoid stating the relationship
directly):

Prediction Prompt (with cf explanation by Gemma)

Your task is to predict the entailment relationship (entailment, neutral, contradiction) between a premise
and a hypothesis given a hint.
Premise: Claude Chabrol [...] Le Beau Serge [...] Hypothesis: Le Beau Serge è stato diretto da Chabrol.
Hint: The premise describes a renowned French director, Claude Chabrol, known for his intense
murder stories. The hypothesis assumes that Chabrol directed the film Le Beau Serge. However, the
premise does not necessarily XXX the hypothesis, as it does not provide any information about the
film’s authorship. Therefore, the XXX relationship between the premise and the hypothesis is incorrect.
Answer:
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