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Abstract

Natural Language Inference (NLI) relies heav-
ily on adequately parsing the semantic con-
tent of the premise and hypothesis. In this
work, we investigate whether adding seman-
tic information in the form of an Abstract
Meaning Representation (AMR) helps pre-
trained language models better generalize in
NLI. Our experimentsl integrating AMR into
NLI in both fine-tuning and prompting settings
show that the presence of AMR in fine-tuning
hinders model generalization while prompting
with AMR leads to slight gains in GPT-4o.
However, an ablation study reveals that the
improvement comes from amplifying surface-
level differences rather than aiding semantic
reasoning. This amplification can mislead
models to predict non-entailment even when
the core meaning is preserved.

1 Introduction

Since the advent of large language models
(LLMs), there has been ongoing debate about
the utility of symbolic representations such as
Abstract Meaning Representations (AMRs; Ba-
narescu et al., 2013) in (LLM-based) pipelines
and existing NLP tasks. While some studies re-
port limited or negative impact of AMRs on main-
stream NLP tasks (Jin et al., 2024), recent work
has demonstrated their value in specific applica-
tions, such as syntactic simplification (Yao et al.,
2024) and semantically-controllable text transfor-
mation (Li et al., 2025). Perhaps unsurprisingly,
incorporating AMR has been particularly well-
explored and effective in tasks related to semantics
(Wein and Opitz, 2024).

Natural language inference (NLI; Dagan et al.,
2010) is a popular task in NLP where the solver
is given a premise and a hypothesis, and asked
to determine whether the hypothesis is true if the
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Figure 1: An example of NLI and experiment pipeline
of the paper. AMRSs are shown in penman notation.

premise is true. The label space consists of three
labels: entailment if the hypothesis is true, con-
tradiction if the hypothesis is false, and neutral
if the truth value of the hypothesis cannot be de-
termined; this can also be condensed in two la-
bels: entailment and non-entailment. As shown
in Figure 1 “Athletes introduced the secretaries”
should be entailed by “Serious athletes introduced
the secretaries.” Therefore, the label should be en-
tailment because the truth of the premise indicates
truth of (or entails) the hypothesis.

As a meaning-focused task, NLI aligns well
with the motivation behind AMRs, i.e., to abstract
sentence meaning beyond surface form, given NLI
models’ tendencies to adopt shallow heuristics
rather than understanding the relationship between
the premise and the hypothesis, leading to poor
generalization to novel data (Gururangan et al.,
2018; Poliak et al., 2018; McCoy et al., 2019;
Serrano et al., 2023). In this paper, we inves-
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tigate whether incorporating AMRs as additional
input - either during (a) fine-tuning or (b) prompt-
ing - can encourage models to attend more to ab-
stract meaning, thereby improving generalization
and overall performance. As illustrated in Fig-
ure 1, we add AMRs to either the training data or
prompts then evaluate how the addition of AMR
affects generalization performance. We find that
AMRs generally hinder performance in both fine-
tuning and prompting settings, with the excep-
tion of prompting on HANS. However, this im-
provement appears to stem from AMRs amplify-
ing surface-level differences rather than capturing
deeper semantic meaning.

2 Related Work

NLI (Dagan et al., 2010) is a hallmark task demon-
strating model’s ability to understand natural lan-
guage. Select neural models like BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
trained on datasets like Multi-genre NLI (MNLI;
Williams et al., 2018) and Stanford NLI (SNLI;
Bowman et al., 2015) provide test-set performance
close to that of humans (Nangia and Bowman,
2019), but the near-human performance on MNLI
has been attributed to models optimizing on the
spurious correlations between lexical items and
labels in the data (Poliak et al., 2018; McCoy
etal.,2019; Gururangan et al., 2018; Serrano et al.,
2023). The same models that excel in test-set per-
formance suffer from poor generalization to other
datasets that represent the same task (Zhou et al.,
2020; McCoy et al., 2020; Delbari and Pilehvar,
2025).

Several prior approaches have incorporated log-
ical representations into NLI, for example by
combining neural encoders with logical reason-
ing modules (Chen et al., 2021), training natu-
ral logic theorem provers (Abzianidze, 2020), ex-
tracting phrase correspondences via natural deduc-
tion proofs (Yanaka et al., 2018), or constrain-
ing large language models with natural logic in-
ference patterns (Noble et al., 2025). While these
works rely on task-specific inference rules or spe-
cialized proof systems, our use of AMRs differs in
that AMRs provide a broad, task-agnostic seman-
tic abstraction without requiring dedicated engi-
neering. Once an AMR parser is available, AMRs
can be used as direct inputs to pretrained models
such as BERT (Section 3.2 and ChatGPT (Section
3.3), enabling structured input with minimal task-

specific engineering.

LLMs and in-context learning have been used
to tackle NLI and generalization in it, with mixed
results; Webson and Pavlick (2022) show that
the content of prompts do not significantly in-
fluence LLMs’ performance in NLI tasks, while
Kavumba et al. (2023); He et al. (2024) use chain-
of-thought reasoning and natural language expla-
nations to improve NLI performance and general-
ization. However, Zhong et al. (2023) report that
its NLI performance is still only comparable to
much smaller encoder-only models like BERT and
RoBERTa (Devlin et al., 2019; Liu et al., 2019),
leaving adversarial NLI an ongoing area of re-
search.

Recent work on AMRSs has set out to utilize
AMR graphs for a variety of downstream tasks,
including summarization and information extrac-
tion (see Wein and Opitz (2024); Sadeddine et al.
(2024) for comprehensive overviews). AMRs
excel in capturing structure-dependent meaning
(Leung et al., 2022) and have shown particular
promise in meaning-sensitive tasks such as debi-
asing translationese (Wein and Schneider, 2024),
style transfer (Hua et al., 2023), and sentence-level
manipulation (Li et al., 2025), especially when
used in conjunction with fine-tuned models.

To the best of our knowledge, Opitz et al.
(2023) represents the only prior effort to incor-
porate AMRs into NLI, and do so for the pur-
pose of interpretable NLI evaluation. They find
that metrics based on AMR are robust unsuper-
vised representations of premise-hypothesis rela-
tionships when used alongside neural representa-
tions like BERT.

3 Data & Experiments
3.1 Data & Models

In these experiments, we use two datasets: MNLI
(Williams et al., 2018) and HANS (McCoy et al.,
2019). MNLI is a crowdsourced dataset, with a
test set that is not available to the public. We
follow prior work (Wang et al., 2018; Devlin
et al.,, 2019) in taking one of its two develop-
mental splits as the evaluation dataset. Specifi-
cally, we take the matched developmental set to
use as our evaluation dataset. The training dataset
includes 297k sentence pairs, while the evalua-
tion set contains around 10k pairs. HANS is a
template-based evaluation dataset, with 30k exam-
ples. Unlike MNLI and other NLI datasets, its la-
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bel space consists of only two labels—entailment
and non-entailment. We follow prior work (Mc-
Coy et al., 2020; Min et al., 2020) in collapsing
the model’s neutral and contradiction predic-
tions to the single non-entailment label when
calculating evaluation metrics, to accommodate
the two-class label space of HANS.

We use an off-the-shelf AMR parser from
amrlib ? to parse all the sentences from the two
datasets we use. The model is BART-1arge (Lewis
etal., 2019) fine-tuned on AMR 3.0 (Knight et al.,
2021). While parsers with higher reported scores
exist (e.g. Bevilacqua et al., 2021), we follow
Uhrig et al. (2021); Opitz et al. (2023) in select-
ing an amrlib parser for ease of implementation.

We manually perform a small sanity check over
a subset of generated AMRs to verify that AMR
parses are acceptable, but do not perform a com-
prehensive quality check over the entire dataset.
We observe that the AMRs produced for sentences
in the HANS dataset are generally acceptable,
likely benefiting from the sentences’ simple struc-
ture and short length, though certainly the gener-
ated AMRSs contain noise; the sentences in MNLI
are longer and more complex.

3.2 Experiment 1: Can fine-tuned models
benefit from AMR in NLI?

We train three sets of BERT-base models, aug-
mented with AMR information to perform our ex-
periment. We incorporate AMR in three ways:
(1) linearized AMR is concatenated to text input
(+AMR as text); (2) graph neural network repre-
sentation of AMR is concatenated to text represen-
tation (+AMR as graph); and (3) just the linearized
AMR is used as text input (AMR as text only).
We adopt the setup and hyperparameters of pre-
vious work in MNLI fine-tuning and HANS eval-
uation (McCoy et al., 2020; Min et al., 2020). We
take the bert-base-uncased model and fine-tune
for 3 epochs with a learning rate of 2e-5. While
we opt to follow prior work, we note that longer
fine-tuning beyond 10 epochs at the same learning
rate significantly improves HANS performance in
all settings. Each label prediction is made from
the [CLS] token’s final layer embedding. While
the setup is equivalent to those from prior work,
we implement the setup in a more modern, cur-
rent stack. Due to updates in the hardware and

2https ://github.com/bjascob/amrlib-models/
releases/tag/parse_xfm_bart_large-vo_1_0

software since prior work, slight changes in the
resulting model weights are possible. To control
for such an effect, we perform a sanity check via
baseline in-distribution test set evaluation. Finally,
we integrate AMR into the models as text, via lin-
earization, removing all newlines and whitespace
sequences longer than length two.

3.3 Experiment 2: Can prompt-based models
benefit from AMR in NLI?

In this experiment, we evaluate whether incor-
porating AMRs improves LLMs’ performance on
NLI, on both the MNLI and HANS dataset, the
latter of which remains challenging even after fine-
tuning. Jin et al. (2024) find that only instruction-
tuned GPT models are capable of reliably process-
ing AMRs. We therefore restrict our evaluation to
GPT-40 (Hurst et al., 2024) in zero-shot and 5-shot
settings.
We use the following prompt template:

You are a helpful assistant trained to de-
termine whether a hypothesis logically
follows from a premise. Respond with
"Yes’ or 'No’.

Premise: [X].

Hypothesis: [Y].

Where [X] and [Y] are replaced with the
premise and hypothesis in question. The prompt
applies to both zero and few-shot settings. We
incorporate no additional details or explanations
about the task (NLI), the datasets (MNLI and
HANS), or the AMRSs in our prompt, to best mea-
sure the LLM’s ability to use representations of
meaning for NLI, rather than perform in-context
learning. However, it is possible that the model
perform better with additional context on the task,
dataset, or AMRs.

We test three input conditions: (a) sentence
only; (b) AMR only; and (c) sentence + AMR. La-
bel preprocessing follows the same procedure as in
the fine-tuning setup for MNLI. In the 5-shot set-
ting, we randomly sampled 5 examples from the
training set of each data set. We set the tempera-
ture to O to ensure deterministic outputs.

4 Results & Discussion

4.1 Experiment 1

We report the accuracies of our fine-tuning mod-
els with and without AMRs in Table 1. We report
numbers from prior work (McCoy et al., 2020;
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Model | MNLI HANS

Chance 0.33 0.50

Baseline (McCoy et al., 2020) 0.84 0.57
+Syntactic aug (Min et al., 2020) 0.84 0.65

Ours

Baseline reproduction (text only) 0.84 0.52
+AMR as text 0.83 0.47
+AMR as graph 0.84 0.49

AMR as text only 0.74 0.51

Table 1: Performance comparison with and without
AMR on HANS and MNLI test sets in the fine-tuning
setting. Both datasets measure accuracy.

Min et al., 2020) in addition to our experiments
to serve as comparison baselines and to ensure our
setup is correct. Our reported numbers are an av-
erage across 10 runs with varying seed.

As shown in Table 1, AMR augmentation does
not yield improvements in MNLI performance,
nor HANS generalization. Perhaps analogously to
previous data-driven attempts at improving gen-
eralization (Clark et al., 2019; Min et al., 2020;
Yaghoobzadeh et al., 2021), additional AMR in-
formation as either text or graph does not af-
fect MNLI performance. Analysis of their confu-
sion matrices reveals AMR adds or subtracts little
in terms of MNLI label decision boundary. On
HANS performance, We discuss two main find-
ings.

Standalone AMR input for classification inten-
sifies heuristics favoring the entailment label.
AMR-only models predict the entailment label for
98.3% of HANS examples, compared to the base-
line models at 94.7%. We attribute this to an in-
tensified version of the baseline models’ heuris-
tic correlating overlap between the hypothesis and
premise to the entailment label, dubbed the lex-
ical overlap heuristic (McCoy et al., 2019). We
note this is concurrent with a still competitive
MNLI performance, at 84%. We discuss this phe-
nomenon in more detail in Sections A.1 and A.2.

Mixing AMRs and text leads to more (false)
negative predictions in novel data. On the
other hand, combining AMR information with text
strongly affects HANS label decision boundaries
in the opposite direction, overriding various shal-
low heuristics that favor the entailment label ob-
served in McCoy et al. (2020) and in our base-
line and AMR-only experiments. Our +AMR as
text models 86.6% of HANS examples, and +AMR
as graph models 86.9%, even predicting non-

Model \ MNLI HANS
Chance 0.33 0.50
ChatGPT-3.5
Zhong et al. (2023) 0.89 -
He et al. (2024) - 0.75
Ours (ChatGPT-40)
Text only 0.91 0.82
+AMR 0.75 0.87
AMR only 0.68 0.70

Table 2: Performance comparison with and without
AMR on HANS and MNLI test sets in the LLM zero-
shot prompting setting.

entailment on highly overlapping examples. We
attempt to disentangle the effects of AMRs and
text in a combined representation in Section A.2,
where we find that while AMR can be used to per-
form NLI, it is less effective than text input and
combining the two introduces new artifacts that
are more difficult to interpret.

4.2 Experiment 2

The results for prompting with GPT-40 are shown
in Table 2. We report only the zero-shot results
in the main text, as they yield similar overall per-
formance and prediction patterns. Results for the
five-shot setting are provided in Section D. Two
main observations emerge.

AMRs increase (false) negative predictions.
As shown in the table, model performance is con-
sistently lowest when prompted with AMRs alone,
while including the original sentence improves re-
sults. We find this is because AMRs lead mod-
els to make more negative predictions (see Sec-
tion B). To test this statistically, we fit a logis-
tic regression model predicting non-entailment us-
ing SMATCH++ (Opitz, 2023) between hypothe-
sis and premise AMRs and data source (gold vs.
predicted). A significant negative interaction (3
= -0.042, p < 2e-16) shows that SMATCH simi-
larity influences model predictions more than gold
labels.

Further analysis reveals that AMR’s sensitiv-
ity to surface-level lexical and syntactic variation
leads to low structural overlap between seman-
tically equivalent expressions,3 misleading the
model toward non-entailment. This also explains
why, on the HANS test set, prompts that include
both the sentence and its AMR lead to the high-
est rate of negative predictions: the AMR repre-

*See Section C for an example.
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Figure 2: Accuracy of three prompt settings across dif-
ferent sentence lengths on MNLI.

sentation amplifies subtle differences between two
otherwise similar strings, making semantic mis-
matches more salient and pushing the model to-
ward rejecting entailment. Such nuanced con-
trasts are what HANS is designed to probe in lan-
guage models, prompting GPT-40 to overpredict
non-entailment.

AMR does not lead to more robust perfor-
mance with longer sequence length. Opitz
et al. (2023) reported that incorporating AMRs
improves robustness in NLI prediction. We in-
vestigate whether this finding holds for LLMs.
Specifically, we plot accuracy across NLI exam-
ples binned by total sequence length (premise +
hypothesis). For sequences exceeding 100 words,
we group them into a single bin due to their spar-
sity.

As shown in Figure 2, when GPT-40 is
prompted with both sentence and AMR inputs, ac-
curacy slightly increases for inputs longer than 80
words. However, this performance remains lower
than that of sentence-only prompts across most
length bins. We find no evidence that AMR-only
prompts enhance robustness to longer sequences.

4.3 Summary

Our fine-tuning experiments suggest that AMR-
only models are still susceptible to heuristics. We
also observe that combining text with AMR as
both graph and text is challenging and results in
a strong preference towards the non-entailment la-
bel, even for highly overlapping, entailing exam-
ples.

Our LLM experiments showcase similar prefer-
ence towards the non-entailment label. This sug-
gests that AMRSs effectively highlight subtle dis-
tinctions between minimal pairs, explaining im-

proved HANS performance. However, for simpler
examples, this heightened contrast can cause the
model to overpredict No, even for entailing sen-
tence pairs.

5 Conclusion

In this work, we investigate whether AMRs can
help PLMs on the task of natural language in-
ference. Specifically, across both fine-tuning and
prompting settings, we evaluate whether incorpo-
rating AMRs improves entailment classification.

We find that our implementations of AMR in-
tegration does not improve performance in fine-
tuning, and only lead to slight gains in zero-
shot prompting with GPT-40. Importantly, ab-
lation analyses reveal that these gains are not
due to deeper semantic understanding, but rather
to AMRs exaggerating surface-level differences,
which in some cases mislead the model to pre-
dict non-entailment where entailment holds. Over-
all, our results suggest that while AMRs offer a
promising abstraction mechanism, their integra-
tion with LLMs requires careful design to avoid
reinforcing shallow heuristics rather than promot-
ing robust reasoning.

Limitations and Future Work

This study focuses on two datasets (MNLI and
HANS) and explores a limited set of prompting
and fine-tuning configurations. For fine-tuning,
we adopt a single AMR linearization strategy; in
the prompting setting, we test one prompt tem-
plate with different conditions. While alternative
prompts for zero-shot inference may yield bet-
ter performance (e.g., Kavumba et al., 2023), our
consistent experimental setup enables fair compar-
isons across conditions. Nonetheless, the findings
may not generalize to other inference tasks, do-
mains, or prompting strategies.

Future work could explore more diverse lin-
earization formats, prompt designs, and integra-
tion strategies that align AMR structure more di-
rectly with model attention or reasoning processes.

Encoder-based models have been shown to be
sensitive to minor perturbations in input (Sinha
et al., 2021; Jin et al., 2020), and prior work inte-
grating AMR graphs into neural models have used
a variety of formats (Wein and Opitz, 2024). Thus,
in addition to Python-like and natural language-
like representation of AMR’s structure (Srivastava
et al., 2025; Srivastava and Yao, 2025; Dutt et al.,
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2025), carefully designing how hierarchical de-
vices in AMRs (e.g. variable names, parentheses,
indents, and newlines) could be represented in the
embedding space of encoder-only models may be
worth further investigations.

Finally, investigating how AMRs interact with
LLM decoding beyond surface augmentation may
help unlock their full potential in meaning-
sensitive tasks.

Responsible Research Statement

We use ChatGPT-40 (Hurst et al., 2024) as a cod-
ing assistant during the implementation of our ex-
periments, in addition to as a natural language pro-
Ccessor.
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A Fine-tuning Error Analyses

A.1 Intensified subsequence overlap heuristic
with AMR

Compared to text-only MNLI models which are
known to incorrectly correlate lexical and se-
quence overlap to the entailment label (McCoy
etal., 2019, 2020; Min et al., 2020), the AMR-only
models favor the entailment label even more. The
model’s preference toward the entailment label re-
sults in the AMR-only models consistently pre-
dicting non-entailment for around 98% of HANS
examples.

It is less likely that the model adopts the subse-
quence and constituency heuristic, as no text sub-
sequences or constituencies are provided in the
training dataset—only AMR parses are provided as
input. However, it is possible that a new heuristic
had formed. Consider the following two versions
of premise-hypothesis pairs:

e Premise: The judge and the president ad-
vised the scientist.

(a / advise-01
:ARGO (a2 / and
:op1 (p / person
:ARGO-of (h / have-org-role
-91
:ARG3 (j / judge-01)))
:op2 (p2 / person
:ARGO-of (h2 / have-org-
role-91
:ARG2 (p3 / president)
D))
:ARGT (s / scientist))

* Hypothesis 1, label=non-entailment: 7The
scientist advised the judge.

(a / advise-01
:ARGO (s / scientist))
:ARGT (p / person
:ARGO-of (h / have-org-role-91
:ARG3 (j / judge-01)))

* Hypothesis 2, label=entailment: The judge
advised the scientist.

(a / advise-01
:ARGO (p / person
:ARGO-of (h / have-org-role-91
:ARG3 (j / judge-01)))
:ARGT (s / scientist))

The premise and hypothesis AMRs exhibit sig-
nificant overlap, namely in variables p, h,
j, s. Given sufficiently many pairs similar to
Premise-Hypothesis 2 in the training set, the

Train setting \ Texteval +AMReval AMR only eval
Text 0.84 0.47
+AMR 0.53 0.83 0.36
AMR only 0.44 0.74

Table 3: MNLI accuracy of our trained models evalu-
ated on each setting. Chance performance is 0.33.

Train setting \ Texteval +AMReval AMR only eval
Text 0.96 0.97
+AMR 0.25 0.13 0.85
AMR only 0.99 0.98

Table 4: Percentage of HANS examples where our
trained models evaluated on each setting predict entail-
ment.

model may optimize to correlate variable overlap
to the entailment label. Then, when the model
predicts on Premise-Hypothesis 1 pair, instead
of considering the semantic structure, it may at-
tend to the significant variable overlap, and predict
entailment, which is the incorrect answer.

A.2 Cross-setting evaluation analysis

To disentangle the effects of text and AMR in
+AMR models, we evaluate models in not only their
own evaluation setting, but in other settings as
well. We do not evaluate all models on all set-
tings. Instead, we measure performance on rea-
sonable train-evaluation setting pairs—we do not
evaluate text only models on AMR only settings,
and vice versa. +AMR models undergo all evalu-
ation settings; all models undergo evaluation in
the +AMR setting. In this cross-setting evaluation
scheme, we do not consider the +AMR as graph
setting.

First, we observe that cross-evaluation models
still perform above chance in MNLI evaluation
(0.33), as seen in Table 3, which indicates both
text and AMR knowledge can be leveraged despite
noise from unseen form. The +AMR models’ single-
mode (text only or AMR only) MNLI accuracies,
together with the lower performance of AMR-only
models compared to text-only models indicate
that AMR information is more difficult to acquire
and use than text input.

Second, we observe that bias towards entail-
ment or non-entailment in MNLI and HANS is
strongly correlated, given train-evaluation mis-
match (m = 0.6, R® = 0.87). Cross-setting eval-
uation results support the case of a newly devel-
oped heuristic for AMR only models, as single-
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Prompt | MNLI HANS
Text + AMR | +2,274  +1,759
AMR only +2,848  +1,393

Table 5: Increase in the number of negative predictions
compared to the sentence-only prompt condition.

mode models overwhelmingly predict entailment
in HANS examples even when evaluated on +AMR
settings, both at above 96%, as seen in Table 4.
On the other hand, it is difficult to pinpoint the
cause of the tendency to predict non-entailment in
dual-mode models predicting on input containing
text. We observe that dual-mode models predict
non-entailment for entailing adverbial sentences
whose AMRs highly overlap, as shown below:

e Premise: Clearly the bankers waited.

(w / wait-01
:ARG1 (b / banker)
:ARG1-of (c / clear-06))

* Hypothesis, label=entailment, pred=non-
entailment: The bankers waited.

(w / wait-01
:ARGT (b / banker)

B LLM prediction statistics

The results are reported in Table 5.

C LLM setting error analysis: Example

For example, while the premise everything you're
looking for is available is semantically equiva-
lent to the hypothesis everything can be found, the
AMRs for these sentences differ substantially due
to lexical choices (e.g., look for vs. find) and syn-
tactic voice (active vs. passive). The resulting
SMATCH++ F-score (Opitz, 2023) between the
two graphs is only 27.7.

e Premise: Enter the realm of shopping malls,
where everything you're looking for is avail-
able without moving your car.

(e / enter-01
:ARGO (y / you)
:ARGT (r / realm
:mod (m / mall
:mod (s / shop-01)
:location-of (a / available
-02
:ARG2 (e2 / everything
:ARG1-of (1 /
look-01

:ARGO y))
:manner (m2 / move-01
:polarity -
:ARGO y
:ARG1 (c / car
:poss ¥))))
))

* Hypothesis: Everything can be found inside
a shopping mall.

(p / possible-01
:ARG1 (f / find-01
:ARGT (e / everything)
:location (ii / inside
:opl (m / mall
:purpose (s / shop-01)
DY

D 5-Shot Prompting Result

We report the results of our 5-shot prompting ex-
periments in Table 6.

Prompt | MNLI HANS

Text only 0.89 0.82
+AMR 0.75 0.88
AMR only | 0.69 0.67

Table 6: Performance comparison with and without
AMR on HANS and MNLI test sets in the LLM five-
shot prompting setting.



