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Abstract

Due to their capacity to acquire world knowl-
edge from large corpora, pre-trained language
models (PLMs) are extensively used in ultra-
fine entity typing tasks where the space of
labels is extremely large. In this work, we
explore the limitations of the knowledge ac-
quired by PLMs by proposing a novel heuris-
tic to approximate the pre-training distribution
of entities when the pre-training data is un-
known. Then, we systematically demonstrate
that entity-typing approaches that rely solely
on the parametric knowledge of PLMs struggle
significantly with entities at the long tail of the
pre-training distribution, and that knowledge-
infused approaches can account for some of
these shortcomings. Our findings suggest that
we need to go beyond PLMs to produce solu-
tions that perform well for infrequent entities.

1 Introduction

Ultra-fine entity typing (UFET) is the task of
inferring the type of an entity with high speci-
ficity (Choi et al., 2018). For example, in the
sentence “Barack Obama attended Biden’s presi-
dential inauguration.”, the entity “Barack Obama”
would have a coarse entity-type of “person”, but
a more specific, ultra-fine entity type such as
“politician”, “democrat” or “ex-president”.
Previous work on UFET relies mostly on pre-
trained language models (PLMs) to elicit entity
types (Li et al., 2022, 2023; Dai et al., 2021; Pan
et al., 2022). The common approach is to posi-
tion the UFET task close to the learning objective
of the PLM. For example, Pan et al. (2022) ex-
ploit the masked language modeling objective by
appending an entity-mention and mask to a sen-
tence, allowing BERT to fill in the mask to elicit
a type (e.g., Barack Obama attended Biden’s
presidential inauguration, Barack Obama
is a [MASK]). Such approaches are attractive be-
cause they benefit from the large amount of pre-

training data the PLM has seen to make common
associations, thus helping them determine the most
likely type of entity based on the context provided.

Albeit successful, PLMs are limited by the data
that they have been exposed to, so their reliability
can be affected when working with infrequently
used language constructions such as rarely/never
seen entities. Since PLMs rarely encounter these
entities, they have fewer opportunities to capture
knowledge about them compared to frequent enti-
ties. Past work has mostly overlooked this issue,
assuming that the embedding space will be enough
to capture similarities between rare and less rare en-
tities and generalize across them. Studies that have
looked at infrequent entities usually characterize
them in terms of their availability in task-specific
training data (Choi et al., 2018; Schouten et al.,
2022), rather than the data used to pre-train PLMs.

In this paper, we investigate the extent to which
PLM-based methods struggle when determining
the ultra-fine grained type of entities that occur
infrequently in their pre-training data. This is a
challenging undertaking, as the data used for pre-
training PLMs are often unavailable (Shi et al.,
2024). To address this challenge, we set out to
answer the following research questions:

RQ1: Do internet search hits provide a good
proxy for estimating relative entity frequency?
To answer this question, we follow the conventional
wisdom that modern PLMs have been trained on
“all of the Internet”, and we estimate the frequency
of an entity by querying the Google search API to
obtain the number of documents containing that
entity. We validate this proxy by correlating it with
real-world datasets known to be used in PLM pre-
training, acknowledging that such disclosures are
limited to only a few models.

RQ2: Do internal model representations re-
flect the entity frequencies in the pre-training
data? To answer this question, we measure the
correlation between the number of Google search
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hits obtained for an entity and the model’s proba-
bility of eliciting that entity in numerous contexts.
We perform this test across various PLMs, includ-
ing both masked LMs and causal LMs, and find a
strong correlation across the board.

RQ3: Do PLMs struggle to type entities that
are in the long tail of the pre-training distri-
bution? Finally, we design a benchmark to an-
swer this question.” To do this, we divide enti-
ties in various UFET datasets into bins based on
their resulting frequencies from our Google search.
Our hypothesis is that the bins consisting of the
least frequent entities “in the wild” will be much
harder to predict than the rest. We test this asser-
tion by looking at the performance of two types
of published approaches for UFET; PLM-only ap-
proaches, which we expect to struggle at the long
tail of the pre-training distribution, and knowledge-
infused approaches, which we expect can level the
playing field across frequencies by leveraging ex-
ternal sources of information. Our results confirm
our hypothesis, suggesting that we need to go be-
yond PLMs to produce solutions that perform well
for rare, new, or infrequent entities.

2 Related Work

UFET was proposed to generate free-form noun
phrases that appropriately describe the type of a
target entity (Choi et al., 2018). UFET has found
several downstream applications, such as corefer-
ence resolution (Durrett and Klein, 2014), entity
linking (Onoe and Durrett, 2020) and relation ex-
traction (Yaghoobzadeh et al., 2017).

PLM solutions for UFET. PLMs have been
shown to capture world knowledge in their param-
eter space (Roberts et al., 2020; Jiang et al., 2020).
This ability has allowed them to perform well on
‘fill-in-the-blank’ problems, where the goal is to
elicit an answer to a query based on the context
provided. Many UFET approaches have capital-
ized on this ability; Dai et al. (2021) looked at
introducing Hearst patterns with [MASK] tokens to
describe entity types using BERT, while Pan et al.
(2022) primed BERT to produce an ultra-fine type
by appending the entity mention and a [MASK] to-
ken to a sentence. While these methods report
some of the best metrics for UFET, they do not ex-
plore how their approaches fare on infrequent, rare
entities that PLMs may not have been sufficiently

*Data and Code available at: https://github.com/
blast-cu/All-Entities-are-Not-Created-Equal

exposed to. In this work, we explore the effect of
entity representation strength on a variety of PLMs
in order to determine whether rarer entities cause
significant issues for PLM-based approaches.

Knowledge Infused UFET. The UFET dataset
has 9 general, 121 fine, and 10, 201 ultra-fine types.
While a large type vocabulary and the scarcity of
annotated examples per type make this task espe-
cially challenging, type labels often consist of rich
semantics. Li et al. (2022) leverage the type se-
mantics and formulate the task as an NLI problem.
Others have exploited the dependencies between la-
bels (Liu et al., 2021) and hierarchies within types
(Onoe et al., 2021) to supplement the PLM objec-
tives. Such techniques often perform significantly
better than PLM-only approaches.

Approaches to Estimate Entity Frequencies
in Large Corpora. While there have been efforts
to efficiently index large pre-training corpora to
better estimate entity frequencies (Liu et al., 2024;
Xu et al., 2025), we argue that there are two clear
limitations with this approach: (1) the assumption
that training data for models is always available and
(2) the need to re-index datasets as they are updated
over time. Therefore, we need simple proxies that
can approximate the entity distribution “seen” by
PLMs without direct access to their training data.

3 Experimental Design

Our study is composed of three experiments. First,
we evaluate a proxy to establish the relative fre-
quency of entities in pre-training data using Search
Engine API indexing. Then, we examine whether
parametric representations match these frequencies
by correlating the likelihood of a PLM suggesting a
target entity to how the term is indexed on the Web.
Lastly, we select seven models to perform ultra-fine
entity typing; three based on PLM objectives, three
that leverage some additional knowledge, and one
simple baseline. We measure typing performance
across entity groups of varying frequency across
the Internet data.

Establishing the Long Tail (RQ1, RQ2) The
long tail of an entity distribution is characterized by
a large number of entities that are rare to encounter
in the real world. Assuming that the Internet is a
fairly balanced representation of a real-world dis-
tribution, we use the Internet search hits as a proxy
for frequency. We quantify the occurrence “in the
wild” of each entity in our dataset by performing
strict searches using the Google Search API.
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# of Avg. #
Bin Examples Representative Entity of Tokens
1 301 the Baton Rouge police 11.63
chief and the serial murder
task force
2 301 Left fielder Carl Crawford 4.35
3 300 The Polish government 2.67
4 1095 the film 1.18

Table 1: Distribution of entities across UFET test bins

As most datasets used to pre-train modern PLMs
come from a subset of the Internet, we hypothesize
that such “long-tail” entities would be underrepre-
sented in the parameter space of these models. To
test this hypothesis, we query models and assess
whether an entity is underrepresented based on its
ability to be predicted or reconstructed accurately.
We then measure the correlation between Internet
frequencies and model-estimated probabilities.

To perform model estimations reliably, we must
balance different considerations. First, given that
PLMs learn word representations from in-context
examples, we need a representative set of in-
context examples for each of the entities that we
want to estimate. To do this, we prompt Llama3-
8B-Instruct to generate 10 different sentences that
include the target entity. Second, we need to con-
sider the training objective of the PLM when query-
ing it for the probability of a given entity in a
given context. To recover entity probabilities with
Masked LMs, we first replace entity tokens with
[MASK] tokens. Then, we generate a probability
distribution over all candidate tokens. To deal
with Causal LMs, we reframe the task as a fill-in-
the-blank problem. We provide the model with a
prompt (see App E) and compute the probabilities
through a conditional generation process.

In both cases, we use the probability that the
model assigns to the tokens of the target entity
to represent its salience in the model’s paramet-
ric knowledge. More details about the probability
estimation process can be found in App. D.

Measuring Impact on Typing (RQ3) We ex-
amine how the real-world distribution of entities
affects the performance of entity-typing models. To
define rare entities, we calculate frequency scores
for all target UFET entities using the Google Cus-
tom Search API and group them into four bins
based on quartiles. Bin 1 includes the rarest enti-
ties, while Bin 4 contains the most frequent; based
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Figure 1: Entity distribution across UFET test bins

on their occurrence on the Internet. Representa-
tive examples are presented in Tab. 1. The entity
distribution across the bins is visualized in Fig. 1.

We select seven representative models to test
against the bin splits. The models can be roughly
divided into two categories. (1) Naive PLM-based
approaches that rely on PLM objectives such
as MLM (BERT family of models) or Causal
LM (Llama3 and Qwen3) to predict types. We
include implementation details in App. G. (2)
Knowledge-infused approaches that exploit addi-
tional information embedded within or relevant to
the type labels. LITE (Li et al., 2022) formulates
entity typing as an NLI problem. LRN (Liu et al.,
2021) exploits intrinsic and extrinsic dependencies
between label types. Box4Types (Onoe et al., 2021)
relies on box embeddings to capture hierarchies of
types. More details about these systems can be
found in App G. For completeness, we also bench-
mark an LSTM model. This is a supervised model
built on top of pre-trained word embeddings, which
consider similar representation objectives to those
of PLMs (word co-occurrence).

We use the crowd-annotated portion of the UFET
dataset (Choi et al., 2018) for our experiments.
This dataset contains entity mentions with their sur-
rounding context and the ultra-fine types associated
with them. The dataset of 5,994 tuples is divided
into train/test/dev splits, each containing 1,998 tu-
ples. We use OntoNotes (Gillick et al., 2016) as a
secondary dataset, which has a train/dev/test split
of 250k/2k/9k examples.

4 Evaluation and Discussion

Long Tail Analysis (RQ1, RQ2) We compare
average PLM probability estimates with the num-
ber of hits the Search Engine API has for the target
entity. We do this for three PLMs with both MLM
and Causal LM learning objectives: BERT (De-
vlin et al., 2019), BART (Lewis et al., 2020) and
Qwen3 (Yang et al., 2025). We calculate the proba-
bility assigned by the PLMs per in-context example



F1 Score Across Bins

F1 Score

Bin 1 Bin 2 Bin3 Bin4

Bins

Baseline Knowledge Enhanced

—®— BERT —o- 15TM LRN uTE
—®- Llama3 708 —@— Qwen3 328 —8— BoxdTypes

(a) UFET

F1 Score Across Bins

F1Score

T T T T
Bin 1 Bin 2 Bin 3 Bind4

Baseline Bins Knowledge Enhanced

—@— BERT -8 15TM RN uTE
- Liama33708  —@- Qwen3328 —8— BoxdTypes

(b) OntoNotes

Figure 2: Baseline vs. Knowledge-enhanced Performance
across test bins

using the method described in Section 3, and take
the average across all sentences for its respective
entity. We perform a correlation analysis between
PLM probability estimates and the entity frequen-
cies obtained from the Google Search API and ob-
serve high Spearman correlation coefficients (0.885
for BERT, 0.716 for BART and 0.897 for Qwen3).
To visualize this, we plot the hits from the Search
Engine API against the average probability for the
entity obtained by each model in App. F. The high
correlation between the PLM probability estimates
and the number of API hits supports our hypothe-
sis: entities that occur more/less frequently in the
real world are more/less salient in PLMs.
Temporal shifts. We recognize that the Internet
is constantly evolving and that temporal dynamics
could potentially alter the distribution of entities.
For this reason, we performed our analysis with
API data capped at 2018 and at 2024, and found
the results to be consistent over time, with minor
changes in correlation coefficients (See App. B).

Training Corpus  Spearman Correlation

BookCorpus 0.583
C4-train 0.957
Pile-train 0.954
RedPajama 0.957
Dolma-v1.7 0.961

Table 2: Spearman correlation coefficient of UFET entity
frequencies as estimated by search API vs counts from actual
pre-training corpora
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Figure 3: Effect of scaling on performance across UFET bins

Search API vs. real pre-training datasets. We
test the validity of using Internet counts to esti-
mate the pre-training distribution by performing
a correlation study between search API hits and
real-world pre-training datasets such as BookCor-
pus (Zhu et al., 2015), C4 (Raffel et al., 2020), Pile
(Gao et al., 2020; Biderman et al., 2022), RedPa-
jama (Weber et al., 2024), Dolma-v1.7 (Soldaini
et al., 2024). We estimate the entity counts for
BookCorpus by performing strict searches. For
Pile, we rely on the Infini-gram-mini hosted API
(Xu et al., 2025). For the remaining datasets (C4,
RedPajama, Dolma); we use the Infini-gram hosted
API (Liu et al., 2024). N-gram counts in Infini-
gram and Infini-gram-mini are case-sensitive and
therefore noisy. Regardless, we see high spearman
coefficients (>0.9) for all of them. While the corre-
lation coefficient for BookCorpus is significantly
lower, we find that the largest contributing factor is
its much smaller scale. As a result, many entities
are not present in BookCorpus. When restricting
only to entities that are present in BookCorpus, we
find that the correlation jumps as high as 0.88.

For completeness, we also report the Spearman
correlation coefficients between the frequency of
UFET entities in different pre-training datasets and
the average entity recovery probability given sur-
rounding context (see App. A).
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Typing Performance (RQ3) We benchmark the
seven models introduced in Sec. 3: UFET-LSTM
(Choi et al., 2018), few-shot Llama3 (Dubey
et al., 2024)/Qwen3 (Yang et al., 2025), BERT
(PLM-based), and LITE (Li et al., 2022), LRN (Liu
et al., 2021) and Box4Types (Onoe et al., 2021)
(Knowledge-infused), and plot results in Fig. 2.

We find that most of the examined approaches
perform better in determining the ultra-fine entity
type when the target entity is more frequent (Bin4),
and worse when the entity is rarer (Binl). We note
that most PLM approaches show a major decline
in performance as we go down the bins (or under-
performing completely, as in the case of BERT for
OntoNotes). This performance decline is most un-
derlined when moving from Bin 4 to Bin 3. Look-
ing at the knowledge-infused approaches, we find
that the enrichment from auxiliary tasks or label
dependencies helps overcome the overreliance on
learned entity representations for Bin 1. LITE per-
forms the best, beating the rest by achieving an F'1
score of 45.6 on infrequent entities and 54.2 on fre-
quent entities for UFET, and an F'1 score of 77.8
on infrequent entities and 81.8 on frequent entities
for OntoNotes. This further highlights the advan-
tage of the auxiliary task (NLI), which allows the
model to transfer more knowledge than approaches
that only rely on the PLMs parameters.

Effects of tokenizers. If a specific word is un-
known to a PLM, it follows that the tokenizer will
split it into multiple tokens. For this reason, we
investigate whether words being split into multiple
tokens causes a degradation in the probability of
recovering an entity by looking at the splitting ratio
(number of tokens / number of words). While we
see a marked difference between a ratio of 1 and a
ratio #£ 1, our results do not suggest any incremen-
tal effect afterwards (see Fig. 4). This suggests that
our API Search proxy is a better, more nuanced
indicator of entity rarity than the PLM tokenizer.

Other levels of granularity. We look at perfor-
mance across frequency bins at varying entity type
granularity (i.e., fine, coarse) and find the same
trend of performance decay across buckets within
each granularity level (see App. H).

Effect of Scaling. To understand how the size
of the LM affects the typing task across bins, we
evaluate Qwen3 models of different sizes (Fig. 3).
We chose Qwen3 given the availability of a large
range of model sizes of the same family. We find
that regardless of model size, the effect of entity
frequency in performance degradation is still ob-
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Figure 4: Average UFET entity recovery probability versus
average number of tokens per word for three model tokenizers

served. We include results for Llama3 in App. G.

5 Conclusion and Future Work

We showed the effectiveness of internet search API
hits as a proxy for entity frequency in large pre-
training corpora (RQ1). We also showed that, as ex-
pected, this distribution significantly affects entity
representations for different PLMs (RQ2). Finally,
we measured the performance of several PLM-
based and knowledge-infused entity typing systems
on entities with different frequencies and found
that all models performed worse on rarer/less-
probable entities (RQ3). However, we found that
all knowledge-infused systems are considerably
more robust to frequency shifts than PLM-based
approaches. Our results show that for PLMs to
fulfill their promise for long-tail entity typing, we
need better strategies to inject knowledge about
rare entities into PLMs by using external resources
and other forms of domain knowledge.
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Limitations

Due to limited resources, we used quantized ver-
sions of the models when studying the impact of
scaling on entity typing systems in Sec. 4. Previous
work has shown that techniques such as quantiza-
tion can impact the performance of LLMs, espe-
cially in low-resource settings (Diddee et al., 2022).
We acknowledge that quantization may be further
exacerbating the general struggle that PLMs have
with entities at the long-tail of the distribution.

Ethical Considerations

To the best of our knowledge, this work does not
incur any violation of the code of ethics. We used
models that were Open Sourced by their authors,
with code available online. All the information
required to replicate our experiment is provided
in the paper. We use Llama3/Qwen3, large lan-
guage models whose weights may be updated by
the model’s creator. In such a case, we caution that
some results may not be reproducible exactly, but
believe that our findings will still hold.

In the interest of space, we moved some plots
and details to the appendix.
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A Analysis of UFET entities in
pre-training datasets

We report the spearman correlation values for
UFET Entity counts as obtained in pre-training
datasets and their recovery probabilities in Tab. 2.

B Temporal dynamics of search API hits

We use the Google Search API to approximate
the distribution of entity frequencies that mod-
els have seen during training. While convenient,
this approach may potentially ignore the tempo-
ral changes that might occur in the distributions
of such entities. This is especially important as
models we discuss in our work (BERT, BART and
Qwen3) have been trained at different points within
the last decade. To ensure that these dynamics do
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Model BookCorpus Pile-train C4-train Dolma-vl.7 RedPajama
Bert-base-uncased 0.571 0.883 0.886 0.891 0.886
Bart-large 0.359 0.705 0.707 0.715 0.708
Qwen3-0.6B 0.514 0.895 0.897 0.902 0.901

Table 3: Spearman correlation coefficient of UFET entity frequencies in pretrained datasets vs Average entity recovery

probability given surrounding context

Model API till 2018  API till 2024
Bert-base-uncased 0.883 0.885
Bart-large 0.711 0.716
Qwen3-0.6B 0.895 0.897

Table 4: Spearman correlation coefficient of API entity fre-
quencies vs Average UFET entity recovery probability given
surrounding context (API results capped at 2018 and 2024)

Average Entity tokens per Bucket for Different Tokenizers

2 = bert-base-uncased
facebook/bart-large
= meta-llama/Liama-3.2-18

Average Number of Tokens

Figure 5: Average number of tokens for UFET test bins

not significantly impact our claims, we compare
the correlation between the LM predictions and the
API data capped at 2018 and 2024. We find results
to be largely consistent across these two time peri-
ods (See Tab. 4). On further examination, we find
that between 2018 and 2024 only 39 entities from
the test set (<2%) change their bin classification.
For our main results, we rank entities using the
2024 results.

C UFET test bin distribution

To better visualize the distribution of entities across
bins, we plot the log of API hits in Fig. 1. We also
compare the average number of tokens as obtained
with different tokenizers for each of our test bins
in Fig. 5.

D Method for Generating Masks and
Calculating Entity Probability

An entity can be comprised of a single token or
a multi-token phrase. For multi-token entities we
employ a conditional generation approach where
we generate the entity sequentially, one token at
a time, moving from left to right. The probability

of the entire entity is determined by product of the
conditional probability of each token ¢; conditioned
on all preceding tokens and the surrounding context
C, where i represents the position of the token in
the sequence and 7 is the total number of tokens
comprising the entity.

n

P(tl’tQ""7tn|C):HP(ti

=1

t1,t2,... ,ti_1,C)

)]

We use this approach to benchmark three mod-
els with comparable sizes and distinct pre-training
objectives.

BERT (MLM): To recover an entity using
BERT (bert-base-uncased), we first replace the en-
tity with an equal number of [MASK] tokens. Then
we calculate the probability the entity being recov-
ered as described before, replacing one [MASK] per
iteration.

BART (MLM): For BART (bart-large) (Lewis
et al., 2020), we take a similar approach but with
only a single <mask> token. We progressively ex-
pand the <mask>, one token at a time, calculating
the probability for each subsequent token until the
entire entity is recovered.

Qwen3 (Causal LM): Since Qwen3 (Yang et al.,
2025) is not pre-trained with an MLM objective,
we reframe the task as a Fill-in-the-Blank problem
using Owen3-0.6B. We provide the model with a
prompt (See App. E) and compute the probabilities
through a conditional generation process, one token
at a time.

E Prompt used to calculate the
probability to recover an entity for
Qwen3

The prompt used to calculate the probability to
recover an entity for Qwen3 is:

Instruction: Fill in the appropriate entity that
completes the sentence below.

Context: {sentence with the entity mention re-
placed by a [blank] }
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Search API Hits

Response: [blank] can be replaced with:

F Scatter plots of Entity Recovery
Probability in BERT, BART and
Qwen3 against Search Engine APT hits

To visualize the high Spearman correlation coef-
ficient between entity recovery probabilities and
search engine API hits, we plot Fig. 6.

G Models for entity typing

G.1 BERT - Baseline

Inspired by (Dai et al., 2021), we frame the typ-
ing problem as mask prediction task for BERT

F1 Score Across Bins

F1 Scors

T T T T
Bin1 Bin 2 Bin 3 Bin 4
Bins

MLM Models
—8- BERT  —®— RoBERTa ALBERT  —@- ModernBERT

Figure 7: Evaluation of MLM models across UFET test bins

(bert-base-uncased). We use hearst-like patterns
("[MASK] such as entity mention", "entity mention
and any other [MASK]", "entity mention and some
other [MASK]") and conduct experiments to find
the optimal templates. The top ‘n’ predictions for
the [MASK] (with plural — singular conversion,
restricted to the type vocabulary) are considered
as candidate labels. we find the optimal value for
‘n’ (number of labels) by experimenting with the
development set.

{Hearst} n=12, F1 =0.0661
{Sentence} . {Hearst} n=15,F1=0.2277
{Sentence} [SEP] {Hearst} n=5,F1=0.2338

{Hearst} inserted in {sentence} n = 6, F1
=0.2631

We experiment with different MLM models (See
Fig. 7) and present the results from the best per-
forming setting in Tab. 5. We find that the trend is
largely consistent among them, with the exception
of ALBERT which converges by Bin 3.

G.2 Llama3/Qwen3 - Baseline

We model the entity typing problem as a few-shot
task for Llama3 and Qwen3 models to evaluate
its efficacy in entity typing. We experiment with
the number of examples (from the train set) in the
prompts in increments of five examples. We found
that the performance was optimal for 15-examples
in the prompt and used that setting for the rest of
our experiments.
We use the following system prompt:

# Entity-Typing Assistant
You are a precise entity-typing assistant.
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Given a sentence in which x*one entity mention
— is wrapped in ‘<ENT> ... </ENT>‘ tags#x,
— produce **only** a JSON object whose
—» single key is x*"predicted_types"*x.

## Guidelines

- The value must be a JSON array of strings.

- Include all the type labels that are relevant.

- Remove duplicates and keep each type concise
< (ideally a short noun phrase).

- Do not output any keys other than

«n "

> ‘"predicted_types” ‘.

## Input Format

- SENTENCE: The complete sentence with the
—» target entity clearly marked with
— ‘<ENT>‘ tags

- ENTITY_MENTION: The target entity mention
— from the sentence

## Output Format

“¢‘json

{
"predicted_types": ["TypeA”, "TypeB",
— "TypeC", ...]

Followed by examples from the train set in this
format:

# Example #{i}:

- INPUT:

SENTENCE: ’{sentence}’
ENTITY_MENTION: ’{entity_mention}’

- OUTPUT:
{{\"predicted_types\": [{types}1}}

With the input prompt as specified above, we gen-
erate the response from the model with the json
schema for generation passed to the model (format
parameter in ollama’s client.chat method). Pass-
ing the generation schema ensures that the model
adheres to the expected format and prevents mal-
formed/incorrect json output. We filter out the gen-
erated types to match the type vocabulary for the
respective dataset.

We also studied the effect of scaling on typing
performance. Specifically, it was of interest to us to
understand if scaling can help bridge performance
discrepancies between Bin 1 and Bin 4. Although
we did not find significant trends, the gains in per-
formance made by the models generally seemingly
favor buckets with higher entity frequency, exacer-
bating the long-tail problem. (see Fig. 3 and Fig.
8)

Note: all the models we evaluate are the 4 bit
quantized models (q4_K_M) available through Ol-
lama.

F1 Score Across Bins

F1 Score

T T T T
Bin1 Bin 2 Bin3 Bin 4
Bins
Llama3 Model Size

—# llama321B —® llama3.2 3B llama3.1 8B llama3 3 708

Figure 8: Effect of scaling on model performance across
UFET test bins

G.3 UFET-LSTM (Choi et al., 2018)

UFET-LSTM frames mention typing as predicting
free-form labels (e.g., criminal, victim). Because
the label set is so large and unconstrained, they
adopt a neural model that represents both the men-
tion and its context: a BILSTM with attention for
the sentence, plus a CNN with attention for the
mention span. Although the authors’ reported re-
sults rely on distant supervision and crowd sourced
data, our analysis uses only the crowd sourced train-
ing data from UFET. Accordingly, we train a new
LSTM-based model using that dataset and present
the per-bin performance in Tab. 8.

G.4 LITE (Li et al., 2022)

LITE approaches the ultra-fine entity typing by
reframing it as an NLI task: treat the original sen-
tence (with the target entity) as a premise, and gen-
erate short textual descriptions of the entity as hy-
potheses using a predefined structure. A pretrained
NLI model scores how strongly each description is
entailed. Using a learning-to-rank objective, LITE
distinguishes correct types from incorrect ones. For
our experiments to find the performance across
bins, we use the final results as shared by the au-
thors on the test dataset of crowd sourced UFET.
Table 11 uses these predictions while capturing
its performance. For OntoNotes, we recreated the
model to the best of our ability.

G.5 Box4Types (Onoe et al., 2021)

Box4Types deploys box embeddings to effectively
capture the hierarchies of types. The model rep-
resents both types and entity mentions as boxes.
Each mention and its context are fed into a BERT-
based model to embed that mention in our box
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space; essentially, the model leverages typological
clues present in the surface text to hypothesize a
type representation for the mention. This helps
the model capture latent hierarchies better than the
vector-based counterparts. We recreated the orig-
inal approach described in paper and evaluated it
against our bins in Tab. 10.

G.6 Label Reasoning Network (Liu et al.,
2021)

Label Reasoning Network sequentially reasons
about fine-grained entity labels by discovering and
exploiting knowledge about label dependencies en-
tailed by the data. These implicitly and explicitly
entailed dependencies provide critical information
which help the model overcome limitations of base-
line LM approaches. The BERT based model lever-
ages deductive and inductive reasoning. We recre-
ated the models (without retrieval) as described in
the paper and reported the results against our bins
in Tab. 9.

H Fine grained evaluation of the models
studied

We look at the performance of the discussed models
across bins and label granularities (Coarse, Fine,
Ultra-fine) as first proposed by (Choi et al., 2018).

The trend of decline in performance between Bin
4 to Bin 1 continues into the fine grained evaluation
for the models. For each level of label granularity
we find clear separation in performance levels as
we move between the bins, suggesting that binning
provides a measure of difficulty independent of the
label granularity. This provides a unique opportu-
nity to approach the entity typing task from a new
perspective.
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Table 5: BERT MLM (bert-base-uncased)

Overall Coarse Fine Ultra-fine
Subset P R F1 P R F1 P R F1 P R F1
Full Test 23.7 295 263 649 430 517 342 40.7 37.1 168 225 192
Bin 1 192 255 219 590 418 489 224 343 27.1 141 190 16.2
Bin 2 225 277 248 576 342 430 317 432 36.6 173 232 19.8
Bin 3 246 310 274 60.1 41.0 487 344 421 379 188 251 215
Bin 4 25.1 308 27.6 69.1 458 551 382 41.1 396 168 225 192
Table 6: Llama3.3-70B
Overall Coarse Fine Ultra-fine
Subset P(x0) R(0) Fl(o) P(+0) R(0) Fl(+0) P(x0) R(0) Fl(+0) P(+0) R(o) Fl(x0)
Full Test 459201 41.1+0.1 434+0.1 782+03 687+02 73.1+03 58003 56002 57.0£02 366+02 300£02 33.0£02
Bin | 383+03 36.6+07 374+05 707+05 548+07 61.7+04 485+07 444+10 464+09 321+03 305+07 31305
Bin2 432+03 369+03 398+02 737+08 50909 60209 55010 548+08 549+05 365+07 300+03 33.0+04
Bin 3 444+02 37.6+03 407£02 757+10 59511 66711 594%13 530%09 560+10 347+04 28402 31202
Bin4 490+02 445+0.1 466+0.1 809+03 78205 795+04 604+0.1 59.7+04 60.1£02 384+02 304+03 33903
Table 7: Qwen3-32B
Overall Coarse Fine Ultra-fine
Subset P(0) R(0) Fl(+o) P(+0) R(0) Fl(+0) P(x0) R(0) Fl(+0) P(+o) R(0) Fl(+0)
Full Test 50.6+0.6 41.6+06 457+03 77.6+05 751+09 764+03 576208 559209 56704 395205 29.0+05 335+04
Bin 1 411£10 387+08 39907 67.0+09 67.5+08 672208 480=17 485+15 482+14 332%07 295+09 31307
Bin2 46.1£0.6 387+0.6 421+03 746+14 66611 704208 525+07 539%19 532£07 37.8+08 286+03 32604
Bin 3 484+1.1 390+06 432404 717+18 687206 701206 57.6+12 546+14 561+12 385+10 284+10 32708
Bin4 550406 44007 489203 822204 802+10 812+05 612+09 583+14 59707 42106 29107 344204
Table 8: LSTM
Overall Coarse Fine Ultra-fine
Subset P R F1 P R F1 P R F1 P R F1
Full test 41.7 182 253 573 528 550 417 162 234 273 7.7 12.0
Bin 1 334 137 194 423 399 41.0 182 8.1 112 244 5.7 9.2
Bin 2 343 133 192 424 384 403 456 196 274 292 7.0 114
Bin 3 326 147 203 464 409 435 438 154 228 250 7.2 11.1
Bin 4 475 238 31.7 694 639 666 456 21.0 288 28.0 105 153
Table 9: Label Reasoning Network
Overall Coarse Fine Ultra-fine
Subset P R F1 P R F1 P R F1 P R F1
Full Test 57.1 33.7 424 757 76.6 76.1 575 46.8 51.6 440 198 273
Bin 1 5277 274 36.0 658 695 67.6 528 421 469 434 145 21.8
Bin 2 492 268 347 656 677 60677 474 388 427 37.1 157 22.0
Bin 3 523 279 364 673 6877 680 550 376 447 388 173 239
Bin 4 615 389 477 826 820 823 614 523 565 470 232 31.1
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Table 10: Box4Types

Subset Overall Coarse Fine Ultra-fine
P R F1 P R F1 P R F1 P R F1
Full Test 52.8 389 448 705 829 762 529 534 532 454 245 31.8
Bin 1 463 31.0 372 589 777 670 429 436 432 388 160 22.7
Bin 2 477 314 378 600 767 673 453 463 458 445 205 28.0
Bin 3 47.8 339 397 602 799 687 496 538 516 428 206 27.8
Bin 4 574 444 50.1 794 862 82.6 583 573 578 477 29.0 36.1
Table 11: LITE
Overall Coarse Fine Ultra-fine
Subset P R F1 P R F1 P R F1 P R F1
Full Test 54.8 47.1 507 745 817 779 614 572 593 443 355 394
Bin 1 507 414 456 647 763 70.0 538 424 474 410 31.8 358
Bin 2 497 435 464 657 760 704 61.1 562 58.6 419 341 37.6
Bin 3 492 456 473 639 739 686 571 537 554 433 363 395
Bin 4 588 502 542 817 860 838 642 617 629 46.1 367 40.8
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