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Abstract

We ask whether contemporary LLMs are able
to perform natural language inference (NLI)
tasks on mathematical texts. We call this the
Math NLI problem. We construct a corpus of
Math NLI pairs whose premises are from ex-
tant mathematical text and whose hypotheses
and gold labels were provided by people with
experience in both research-level mathematics
and also in the NLI field. We also investigate
the quality of corpora using the same premises
but whose hypotheses are provided by LLMs
themselves. We not only investigate the per-
formance but also the inter-group consistency
of the diverse group of LLMs. We have both
positive and negative findings. Among our pos-
itive findings: in some settings, using a major-
ity vote of LLMs is approximately equivalent
to using human-labeled data in the Math NLI
area. On the negative side: LLMs still struggle
with mathematical language. They occasionally
fail at even basic inferences. Current models
are not as prone to hypothesis-only “inference”
in our data the way the previous generation
had been. In addition to our findings, we also
provide our corpora as data to support future
work on Math NLI. Our data can be found at
https://github.com/MathNLI/MathNLI.

1 Introduction

We study natural language inference (NLI) tasks in
the area of research-level mathematics. One might
think that LLMs would do extremely well on this
task. After all, what counts as an entailment or
contradiction in everyday-language texts is often
taken as a complicated version of what happens
with mathematics. So we might expect purported
mathematical inferences to be easier to evaluate
than those in everyday language. And unlike lan-
guage in the wild, the domain of mathematics is
fairly well-defined. Facts, definitions, and logical
reasoning play a large role in mathematical writing.
Sentences ought to be precise and unambiguous.

However, there are complications with mathe-
matical text from the start. The vocabulary may
be unfamiliar to a generic audience: mathematical
parlance can use daily words with new, unfamiliar
meanings, e.g. ‘ring’, ‘field’, or even ‘folklore’. On
top of this, the use of visual elements such as sym-
bols, equations, and diagrams, almost changes the
very language of the text from plain text to a richer,
multimodal language. The field lacks open-source
resources such as dictionaries and glossaries for
mathematical concepts. It is much harder to find
a “person on the street” annotator of mathematics
than of more common forms of text.

When confronted with the incredible solutions
to mathematical-like problems that deep learning
systems can offer nowadays (e.g., AlphaGeome-
try (Trinh et al., 2024)), it is difficult to believe
that these systems cannot understand the basics
of causality or of propositional reasoning used
throughout mathematics. Nonetheless, when tested
on these basics, the LLM-based systems still make
very surprising (to humans) mistakes. Further,
the fact that LLMs do not have a notion of self-
consistency has been documented in many recent
papers (Sedova et al., 2024; Kıcıman et al., 2024;
Xu et al., 2024). But mathematics, as usually prac-
ticed, needs self-consistency. In a sense, it seems
that sometimes the deep learning systems deserve
an A+ in advanced problem solving but a B in the
basics.

For all of these reasons, we could conclude, per-
haps surprisingly, that the NLI task is not much
easier when using LLMs to deal with mathematical
text after all. In this paper, we shall see how pre-
cisely correct Math NLI using LLMs can be. We
decided to experiment and build a corpus of NLI
inference pairs, comparing the output of several
LLMs on mathematical text.
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P (Premise) H (Hypothesis) Label

A notion of central importance in categorical topology
is that of topological functor.

Topological functor is a notion of categorical topology. E

The problem of relating a factorization system to a
pointed endofunctor is considered.

The problem of relating a factorization system to a
pointed endofunctor is not discussed.

C

A notion of central importance in categorical topology
is that of topological functor.

There are many notions of central importance in categor-
ical topology.

N

Table 1: Examples in human-created seed Math NLI corpus.

1.1 Research questions

Our big question: Can LLMs be reliable construc-
tors and annotators of Math NLI corpora? We ad-
dress this by asking and answering some secondary
questions: (a) How well do LLMs perform on a
Math NLI corpus annotated by mathematicians?
(b) Are there common features to the errors which
they make? (c) How good is a Math NLI corpus
annotated entirely by LLMs? (d) Are LLMs more
unanimous on human-written corpora or on corpora
generated by LLMs themselves?

1.2 Goal, plan and structure of the paper

The “deliverables” of this paper are two corpora for
Math NLI: one written by humans and the other by
GPT. These are not benchmarks. But we believe
that they will help others who work on this topic.

Equally important, this paper details what we
have learned about Math NLI from several years of
work, including work that did not turn out as well
as we had hoped. Overall, our goal is to make some
points about Math NLI which we believe have not
been made elsewhere, based on data and examples
which we have collected. The plan of the paper is
to tell the story of this work.

2 Math NLI seed corpus

2.1 Creation of a seed set of pairs

Our first experiment used a corpus of abstracts of ar-
ticles in the journal Theory and Applications of Cat-
egories (TAC) developed in (Collard et al., 2022)1.
This corpus has some 3K sentences, but 432 were
singled out as ‘Goldilocks-like sentences’: not too
short, not too long, and with little or no LATEX
markup. Then we chose 31 of these sentences, and
for each sentence S in this set, three of our team
members were asked to write a sentence entailed
by S, a sentence contradicting S, and a sentence

1Available at https://github.com/ToposInstitute/
tac-corpus.

neutral with respect to S. (So we had the “gold la-
bels” by construction. But as we found repeatedly,
getting consistent data from humans is difficult,
even about mathematical texts.) The team mem-
bers were told to produce grammatical sentences
that did not depend on factual knowledge about the
mathematics in the original TAC sentence and that
tried to introduce as few new facts as possible. It is
impossible to do this perfectly, but the team mem-
bers strove to do so. We had three people, three
labels, and 31 starting sentences. Hence we had
3 × 3 × 31 = 279 pairs, equally divided with E,
C, and N labels.

We aimed to fulfill the following conditions as
much as possible:

1. Inferences should be uncontroversial. We
want inferences which most mathematicians
would take to be “immediate.”

2. We treat mathematical concepts as black
boxes. (Inference should depend as little
as possible on the background mathematical
knowledge of the assessor.)

3. We avoid “dangling references", pronouns (it,
they) or demonstratives (this, that, here, there)
without clear antecedents. In general, we tried
to avoid all of the problematic issues in natural
language semantics.

Table 1 shows some examples of human-created
hypotheses and their labels.

Having constructed our seed set of 279 pairs we
used a collection of LLMs to evaluate it, as shown
in Table 2. This led to the realization that not only
did human creators disagree with each other, also
the rate of unanimity between machines was not
very stable. In particular, we discovered some 20
pairs with contradictory evaluations between ma-
chines and humans. We called these the red pairs,
as they deserved further attention. We explain our
process of evaluation, the LLMs used, and our set
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Abbr. Model

GPT4 GPT-42

L2 Llama 2 (Touvron et al., 2023) 70B
L3 Llama 3 (Grattafiori et al., 2024) 70B
C3 Claude 3 https://claude.ai/ unknown
Mistral Mistral-large
L3.1 Llama-3.1-70B-Instruct (Grattafiori et al., 2024)
Q2 Qwen2-72B-Instruct (Bai et al., 2023)
Mixtral Mixtral-8x22B-Instruct-v0.1 (Jiang et al., 2024)
DS deepseek-llm-67b-chat (Bi et al., 2024)
Ge2 gemma-2-27b-it (Team et al., 2024)

Table 2: LLMs used in Exp. 1. Top: Group 1: five initial
LLMs; Bottom: Group 2: five later LLMs.

up in the next section, but we discuss briefly the
red pairs now.

2.2 Red Pairs
Our three mathematically-trained group members
tried to analyze the kinds of mistakes LLMs were
making in these pairs. We discovered a few patterns
of problematic or flawed reasoning:

Ignored context. Sometimes a specific context
was mentioned, for instance

• P: In the nilpotent case, this nerve is known
to be a Kan complex.
H: This nerve is not known to be a Kan com-
plex.

but it looks like the LLMs discarded the specific
context (the nilpotent case) and compared the ma-
trix sentences – in the example above this leads to
a contradiction – instead of a neutral label. This
is similar to the problems with modal and coun-
terfactual reasoning discussed in (Holliday et al.,
2024).

Vague quantifiers. We also have problems with
vague predicates like numerous, few, many, where
humans could also disagree amongst themselves:
one example from the ‘red pairs’ set is

• P: We worked through numerous examples to
demonstrate the power of these notions.
H: We worked through two examples to
demonstrate the power of these notions.

The mathematicians agreed that numerous exam-
ples should entail two examples, but LLMs did not.

Lexical ambiguity. There is lexical ambiguity,
for example, with the verb “resemble" which might
mean “is almost equal" (for some humans) or “it
looks similar to something else, but it is not the

same as" – a reason why we might have humans
saying both contradiction or entailment in the ex-
ample:

• P: The axioms resemble those for monoidal
Abelian categories.
H: The axioms are the ones of monoidal
Abelian categories.

Note that the ambiguity which we call “lexical”
here might also be called “pragmatic” because the
issue is whether the use of “resemble” here carries
the Gricean implicature that if an object A resem-
bles an object B, then A is not, strictly speaking,
B at all.

Naming of math entities. There is a problem
with naming mathematical entities, e.g. “group B"
vs. “group C" if this is only used as a generic name,
as an α-variant, then the difference between B and
C doesn’t matter. But many times we are talking
about different groups.

Unknown math concepts. Sometimes one really
must know the concepts involved. For example, for
the pair

• P: This paper proposes a recursive definition
of V-n-categories and their morphisms.
H: This paper proposes a definition of V-
categories.

if we know that ‘V-n-categories’ are ‘V-categories’,
then we can decide on entailment. But how do
we know that? The mathematician is at liberty to
create concepts and name them in strange ways.
For instance a “skew monoidal category” is not a
“monoidal category”, only an ‘almost’ monoidal
category.

3 Evaluating LLMs on the seed corpus

In our first experiment, we harness LLMs to evalu-
ate the seed corpus.

3.1 Method
The seed corpus was originally judged by five
LLMs, the top ones in Table 2. We used the prompt
shown in Appendix C. When 4 or 5 LLMs dis-
agreed with the human annotation, we discussed
the pair again, throwing it out if it was considered
“controversial” by the mathematicians in our group.

We use API services from together.ai to
query the LLMs, using a script to extract E/C/N
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judgments from each model’s explanation. The al-
gorithm used is simple: it counts the occurrences
of a few keywords in the first sentence without se-
mantical analysis. (It works well if the model gives
the answer directly.) However, this algorithm can
fail. For example, when the model does not follow
the instructions strictly we may end up with a pair
that is neither E nor C nor N, and as usual in NLI
we take N as a catch-all for “not E and not C.”

3.2 Results

Performance of 10 LLMs on the seed MathNLI
corpus is shown in Table 3, with their confusion
matrices shown in Table 4.

Table 3 presents the precision, recall, f1-score
and accuracy for 10 LLMs. The overall accuracy
is medium to high, ranging from 71% to 91%, sug-
gesting that in general, the LLMs we tested can
perform category-theory-related mathematical in-
ference to a certain degree. We note that the first
group of LLMs (to the left of the table) are not
particularly better than the second group (on the
right). This might reflect the fact that the first group
were closed-source, while Group 2’s models were
open-source. The first group has two closed source
models: Claude 3 and GPT-4; the others are open
source. In particular, Claude 3 seems to still be bet-
ter than the open-source LLMs, but perhaps more
runs are necessary to confirm this.

A main message from Table 4 is that most mod-
els struggle with neutral pairs, mistakenly catego-
rizing them either as entailment pairs or contradic-
tory pairs. For instance, Llama-3 is particularly
bad in that it labels as many as 35% of neutral pairs
as contradictions; only 48% of the neutral pairs are
correctly classified. Claude 3 is the best in labeling
N pairs, with an accuracy of 84.9% for them. On
the contrary, most models perform very well on C
and E pairs. GPT-4, Llama 3 and Qwen2 correctly
labeled more than 90% of the C and E pairs. In fact,
C pairs are the easiest for all models, except Llama
2, with most models achieving accuracy greater
than 90%. Furthermore, models seldom confuse C
and E pairs. For eight out of the ten LLMs, C pairs
are never categorized as E pairs.

Only one pair in one model (Gemma2) is classi-
fied as C by the machines and E by humans:

• P: Both of them generalize the concept of al-
gebra on a monad T.
H: The concept of algebra on a monad T is
more special than both of them.

Note that this pair does not satisfy our criteria of
explicit references only. The pair is fairly contro-
versial, as well. All LLMs label it as contradictory,
but mathematicians tend to think that generaliz-
ing and specializing are antonyms. So whatever
"both of them" are, if they are a generalization of
the concept of algebra of a monad (as claimed by
the premise) then "algebra of a monad" will more
specialized than them.

Concerning the Group 1 models: out of 279
samples, there is at least one model that agrees
with the human annotator in 271 samples. Hence,
there are 8 pairs where none of the 5 initial models
agrees with the human label. These eight pairs are
recalled in Appendix A. The examples are telling
as they point out patterns of reasoning that might
be difficult for humans as well. For instance:

• P: Using these ideas, we also prove that
magnetic monopoles form an abelian group.
H: Using these ideas, we also prove that
monopoles form an abelian group.

Clearly a mathematician would gather that ‘mag-
netic monopoles’ form an abelian group, but noth-
ing has been said about non-magnetic monopoles.
So neutral is much more reasonable than ‘entail-
ment’. (More on this is in the appendix A).

Table 5 discusses unanimity between LLMs. As
before we consider two groups of models. Our
initial LLMs are unanimous in 163 of the pairs
(58.4%). Of these 163, in 155 of the cases, the
models’ agreed-upon label matches the human an-
notations. And in 271 of the 279 pairs (including
ones where the models were not unanimous), at
least one model agreed with the human label. This
explains the upper row of the table, and the lower
row is similar.

Notice that for the more recent LLMs, unanimity
goes up from 58.4% to 68.1%. We do not have a
good explanation of this.

4 Using LLMs to generate a MathNLI
corpus

4.1 Generation using GPT-4

Our second experiment asked GPT-4 to generate
Entailment, Contradiction, and Neutral hypotheses
from the Goldilocks sentences in the TAC corpus,
resulting in 1157 pairs. The prompt we used is
shown below:
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GPT4 L2 L3 C3 Mistral L3.1 Q2 Mixtral DS Ge2

p 82.9 90.5 70.9 91.8 79.8 88.8 87.3 75.4 92.7 85.1
C r 98.9 61.3 96.8 95.7 97.8 93.5 95.7 98.9 81.7 92.5

f1 90.2 73.1 81.8 93.7 87.9 91.1 91.3 85.6 86.9 88.7

p 90.1 73.9 85.4 93.5 89.8 83.8 80.8 86.3 82.0 82.8
E r 97.8 88.2 94.6 92.5 84.9 89.2 90.3 88.2 78.5 82.8

f1 93.8 80.4 89.8 93.0 87.3 86.5 85.3 87.2 80.2 82.8

p 95.5 56.2 91.8 87.8 81.8 81.7 84.7 85.5 67.6 75.3
N r 68.8 63.4 48.4 84.9 67.7 72.0 65.6 57.0 78.5 68.8

f1 80.0 59.6 63.4 86.3 74.1 76.6 73.9 68.4 72.6 71.9

acc 88.5 71.0 79.9 91.0 83.5 84.9 83.9 81.4 79.6 81.4

p 89.5 73.5 82.7 91.0 83.8 84.8 84.2 82.4 80.8 81.1
avg r 88.5 71.0 79.9 91.0 83.5 84.9 83.9 81.4 79.6 81.4

f1 88.0 71.0 78.3 91.0 83.1 84.7 83.5 80.4 79.9 81.1

Table 3: Results of 10 LLMs on the seed MathNLI corpus (precision/recall/F1 per class; accuracy and macro
averages). Closed-source models are marked with the lavender header; green cells denote row-best scores.

Generate “Entailment”, “Contradiction”,
“Neutral” hypothesis of a given sentence.
Here are some examples: [example_script]
Sentence: [context]

The temperature for the generation was 1. GPT-
4 was a good generator of pairs, as we shall see
below. But it was not consistent with itself. If it
created a pair nominally to be E it could later judge
it N or even C. As we see in Table 6, 41.4% of
the pairs which GPT-4 created to be neutral it later
claims as entailments.

4.2 Checking of a subset, using both humans
and LLMs

We chose 89 pairs to conduct manual evaluation
and distributed these among the mathematicians
of the group. This gave us a set of 89 GPT-4-
created/human evaluated pairs. These 89 pairs were
also evaluated using GPT-4, Llama 2, Llama 3 and
Claude 3, in the first instance. Our mathematicians
agree with each other in 80 of the 89 pairs. They
agree with 74 (83%) of the GPT-generated labels.

5 Evaluating LLMs on GPT-generated
MathNLI corpus

Next, we had the 4 models in Group 1 and 5 models
in Group 2 label the 89 pairs. The results are shown
in Table 6. The models in group 1 show unanimous

agreement in 57 of the pairs (64%), while the mod-
els in group 2 do so in 65 (73%). In group 1, for
50 of these 65 pairs (87%), their unanimous label
agrees with human labels; while the agreement for
group 2 is 57 pairs (88%). Here is our conclusion
from this experiment: If we take the unanimous
labels from the group 2 models to simply be the
gold label, then this label is the same as the human
label 88% of the time.

The evaluation results on the GPT-generated cor-
pus using the GPT-generated label as the true label
are shown in Table 8, with the confusion matri-
ces presented in Table 7. The overall accuracy of
LLMs varies between 59.6% and 86.5%, which
is relatively lower than the accuracy on the seed
corpus.

Our analysis reveals that while the E and C pairs
generated by GPT show a certain level of consis-
tency relative to our seed pairs, N pairs are fre-
quently misclassified as E. (This finding echoes
what we saw in our previous experiment, but there
the pairs were human-generated.) Surprisingly,
Llama 2 classifies 75.9% of N pairs as E. Among
all evaluated models, Mixtral showed the least sus-
ceptibility to this issue, maintaining the highest ac-
curacy of 76.0%. Although its performance on the
seed corpus was not outstanding, Mixtral achieved
the highest overall accuracy of 86.5% on the GPT-
generated corpus.
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(a) GPT4

Gold↓ C E N

C 98.9 .0 1.1
E .0 97.8 2.2
N 20.4 10.8 68.8

(b) Llama2

C E N

61.3 1.1 37.6
.0 88.2 11.8

6.5 30.1 63.4

(c) Llama3

C E N

96.8 .0 3.2
4.3 94.6 1.1

35.5 16.1 48.4

(d) Claude3

C E N

95.7 .0 4.3
.0 92.5 7.5

8.6 6.5 84.9

(e) Mistral

C E N

97.8 .0 2.2
2.2 84.9 12.9

22.6 9.7 67.7

(f) Llama3.1

Gold↓ C E N

C 93.5 .0 6.5
E 1.1 89.2 9.7
N 10.8 17.2 72.0

(g) Qwen2

C E N

95.7 .0 4.3
2.2 90.3 7.5

12.0 21.7 66.3

(h) Mixtral

C E N

98.9 .0 1.1
3.2 88.2 8.6

29.0 14.0 57.0

(i) DeepSeek

C E N

81.7 .0 18.3
2.2 78.5 19.4
4.3 17.2 78.5

(j) Gemma2

C E N

92.5 1.1 6.5
1.1 82.8 16.1

15.1 16.1 68.8

Table 4: Confusion Matrices Comparison for 10 LLMs on the seed MathNLI corpus. Darker green denotes
higher scores, while orange shades denote low scores; for both colors, paler shades represent smaller values in the
corresponding range.

unanimous some agree w/ human agrees w/ a human

models in group 1 163 (=58.4%) 271 (=97.1%) 155 (=55.6%)
models in group 2 190 (=68.1%) 266 (=95.3%) 178 (=63.8%)

Table 5: Agreement by LLMs on the seed corpus.

Furthermore, it was observed that LLMs tend to
identify C pairs within the GPT-generated corpus
more accurately than they do within the seed cor-
pus; 8 out of 9 models achieved an F1 score of over
90%. Notably, Gemma2 successfully detected all
the C samples in the GPT-generated corpus.

6 Sanity checks

For previous NLI datasets such as SNLI (Bowman
et al., 2015) and MNLI (Williams et al., 2018),
studies have shown that some of the systems which
detect “entailment” were working on artifacts of
the datasets, instead of doing any logical reason-
ing (e.g., Poliak et al., 2018). In this section we
provide some sanity checks on our corpus.

6.1 Does every assertion entail itself?

We are trying to make reasoning as clear as possi-
ble for humans and systems, and in some sense as
simple as possible. We thus propose the easiest log-
ical deduction that we expect LLMs (and humans)
to make proficiently. Taking a cue from proposi-
tional logic, this would be that every proposition A
entails itself, A → A. Informally, if one accepts a
sentence S as an assumption, then one should draw
S as a trivial conclusion. We want to know whether
a computational system “knows” this without being
told it explicitly. For an LLM, we want to know
if our prompt together with the model’s training is

enough to carry out what we take to be a very easy
inference. To see how much noise LLMs could
introduce, we ask them whether every one of a set
of mathematical assertions entailed itself. It was
not very surprising to discover that for one of 180
such pairs, one LLM missed this assertion A → A.

• P: We do not include any guiding examples.
H: We do not include any guiding examples.

This pair was judged N instead of E. But the expla-
nation for the reasoning of the LLM is fascinating:

Explanation: In this case, the premise
and the hypothesis are identical state-
ments. Since they both convey the
same information, there is no logical in-
ference or contradiction between them.
The hypothesis is neither entailed by
the premise nor does it contradict the
premise. Therefore, the hypothesis is
neutral to the premise.

The first sentence is correct, but immediately
following that the model blunders.

The experiment was repeated with many more
pairs, and only 3 in 2312 pairs had the same prob-
lem. This is a very small number of errors, but this
is arguably the easiest inference one can ever make.
It is odd that a system which can make deep, com-
plicated mathematical inferences, can get a simple
inference like ‘A implies A’ wrong.
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unanimous agree w/ at least 1 human agree w/ all human

human annotator / / 80 (= 89.9%)
GPT generator / 74 (= 83.1%) 65 (= 73.0%)
models in group 1 57 (= 64.0%) 50 (= 56.2%) 43 (= 48.3 %)
models in group 2 65 (= 73.0%) 57 (= 64.0%) 50 (= 56.2%)

Table 6: Experiment 3 Result: total 89 pairs generated by GPT-4

(a) GPT-4

Gold↓ C E N

C 96.7 .0 3.3
E .0 96.7 3.3
N .0 41.4 58.6

(b) Llama 2

C E N

53.3 .0 46.7
.0 100.0 .0
.0 75.9 24.1

(c) Llama 3

C E N

96.7 .0 3.3
.0 100.0 .0
.0 51.7 48.3

(d) Claude 3

C E N

93.3 3.3 3.3
.0 93.3 6.7
3.4 34.5 62.1

(e) Llama 3.1

C E N

93.3 .0 6.7
.0 100.0 .0
3.4 55.2 41.4

(f) Qwen2

C E N

93.3 .0 6.7
.0 100.0 .0

3.4 34.5 62.1

(g) Mixtral

C E N

96.7 .0 3.3
.0 96.7 3.3

3.4 31.0 65.5

(h) Deepseek

C E N

83.3 .0 16.7
.0 90.0 10.0
.0 31.0 69.0

(i) Gemma2

C E N

100.0 .0 .0
.0 90.0 10.0
.0 34.5 65.5

Table 7: Confusion Matrices on GPT-generated Corpus

Previous work such as Xu et al. (2024) tries to
catalog the kinds of mistakes that LLMs are known
to make. They suggest that “to uncover the logical
flaws of LLMs, problematic cases will be attributed
to five error types from two dimensions, i.e., ev-
idence selection process and reasoning process."
The example above seems clearly a reasoning pro-
cess kind of error, as the LLM is very clear that
both the hypothesis and the premise are ‘identical
statements’. But from that it concludes that the
hypothesis is not entailed by the premise.

6.2 Contradictions must be symmetric

Most humans would agree that if a sentence A is
contradictory with a sentence B, then sentence B
is contradictory with A. That is, being contradic-
tory is a symmetric property. Work in (Kalouli
et al., 2017) showed that the humans annotating
the corpus SICK did not realize when they had
non-symmetric contradictions. We hence checked
whether LLMs evaluated contradictions symmet-
rically in the GPT-generated corpus. This small
experiment showed that out of 495 pairs (5 times
93 contradiction pairs), 49 contradictions were not
symmetric. This is not as bad as humans did in the
paper above, but it still shows a lack of consistency.

6.3 Entailment requires premises and
hypothesis

The premise-only work in NLI points to the fact
that the labels E, C, and N could be accurately
determined without any premise, simply using the
hypothesis. To make sure that our corpus does
not have the same problem, we run an experiment
using a dummy true premise, say, “Right adjoints
preserve limits".

We substitute this sentence for the premise in
all 279 pairs, and evaluate the new pairs using the
Group 2 Models. These models do not suffer from
the same problems that earlier ones did; all four
essentially classified all of the hypotheses as N,
which is correct.

7 Final remarks

We find it useful to discuss our work by seeing how
it aligns with the perceptive conclusions drawn by
(Madaan et al., 2024).3 We agree that evaluating
models on NLI tasks is still relevant. For Math
NLI, we do not find models to be saturated. This
contrasts with ordinary language NLI (ONLI). We
also confirm their finding that “while the similarity
of model distributions with human label distribu-
tions increases with scale, it is still much higher

3We would compare with other sources, but (Madaan et al.,
2024) seems to be the most relevant contemporary paper on
this topic.
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GPT4 L2 L3 C3 L3.1 Q2 Mixtral DS Ge2

precision 100.0 100.0 100.0 96.6 96.6 96.6 96.7 100.0 100.0
C recall 96.7 53.3 96.7 93.3 93.3 93.3 96.7 83.3 100.0

f1-score 98.3 69.6 98.3 94.9 94.9 94.9 96.7 90.9 100.0

precision 70.7 57.7 66.7 71.8 65.2 75.0 76.3 75.0 73.0
E recall 96.7 100.0 100.0 93.3 100.0 100.0 96.7 90.0 90.0

f1-score 81.7 73.2 80.0 81.2 78.9 85.7 85.3 81.8 80.6

precision 89.5 33.3 93.3 85.7 85.7 90.0 90.5 71.4 86.4
N recall 58.6 24.1 48.3 62.1 41.4 62.1 65.5 69.0 65.5

f1-score 70.8 28.0 63.6 72.0 55.8 73.5 76.0 70.2 74.5

acc 84.3 59.6 82.0 83.1 78.7 85.4 86.5 80.9 85.4

precision 86.7 64.0 86.6 84.7 82.5 87.2 87.8 82.3 86.4
avg recall 84.3 59.6 82.0 83.1 78.7 85.4 86.5 80.9 85.4

f1-score 83.8 57.2 80.8 82.8 76.8 84.8 86.1 81.1 85.2

Table 8: Results of LLMs on GPT-generated Corpus.

Model E N C

L3.1 .039 .961 .0
Q2 .004 .992 .004
Mixtral .0 1.00 .0
Ge2 .004 .996 .004

Table 9: Result of Hypothesis only Baseline

than the similarity between two populations of hu-
mans, making it a potentially interesting statistic
to consider.” We have found that models show less
of a distribution of labels than humans. We mean
that the models are closer to unanimity than hu-
mans. Finally, they note a certain “subjectivity”:
“examples with ‘incorrect’ predictions are rarely in
fact incorrect; most concern questions on which
humans may disagree as well.” And just as they
point out, “The ground truth labels for NLP bench-
marks are often decided according to the majority
label by human annotators. This simplifies the data
annotation process while also making the evalua-
tion easier. However, several previous studies have
noted that human disagreements in annotations for
NLP datasets reflect the lack of a single ground
truth label, rather than noise in the annotation pro-
cess.” Even in mathematical texts, there is room
for disagreements between experts.

7.1 Conclusion and future directions

This paper investigates the performance of Large
Language Models (LLMs) on Natural Language In-

ference (NLI) tasks within the domain of research-
level mathematics. We explore the complexities
of mathematical language compared to everyday
language and evaluate LLMs’ ability to handle
mathematical inferences, noting some surprising
strengths and weaknesses.

Contrary to what we initially assumed Math NLI
is not much easier than ONLI for LLMs. Chal-
lenges include unfamiliar vocabulary (e.g., ‘ring’,
‘field’, ‘comonad’), multimodal elements like sym-
bols and equations, lack of open-source mathemat-
ical resources, and the difficulty of finding expert
human annotators.

LLMs show paradoxical performance on math
tasks: despite exhibiting impressive capabilities
in complex mathematical-like problem-solving,
LLMs surprisingly struggle with basic logical rea-
soning and NLI tasks in mathematics. We have
documented issues with self-consistency, which
is crucial in mathematics. A sanity check testing
whether LLMs correctly identify that a statement
entails itself (A → A) revealed a very small num-
ber of errors, but the explanations for these errors
showed a fundamental reasoning flaw.

Post-GPT LLMs avoid some issues that plagued
earlier systems. For example, we expected lexical
ambiguity involving math words to cause LLMs to
stumble, as in mixing up “stack” (a mathematical
concept) with ordinary “stack” (pile). They did not
do so.

We provide two corpora intended to support fur-
ther research in the Math NLI area. One had hy-
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potheses which we wrote ourselves, and the other
had LLMs write the hypotheses. We believe that
these corpora will help newcomers to this attrac-
tive area. And our results give some idea of what
is reasonable to expect from this area in the next
years.

Further directions include combining our work
with theorem provers or other symbolic methods,
tests of similarity as opposed to inference, and in-
teractions of our work with running systems in
the Math NLI area. We also leave to future work
an analysis of the CoT explanations provided by
LLMs. For us, this would be especially interesting
regarding the red pairs (see Section 2.2).

Limitations

We did not fine-tune to mathematical text the LLMs
we use. We also only ran things once. All of
our mathematical work was centered on the rela-
tively special area of category theory, since that
was the source of our premise pairs. We do not ex-
pect significant differences when we pivot to other
branches of mathematics.

A more problematic limitation is that from the
outset we concentrated on a relatively limited kind
of sentence. That is, we aimed for sentences which
did not manifest interesting but semantically prob-
lematic phenomena like ellipses, temporal refer-
ence, poetic language, and the like. In a sense, we
aimed for sentences that were close to what one
could formalize in standard logic. This concentra-
tion was behind our initial choice of 432 sentences
from the TAC corpus. We also wanted sentences
which were not too short, not too long, and with
little or no LATEX. This also is a limitation.
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A On the LLMs used in this work

See Table 2. We used Qwen2-72B-Instruct, which
was released in June 2024. According to the Qwen2
Technical Report, this model outperformed Llama3-
70B-Instruct on most benchmarks, including math-
ematical benchmarks such as GSM8K and MATH.

B Disagreements between models and
humans in the seed corpus

1. P: Using these ideas, we also prove that
magnetic monopoles form an abelian group.
H: Using these ideas, we also prove that
monopoles form an abelian group.

Humans say the label is N, as it’s only for
magnetic monopoles that we have the abelian
group. Machines say entailment E, but no
mathematician would state the weaker result,
if they could prove it without the extra hypoth-
esis.

2. P: The problem of relating a factorization sys-
tem to a pointed endofunctor is considered.
H: A pointed endofunctor cannot be related to
a factorization system.

Humans disagree: some say contradiction C,
others say N

3. P: This paper introduces the notions of vector
field and flow on a general differentiable stack.
H: This paper generalizes the notions of vector
field and flow on a stack.

4. P: We define eventually cyclic Boolean flows
and the eventually cyclic spectrum of a
Boolean flow. H: The definition of the even-
tually cyclic spectrum of a Boolean flow uses
the definition of eventually cyclic Boolean
flows.

5. P: The axioms resemble those for monoidal
Abelian categories with the addition of an in-
volutive functor. H: The axioms are the ones
of monoidal Abelian categories.

6. P: The category of Set-valued presheaves on a
small category B is a topos. H: The category
of Set-valued presheaves on a small category
C is a topos.

7. P: The category of Set-valued presheaves on
a small category B is a topos. H: There exists
a small category C such that the category of
Set-valued presheaves on C is not a topos.

8. P: Various concerns suggest looking for in-
ternal co-categories in categories with strong
logical structure. H: We suggest looking for
internal co-categories.

C Seed corpus prompt

Here is the prompt which we used on the seed
corpus:

[Begin prompt head]
Suppose you are a logician. Your job is to
determine the inference relation between the
premise and the hypothesis. There could be
three answers: (1) the hypothesis is entailed
by the premise; (2) the hypothesis is neutral to
the premise; (3) the hypothesis contradicts the
premise. Please first tell me your answer and
explain why this is your answer.
[End prompt head]
Premise: [Premise]
Hypothesis: [Hypothesis]
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