@inproceedings{punjwani-heck-2025-weight,
    title = "Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced {LLM} Reasoning",
    author = "Punjwani, Saif  and
      Heck, Larry",
    editor = "Kamalloo, Ehsan  and
      Gontier, Nicolas  and
      Lu, Xing Han  and
      Dziri, Nouha  and
      Murty, Shikhar  and
      Lacoste, Alexandre",
    booktitle = "Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)",
    month = jul,
    year = "2025",
    address = "Vienna, Austria",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2025.realm-1.33/",
    doi = "10.18653/v1/2025.realm-1.33",
    pages = "471--485",
    ISBN = "979-8-89176-264-0",
    abstract = "Large language models (LLMs) have demonstrated remarkable reasoning capabilities when prompted with strategies such as Chain-of-Thought (CoT). However, these approaches focus on token-level output without considering internal weight dynamics. We introduce Weight-of-Thought (WoT) reasoning, a novel approach that examines neural network weights before inference to identify reasoning pathways. Unlike existing methods, WoT explores the weight space through graph-based message passing, multi-step reasoning processes, and attention mechanisms. Our implementation creates an interconnected graph of reasoning nodes. Experiments on diverse reasoning tasks (syllogistic, mathematical, algebraic, combinatorial, and geometric) demonstrate that WoT achieves superior performance compared to traditional methods, particularly for complex problems. This approach leads to both improved performance and greater interpretability of the reasoning process, offering a promising direction for enhancing LLM reasoning capabilities."
}Markdown (Informal)
[Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced LLM Reasoning](https://preview.aclanthology.org/ingest-emnlp/2025.realm-1.33/) (Punjwani & Heck, REALM 2025)
ACL