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Abstract

Models trained on crowdsourced annotations
may not reflect population views, if those who
work as annotators do not represent the broader
population. In this paper, we propose PAIR:
Population-Aligned Instance Replication, a
post-processing method that adjusts training
data to better reflect target population charac-
teristics without collecting additional annota-
tions. Using simulation studies on offensive
language and hate speech detection with vary-
ing annotator compositions, we show that non-
representative pools degrade model calibra-
tion while leaving accuracy largely unchanged.
PAIR corrects these calibration problems by
replicating annotations from underrepresented
annotator groups to match population propor-
tions. We conclude with recommendations for
improving the representativity of training data
and model performance. !

1 Introduction and Inspiration

When a hate speech detection model flags harm-
less expressions as toxic, or a content moderation
system fails to identify genuinely harmful content,
the root cause often lies not in the model architec-
ture, but in who annotated the training data. While
Natural Language Processing (NLP) models aim to
serve broad populations, the human judgments used
to train these systems often come from crowdwork-
ers and convenience samples. And the demograph-
ics, cultural contexts, and worldviews of these an-
notators often differ from those of the communities
the models ultimately impact (Sorensen et al., 2024;
Fleisig et al., 2024). These non-representative an-
notator pools can have real consequences, because
annotator characteristics like age, education level,
and cultural background impact how content is an-
notated (Sap et al., 2022; Fleisig et al., 2023; Kirk

'The code for experiments is available at https://
github.com/soda-1mu/PAIR.
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Figure 1: Top: Adjusting survey data to match popula-
tion produces high quality results.
Bottom: Can a similar adjustment in data annotations
also improve model performance?

et al., 2024). The influence of annotator charac-
teristics underscores that language understanding
is not a single objective truth but a constellation
of equally valid interpretations anchored in dif-
ferent lived experiences. When this perspectivist
interpretation is ignored, models trained on non-
representative data can perpetuate the biases and
blind spots of their limited training data (Berinsky
et al., 2012; Hebert-Johnson et al., 2018; Mehrabi
et al., 2021; Rolf et al., 2021; Hiillermeier and
Waegeman, 2021; Ouyang et al., 2022; Favier et al.,
2023; Smart et al., 2024).

Fortunately, survey researchers have developed
statistical techniques to produce population-level
estimates from non-representative samples (Bethle-
hem et al., 2011). The top panel of Figure 1 shows
a simple survey workflow: collecting survey data,
creating statistical weights to match the sample
to the population, and estimating population pa-
rameters. We adapt this approach to the machine
learning context, enabling models to better align
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with target populations even when trained on non-
representative annotator pools (bottom panel).

Our Population-Aligned Instance Replication
(PAIR) method post-processes training data to bet-
ter reflect target populations without collecting ad-
ditional annotations. We test the approach with
a simulation study (Burton et al., 2006; Valliant,
2019; Morris et al., 2019) and answer two ques-
tions:

* RQ1: How do non-representative annotator
pools impact model calibration and accuracy?

* RQ2: Can our proposed weighting method
(PAIR) mitigate these annotator pool effects?

Our results demonstrate that models trained on
non-representative annotator pools perform worse
than those trained on representative pools. How-
ever, simple adjustment methods can improve per-
formance without collecting additional data. These
findings suggest that insights from survey method-
ology can help artificial intelligence (Al) systems
better represent the populations they serve.

2 Related Work

Several strands of related work inform our ap-
proach to identifying and mitigating bias due to
the use of non-representative annotators:

Annotator Impact on Data and Models. An-
notator characteristics and attitudes significantly
influence annotation quality, particularly for sub-
jective tasks like toxicity detection (Giorgi et al.,
2025; Prabhakaran et al., 2021; Fleisig et al., 2023;
Sap et al., 2022). For example, annotators’ polit-
ical views and racial attitudes affect their toxicity
judgments (Sap et al., 2022). Models trained on
non-representative annotator pools inherit these bi-
ases and generalize poorly (Berinsky et al., 2012;
Mehrabi et al., 2021; Rolf et al., 2021; Ouyang
et al., 2022; Favier et al., 2023; Smart et al., 2024,
Mokhberian et al., 2024).

Annotator Demographics. Several researchers
advocate collecting annotator demographics to as-
sess representation and identify biases (Bender and
Friedman, 2018; Prabhakaran et al., 2021; Plank,
2022; Wan et al., 2023; Santy et al., 2023; Pei and
Jurgens, 2023).% However, collecting and releasing

2In our context, these characteristics are used only to ana-

lyze bias. Because they are not available for unannotated text,
they are not features that the model can use.
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these data can raise privacy concerns (Fleisig et al.,
2023). Recent works have also used demographics
to prompt the large language models (Argyle et al.,
2023), and some find that these are less effective
in subjective contexts (Sun et al., 2025; Orlikowski
et al., 2025).

Debiasing & Data Augmentation Methods.
Prior work has proposed various approaches to re-
duce bias in training data features and annotations.
Most similar to our work is the resampling and
reweighting approaches of Calders et al. (2009) and
Kamiran and Calders (2012), imputation (Lowman-
stone et al., 2023), and the oversampling of minor-
ity class cases of Ling and Li (1998). PAIR adapts
these methods to balance annotator characteristics
rather than class labels or sensitive observation-
level features. PAIR retains the simplicity and in-
terpretability of earlier resampling methods while
extending them to a “Learning with Disagreement”
(Uma et al., 2021; Leonardelli et al., 2023) set-
ting with multiple annotations per observation, by
replicating annotations from underrepresented an-
notator groups.

3 PAIR Algorithm: Adjustment via
Pseudo-Population

To adjust an annotator pool to better reflect a tar-
get population, we propose the PAIR algorithm,
which constructs a pseudo-population through post-
stratification, weight normalization, and determin-
istic replication. This adjustment strategy is in-
spired by established methods in survey sampling
(Quatember, 2015).

Post-stratification aligns a sample more closely
with population-level distributions (Bethlehem
et al., 2011; Valliant et al., 2013). Annotators are
grouped into strata based on demographic or be-
havioral characteristics. For each unit 7 in stratum
s, a post-stratification weight is computed as:

6]

where P; and S denote the share of the popula-
tion in stratum s and the share of the sample (or
annotator pool), respectively. The P values come
from official statistics or surveys. The S values
likely come from the annotators themselves and re-
searchers may have to collect them. This technique
can accommodate multiple stratification variables;
it is only limited by the availability of population
or reference data and data about the annotators.



These weights have only relative meaning and

are invariant to multiplication by a constant (K):

w?ormalized — winitial % K (2)
Normalization useful if research teams have a target
number of annotations per observation in mind, for
either computational or design reasons, or if some
weights given by Eq. 1 are very small and round to
one.

To generate a pseudo-population, we apply de-
terministic replication: each unit is replicated n;
times where

n; = round (wpemalizedy _ 1 3)
ensuring integer replication counts. This approach
produces a dataset that reflects population propor-
tions while maintaining interpretability and repro-
ducibility.

While we focus in this initial study on determin-
istic replication, alternative implementations are
possible, including resampling-based replication or
direct incorporation of weights into model training.

4 Annotation Simulation and Model
Training

To address our research questions, we conduct a
simulation study on offensive language and hate
speech detection. We imagine a population made
up of equal shares of two types of people: those
more likely to perceive offensive language and
hate speech and those less likely. We create three
datasets of simulated annotations which differ in
the mix of the annotator types. We then create a
fourth dataset, using the PAIR algorithm, to fix
the imbalance in the annotators. We fine-tune
RoBERTa models on the four datasets and eval-
uate the effect of annotator composition on model
performance (RQ1) and the ability of the PAIR
algorithm to improve performance (RQ?2).

4.1 Simulating Annotations

We use our previously collected dataset on tweet
annotation sensitivity (Kern et al., 2023)3, which
is a dataset of 3,000 English-language tweets, each
with 15 annotations of both offensive language (OL:
yes/no) and hate speech (HS: yes/no). We chose
this dataset because the high number of annotations
of each tweet gives us a diverse set of labels to work

3https://huggingface.co/datasets/soda—lmu/
tweet-annotation-sensitivity-2

with. We randomly select (without replacement)
12 annotations (of both OL and HS) of each tweet
in the original dataset.* Let pi,or be the proportion
of the 12 annotators who annotated tweet ¢ as OL
and p; gs defined similarly. Figure 2 shows the
distribution of these proportions across the 3,000
tweets. The HS annotations are clustered near O,
whereas the OL annotations are more spread out
between 0 and 1.

oL

HS

0.00 0.25 0.50 0.75 1.00
Proportion

Figure 2: Distribution of p; o, and p; g g in original
data

The population contains two types of people
(50% each). Type A people are less likely to say a
tweet contains OL. Type B people are more likely:

Pf}oL = max(p;or — 3,0) 4)
pfOL = min(p; o1, + f5,1) (5)

Here 3 captures the magnitude of the bias. We
vary /3 from [0.05, 0.3] by 0.05, corresponding to
an increase or decrease in the probability to judge
a tweet as OL by five to 30 percentage points. This
range is large on the probability scale and cov-
ers most reasonable situations. With these six val-
ues of 5, we create six vectors of probabilities
(pZAO I pfo ;) for each tweet.

We then create four datasets, each with 3,000
tweets (Table 1), for each value of 5. The Repre-
sentative Dataset contains OL annotations from six
A annotators (drawn from Bernoulli(pfo 1)) and
six B annotators (drawn from Bernoulli(pfo L)
The proportion of A and B annotators in this dataset
matches the simulated population we created.

We next create two unbalanced datasets. Non-
representative 1 randomly deletes three B an-

*As shown in Table 1, we can more carefully control the

construction of our datasets when the number of annotations
per tweet is even.
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Annotations A B
Dataset per tweet annotations annotations
Representative 12 6 6
Non-representative 1 9 6 3
Non-representative 2 12 9 3
Adjusted 12 6 3+ 3%

* 3 B annotations replicated

Table 1: Four training datasets for each bias value (3)

notations for each tweet from the Representa-
tive Dataset. Non-representative 2 adds three
additional A annotations, drawn from pfo 1. 1O
the Non-representative 1 dataset. The Non-
representative 2 Dataset is more unbalanced than
Non-representative 1, but contains the same num-
ber of annotations as the Representative dataset.

4.2 Applying PAIR Algorithm

Finally, we use the PAIR algorithm to create
the Adjusted Dataset. Starting with the Non-
representative 1 Dataset, we calculate the share
of the annotator pool that is in the A and B strata:
Sy = %, Sp = % The population proportions, by
construction, are P4 = 0.5, Pg = 0.5. Applying
(1), we getwy ; = 0.75, wp; = 1.5. We multiply
these weights by K = % togetwa,; = 1, wp,; = 2.
These weights giveus ng; = 0,np; = 1, which
leads us to replicate all B annotations in the Non-
representative 1 Dataset (see Table 1).

The HS probabilities for the A and B anno-
tators are defined in the same way: pf}HS
max(pi s — f,0), pPyg = min(p;ms + B, 1).
We also construct the four datasets (Representa-
tive, Non-representative 1, Non-representative 2,
Adjusted) in the same way we did in the OL case.

Figures 3 and 4 show the percentage of instances
annotated OL and HS in the four datasets for each
value of . In both, the percentage of OL/HS an-
notations in the Adjusted dataset is similar to that
in the Representative dataset for all values of f.
The percentage in the two unbalanced datasets is
lower, because those datasets overrepresent the A
annotators, who are less likely to annotate OL/HS.

HS is rare in our dataset (16.7% of instances
were annotated as HS), and our simulation strat-
egy overrepresents A annotators in the two Non-
representative datasets, who are less likely to per-
ceive HS (Table 1). For these reasons, as (3 in-
creases, more pr g are 0 while the pr g proba-
bilities increase. This issue leads the i)roportion

of HS annotations in the Representative and Ad-
justed datasets to increase with (5 in the HS dataset,
which have more B annotations than the unadjusted
datasets (Figure 4).
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Figure 3: Percentage of instances annotated as OL, by
dataset and bias (3)
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Figure 4: Percentage of instances annotated as HS, by
dataset and bias (3)

4.3 Model Training and Evaluation

Training and Test Setup. We train models on
each of the eight datasets: four for OL, four for
HS. We divide each dataset, at the tweet level, into
training (2,000 tweets), development (500), and
test (500) sets. Each tweet appears 12 times in the
Representative, Non-representative 2, and Adjusted
datasets and nine times in the Non-representative 1
set.

Model Selection and Training. We used
RoBERTa base (Liu et al., 2019) as our text classi-
fier, training for five epochs on each dataset, with
development set optimization. To ensure reliable
results, we trained five versions with different ran-
dom seeds and averaged their performance.

Our implementation of ROBERTa models was
based on the libraries pytorch (Paszke et al., 2019)
and transformers (Wolf et al., 2020). During
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training, we used the same hyperparameter settings
(Table 2) for the five training conditions to keep
these variables consistent for comparison purposes.
We trained each model variation with five random
seeds {10,42,512,1010,3344} and took the av-
erage across the models. All experiments were
conducted on an NVIDIA® A100 80 GB RAM
GPU.

Hyperparameter Value
encoder roberta-base
epochs_trained 5
learning_rate 3e~?
batch_size 32
warmup_steps 500
optimizer AdamW
max_length 128

Table 2: Hyperparameter settings of ROBERTa models

Performance Metrics. We evaluate models us-
ing calibration and accuracy metrics on the test
set. While accuracy metrics directly measure clas-
sification performance, calibration metrics provide
crucial insights into model reliability by assessing
probability estimate quality — particularly impor-
tant for high-stakes applications requiring trustwor-
thy confidence measures.

For calibration, we report Absolute Calibration
Bias (ACB, Equation 6), which measures how well
a model’s predicted probabilities align with true
annotation frequencies. For each tweet ¢, we com-
pare the model’s predicted probability of offensive
language (preds; o) against the true proportion
of annotators who labeled that tweet as offensive

(pi,oL)-

n

1
ACBpy, = - Z }predsi7OL — pi,OL‘ (6)
i=1

ACByg is defined accordingly. ACB adapts es-
tablished calibration metrics by using the annotator
agreement proportion as a plug-in estimator for the
true probability, avoiding the need for binning (as
in ECE, Naeini et al., 2015) while maintaining the
intuitive L1 distance interpretation (Roelofs et al.,
2022). A low ACB score indicates that the model’s
confidence scores accurately reflect the underlying
annotation uncertainty in the population.

For accuracy, we report the F1 score.
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Figure 5: ACB scores for OL Models, by dataset and
bias (3)
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Figure 6: F1 scores for OL Models, by dataset and bias
®

5 Results

We show results separately for the OL and HS mod-
els.

5.1 OL Models

Calibration. Figure 5 compares the ACB in the
test set for models trained on the four datasets. The
dark lines show average ACB across the five train-
ing runs and the shading shows the standard devia-
tion.

The ACB for the models trained on the Adjusted
dataset closely tracks that for the Representative
dataset and does not increase with 3. ACB for the
models trained on the two unbalanced datasets is
greater and grows with 5. These results demon-
strate the effectiveness of our adjustment method.
Replicating the annotations from the underrepre-
sented annotator type to match population propor-
tions improves model calibration.

Accuracy. Figure 6 compares the models’ F1
scores. In contrast to Figure 5, we do not see strong
differences between the models trained on the dif-
ferent datasets. For all datasets, model performance
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Figure 7: ACB scores for HS Models, by dataset and
bias ()
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Figure 8: F1 scores for HS Models, by dataset and bias
(e))

declines with 3: as the amount of bias in the anno-
tations increases, the models are less able to predict
the binary OL label.

Because the F1 metric focuses on binary pre-
dictions, it is less sensitive to training biases than
calibration metrics like ACB, which more explic-
itly capture biases through prediction scores. In
decision-making, miscalibrated predictions can
have harmful consequences when, for example,
hateful content remains undetected (Van Calster
et al., 2019). These findings suggest that calibra-
tion metrics provide a clearer view of the impact of
annotators on models: binary classification metrics
can obscure such effects.

5.2 HS Models

Figure 7 contains the ACB results and Figure 8
the F1 score results for the HS models trained on
each dataset. Though the adjusted model roughly
tracks the representative models for ACB, there is
instability in the results. All models show lower
average ACB values than the representative model
across a wide range of the bias offset (0.10 - 0.20).
The PAIR approach does not improve calibration
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Figure 9: Percentage of OL instances on difficult tweets
(0.4 < p; 01 < 0.6) by dataset and bias ()
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Figure 10: Percentage of HS instances on difficult
tweets (0.4 < p; s < 0.6) by dataset and bias (/3)

or accuracy: the adjusted model performs similarly
to the Non-representative models. This effect is
likely due to the combination of label rarity and our
simulation design. With few positive annotations
to begin with, the impact of the 5 parameter and
the overrepresentation of the A annotators may
be overwhelmed by the baseline scarcity of hate
speech annotations. Calibration metrics can be less
reliable with rare classes (Zhong et al., 2021).

5.3 Sensitivity Analysis: Difficult Tweets

Our simulations assumed that all annotator type im-
pacts all tweets the same way (Eq. 5), which is an
oversimplification. More likely, annotator charac-
teristics have more impact for ambiguous tweets.
For example, prior research in the psychology liter-
ature on judgment under uncertainty suggests that
people draw more heavily on personal heuristics
when interpreting unclear or underspecified infor-
mation (Tversky and Kahneman, 1974). For this
reason, we repeat model training and recompute
metrics for those tweets where 0.4 < p; < 0.6.
Subsetting the tweets in this way also eliminates
the floor and ceiling effects in Eq. 5. The filtered
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Figure 11: ACB scores for OL Models, on difficult
tweets (0.4 < p; or. < 0.6), by dataset and bias (/5)
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Figure 12: F1 scores for OL Models, on difficult tweets
(0.4 < p; o1, <0.6), by dataset and bias (/3)

datasets contain 267 (OL) and 360 (HS) tweets.
The proportions of OL and HS annotations are sta-
ble for the Representative and Adjusted sets and
decrease for the Non-representative sets as we in-
crease the bias offset (Figures 9 and 10). This
mimics the trend for OL in the full dataset (Figure
3).

Figures 11, 12, 13, and 14 show results for two
metrics (ACB, F1) for filtered OL and HS anno-
tations. In Figure 11, the Representative and Ad-
justed models have similar ACB and are lower than
the Non-representative models. The F1 scores do
not show differences between the models. These
results are similar to those on the full set of tweets
(Figures 5 and 6). In the two HS figures (13, 14),
we see signs that the Representative and Adjusted
models perform similarly, and better than the two
Non-representative models, on both metrics. These
results are more promising than those on the full set
of tweets (Figures 7 and 8) and support our hypoth-
esis that the rarity of HS annotations contributed to
the lack of positive results for the PAIR approach in
§5.2. The PAIR algorithm works well with difficult
tweets, which is where it is likely most needed.
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Figure 13: ACB scores for HS Models, on difficult
tweets (0.4 < p; gs < 0.6), by dataset and bias (3)
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6 Discussion & Recommendations

Our experimental results show the OL prediction
models perform less well when trained on data
from non-representative annotator pools (RQ1),
and simple statistical adjustments can improve
model calibration without collecting additional an-
notations or involving additional annotators (RQ?2).
While PAIR’s impact was harder to assess for the
rare HS class, PAIR did improve calibration of both
the OL and HS models when trained on difficult
tweets. These findings establish a promising bridge
between survey statistics and machine learning —
offering a practical approach to make Al systems
more representative of and responsive to the popu-
lations they serve, particularly for tasks involving
subjective human judgments.

We recommend the following four steps to
reduce bias due to non-representative annotator
pools:

1) Use social science research to identify the an-
notator characteristics that influence the propen-
sity to engage in annotation and the annotations
provided (Eckman et al., 2024).
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2) Collect these characteristics from annotators
and gather corresponding population-level data
from national censuses or high-quality surveys.’

3) Calculate weights that match the annotators to
the population on those characteristics (Bethle-
hem et al., 2011; Valliant et al., 2013).

4) Use these weights in model training. Our
simple replication approach showed promise,
and future work should test more sophisticated
weighting approaches.

7 Limitations

Our study explores bias-aware data simulation and
evaluation in a controlled setting, which necessarily
involves simplifying assumptions and methodolog-
ical constraints. We outline key areas where future
work could broaden the applicability and robust-
ness of our findings.

Stylized Biases and Simulated Data. Our sim-
ulation makes strong assumptions about annotator
behavior: there are only two types of annotators,
and, within each type, annotators behave similarly.
Real-world annotator biases may be more nuanced
or context-dependent. The simulated annotators
might not be representative of a stable opinion
group (Mokhberian et al., 2024; Vitsakis et al.,
2024). Future work could incorporate more re-
alistic biases and refine the proposed simulations
and statistical techniques.

Sampling Variability. We have created only one
version of the four datasets for each annotation
type and value of 3, each of which contains ran-
dom draws from the Bernoulli distribution. A more
traditional statistical approach would create mul-
tiple versions of the datasets and train models on
each one, to average over the sampling variability.
Though limited by computational constraints in this
work, future work could take on a more expansive
simulation. As discussed, we used five seeds in
model training.

Need for Population Benchmarks and Annota-
tor Characteristics. PAIR requires high quality

>Collection and release of annotator characteristics or
weights derived from them may raise confidentiality concerns.
The survey literature offers advice for sharing sensitive data
(see Karr, 2016, for a review). Collecting annotator charac-
teristics may also require involvement of Institutional Review
Boards or other participant protection organizations (Kaushik
etal., 2024).

benchmark information about the relevant popula-
tion. These benchmarks might come from national
statistical offices or national surveys. Annotators
must provide accurate data on the same characteris-
tics available in the benchmark data. Unfortunately,
annotators sometimes do not provide accurate infor-
mation (Chandler and Paolacci, 2017; Huang et al.,
2023). In addition, theory demonstrates that bias
will be reduced only when the characteristics used
in weighting correlate with the annotations (Eck-
man et al., 2024). In our simulation, differences in
annotations were driven solely by group member-
ship (A, B). In the real world, it is challenging to
know what characteristics impact annotation behav-
ior for a given task and to find good benchmarks
for those characteristics.

Generalization Beyond Task Types. The study
focuses only on binary classification tasks. Many
real-world annotation tasks involve multiple classes
or labels, which may show different bias patterns.
Additional research is needed to extend these meth-
ods to more complex classification scenarios.

Evaluation Metrics. While we measured calibra-
tion and accuracy, we did not examine other impor-
tant metrics such as fairness across subgroups or
robustness to adversarial examples. Future work
on training data adjustment should assess a broader
range of performance measures.

8 [Ethical Considerations

In this simulation study, we experiment on a pub-
licly available dataset collected in our previous
study (Kern et al., 2023), which contains offen-
sive and hateful tweets. We do not support the
views expressed in these tweets. The simulation
study itself does not collect any new data or raise
any ethical considerations.
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