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Abstract

With the rise of online platforms, moderating
harmful or offensive user-generated content has
become increasingly critical. As manual mod-
eration is infeasible at scale, machine learning
models are widely used to support this process.
However, subjective tasks, such as offensive
language detection, often suffer from annota-
tor disagreement, resulting in noisy supervi-
sion that hinders training and evaluation. We
propose Weak Ensemble Learning (WEL), a
novel framework that explicitly models anno-
tator disagreement by constructing and aggre-
gating weak predictors derived from diverse
annotator perspectives. WEL enables robust
learning from subjective and inconsistent labels
without requiring annotator metadata. Exper-
iments on four benchmark datasets show that
WEL outperforms strong baselines across mul-
tiple metrics, demonstrating its effectiveness
and flexibility across domains and annotation
conditions.

1 Introduction

Harmful information, such as offensive and abu-
sive language, has been known as one of the main
threats on social media platforms. Typically, the
moderation of online harmful information is con-
ducted manually. With an increasing amount of
information, manual moderation is expensive and
insufficient. There is a growing demand for devel-
oping a Natural Language Processing (NLP) tool
to support the detection and mitigation of harm-
ful content on online platforms. Addressing this
challenge requires high-quality annotated data to
train accurate and reliable machine learning models.
In recent years, social media has become a popu-
lar source for data collection, and crowdsourcing
has emerged as a widely used solution for large-
scale data annotation. However, concerns have
been raised about the reliability of crowdworkers,
particularly in complex linguistic tasks where an-
notators often lack domain-specific training (Uma
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et al., 2022). Furthermore, the incentive structures
of crowdsourcing platforms can encourage rapid
completion of tasks with careful judgment, poten-
tially compromising label quality (Daniel et al.,
2018; Leonardelli et al., 2021; Leonardellli et al.,
2023). A particularly challenging issue in this con-
text is human label variation (Plank, 2022), which
arises when annotators assign different labels to the
same instance. This is especially common in sub-
jective tasks such as emotion detection (Buechel
and Hahn, 2018) and offensive language detec-
tion (Leonardellli et al., 2023), where annotation
involves personal interpretation, contextual nuance,
and cultural perspective. Unlike objective tasks
with clearly defined ground truth, subjective anno-
tations inherently invite disagreement. Such varia-
tion introduces noise into training data, complicates
evaluation, and challenges the assumption of a sin-
gle "correct" label (Uma et al., 2022; Cabitza et al.,
2023). Understanding and modelling this variabil-
ity is critical for developing NLP systems that are
more robust, interpretable, and aligned with the
diversity of human judgement.

Previously, several methods have been proposed
to address this issue by estimating and incorpo-
rating annotator reliability into the modelling pro-
cess (Sheng et al., 2008; Cui, 2023; Fleisig et al.,
2023; Xu et al., 2024). These approaches typically
assign higher weights to labels provided by more
consistent or trustworthy annotators, aiming to re-
duce the influence of noisy or unreliable inputs on
the final model. However, their effectiveness is
often limited by the composition of the annotator
pool. They require sufficient diversity among an-
notators to model reliability accurately and may
risk overfitting when such diversity is lacking or
when the model overrelies on a small subset of
annotators (Rébiger et al., 2018; Cui, 2023).

We aim to develop a method applicable to more
general multi-annotation settings. Specifically, the
proposed approach is designed to function effec-
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tively when annotators are shared across the entire
dataset or when there is a heterogeneous distribu-
tion of annotator workload (i.e., some annotators
contribute more than others).

While prior approaches often rely on a single
loss function, such as cross-entropy (CE) (Uma
et al., 2020), to train classification models, this
may be insufficient for subjective tasks where both
hard and soft supervisory signals are informative.
In such settings, different loss components capture
complementary aspects of learning: CE supports
probabilistic calibration, F1 loss promotes classifi-
cation accuracy on hard labels, and distributional
losses like mean absolute error or Manhattan dis-
tance (MD) (Rizzi et al., 2024) help align predic-
tions with the soft label distributions reflecting an-
notator disagreement. By jointly optimising these
objectives, we can balance predictive accuracy with
nuanced representation of label uncertainty, leading
to more robust and interpretable models.

Our contributions can be summarised as follows:

* We propose Weak Ensemble Learning'
(WEL), a novel ensemble-based framework
for learning from multiple annotations in sub-
jective tasks.

We introduce two variants: WEL-Random,
which builds weak predictors from randomly
sampled labels to capture annotator variation
without metadata, and WEL-TopAnn, which
trains per-annotator models for the top-ranked
annotators.

We present a systematic study of selection
strategies, aggregation methods and loss func-
tions for optimising the ensemble.
Experiments on four datasets from Le-Wi-Di
2023 shared task show that WEL consistently
outperforms two strong baselines across mul-
tiple metrics.

2 Related Work

Subjective NLP tasks such as offensive language
detection, hate speech classification and emotion
analysis often suffer from high variability in human
annotations. Annotators may interpret linguistic
cues differently based on their personal, cultural or
contextual backgrounds (Aroyo and Welty, 2015;
Uma et al., 2022). This subjectivity introduces la-
bel noise and inconsistency, making it challenging
to define a single ground truth (i.e., a hard label).

!Codebase for WEL and Evaluation: https://github.
com/YhzyY/Weak-Ensemble-Learning

In particular, datasets annotated via crowdsourcing
tend to reflect these disagreements, raising ques-
tions about how best to represent and learn from
multiple perspectives (Leonardelli et al., 2021; Da-
vani et al., 2022).

A common approach to address label disagree-
ment is to replace hard labels with soft targets, usu-
ally probability distributions over classes derived
from annotator votes, and train models using prob-
abilistic loss functions. The most prevalent is the
cross-entropy loss, which treats soft distributions
as targets, encouraging models to reflect label un-
certainty rather than force a single decision (Uma
et al., 2020; Zheng et al., 2021). More recent meth-
ods have proposed alternative loss formulations,
such as Kullback-Leibler divergence, expected cal-
ibration error (Uma et al., 2020) and Manhattan
distance (Rizzi et al., 2024). These techniques aim
to improve robustness to noisy or subjective labels
by preserving the signal in disagreement rather than
collapsing it through majority vote.

Ensemble methods have also been explored as a
way to leverage annotator disagreement rather than
suppress it. Instead of aggregating labels before
training, several works train separate models for
each annotator and combine their predictions dur-
ing inference (Akhtar et al., 2021; Gordon et al.,
2021; Xu et al., 2024). This strategy captures the
full range of annotator perspectives and has shown
promise in capturing subjective variation in tasks
like emotion classification and hate speech detec-
tion. However, these models may suffer from scal-
ability issues, especially when the number of an-
notators is large or unbalanced. Other work has
approached the problem from a probabilistic mod-
elling perspective, estimating annotator reliability
as a latent variable during training (Paun et al.,
2018a,b; Xu et al., 2020). These approaches of-
ten combine annotator-specific models with global
learning signals, aiming to balance personalised
and consensus-based predictions. In addition, in-
stance weighting has been used as a practical solu-
tion to reduce the influence of unreliable or biased
supervision. For instance, Zhang et al. (2020) ap-
ply instance reweighting to mitigate demographic
bias in toxicity detection, while Liu et al. (2021)
introduce dynamic instance weighting to adapt to
concept drift in evolving datasets. Cui (2023) and
Fleisig et al. (2023) proposed to compute indi-
vidual annotator ratings and combine this infor-
mation to better capture the subjectivity inherent.
These methods adjust the learning signal based on
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example-level characteristics, enabling models to
better generalise under noisy or imbalanced condi-
tions.

Our work unifies ensemble-based disagreement
modelling. We extend ensemble methods that cap-
ture annotator disagreement by randomly sampling
weak predictors to simulate diverse viewpoints, and
by embedding annotator-specific models whose en-
semble selection is learned end-to-end rather than
relying on a fixed set as in Xu et al. (2024). In
contrast to probabilistic reliability estimation tech-
niques that depend on annotator metadata (Paun
et al., 2018a; Xu et al., 2020), our framework re-
quires no such information, broadening its appli-
cability. At the ensemble level, we adapt instance-
weighting strategies to emphasise predictor util-
ity and mitigate dataset bias (Zhang et al., 2020;
Liu et al., 2021). Drawing on label distribution
modelling, our loss function blends soft and hard
supervision to achieve both nuanced learning and
interpretability (Tian et al., 2024). These elements
yield a scalable and flexible approach for managing
noisy subjective annotations.

3 Methods

Given a dataset annotated by multiple annotators,
the goal is to learn a predictive function that ac-
counts for the variability and potential noise in-
troduced by differing annotator judgments. Let

= {(zs,y (1), - ,yl(A )}¥., denote a dataset of

N instances, where z; € X is the input (e.g., a
text sample), and {yl-(l), .. ,yZ } are the labels
provided by A; annotators for instance x;, with
yl-(J ) e Y representing the label from the j-th an-
notator, which j € {1,...,J} and J is the total
number of annotators in D. The objective is to
learn a predictive function fy : X — ) parame-
terised by 6, that approximates the underlying true
label distribution y;, which is unobserved due to
annotator disagreement.

To address this challenge, we propose a three-
stage method, named Weak Ensemble Learn-
ing (WEL), designed to learn from multiple annota-
tors while accounting for disagreement and annota-
tor variability. First, we construct a set of weak pre-
dictors by employing a random sampling and a top-
ranked annotators selection strategies (Section 3.1).
Second, we aggregate the outputs of weak predic-
tors using a weighted ensemble, where the weights
will be tuned to balance contributions in the next
stage, enabling the model to leverage diverse anno-

Algorithm 1 Weak Ensemble Learning (WEL)

Input: Dataset D = {(z;, {ylj)} O
Loss coefficients «, (3, ; Regulansatlon weight );
Maximum number of weak predictors Mpax
Output: Final*predictive ensemble model f(x) =
Zi\n/lzl Wi fo,,, (7)
Stage 1: Construct Weak Predictors
Strategy 1: Random Sampling
for m = 1to M,,, do
Dpm) — {(xi,yy)) | j ~ Uniform(1, 4;)}
Train f5, on D™

end

Strategy 2: Top-Ranked Annotators
Compute the annotation counts of a set of annota-
tors {A1, ..., Art
for m = 1to M,,, do

Dm) = {(z4, yl(Am)) | A, annotated x; }
Train f,, on D™

end
Stage 2: Define Aggregated Supervision

foreach instance x; do
Compute hard-aggregated label

g — arg max E

Compute soft-aggregated label.

-soft

end
Stage 3: Joint Optimisation
Initialize ensemble size M <— M. and weights
W = [wl, ceey wM}
repeat

foreach instance z; do
Compute ensemble output:

M
= wnfo, ()
m=1

end

Compute total loss:
L=a- Lr+pB Lcg+7 Lvp + - QW
Update ensemble weights W
Prune predictors: retain only fy,
Wy > €, form=1,..., M
Reinitialise weights: W < W/ S M_

until convergence;

Set M* <~ M and return final ensemble: f(z) =

ZTAr/Llil wmme (33)

)

such that

tator perspectives effectively (Section 3.2). Finally,



we jointly optimise the weak predictors’ ensemble
weights by minimising a multi-objective loss over
soft and hard aggregated labels, balancing cross-
entropy, distributional similarity, and F1-score per-
formance (Section 3.3). The complete procedure
of WEL is described in Algorithm 1.

3.1 Weak Predictor Construction

To capture diverse annotator perspectives, the
first stage of WEL constructs M weak predictors
{fo\,---, fo,, }, each trained on a different slice of
the annotation space. We propose two selection
strategies:

Random Annotator Selection. For each training

Aq
Y,
uniformly at random:

instance z; with A; annotations {ygl) Y
©)

we sample one label y;

j ~ Uniform{1,...,A4;} (D
Repeating this process M times produces M
datasets {DM) ... DM} each reflecting a
single-annotator view.

Top-Ranked Annotator Selection. We identify
the M annotators with the largest label contribu-
tions and train one weak predictor per annotator
using only their labels. Unlike Xu et al. (2024),
which assumes a fixed set of annotators, our M is
treated as a learnable parameter in the optimisa-
tion stage, allowing the ensemble size to adapt to
the dataset.

Model Architecture. Each weak predictor f,,
consists of a Transformer encoder (BERT or
AraBERT) followed by a linear classification head
mapping the [CLS] representation to class logits:
z=Whiesy + b, 2)
where hrcis) € R? is the encoder output, W €
RE*4 b € RY, and C is the number of classes.
The logits are passed through a softmax layer to
produce probability distributions over classes:
y = softmax(z) 3)
This stage yields a diverse pool of predictors that
differ in training data and potentially in decision

boundaries, forming the foundation for weighted
ensemble learning in Section 3.2.

3.2 Weighted Ensemble Learning

In the second stage, we aggregate the prob-
ability outputs from the M weak predictors
{fo.+---, fo,, } into a single ensemble prediction.
Let g)i(m) € [0, 1]¢ denote the predicted probability
distribution over C' classes for instance x; from
the m-th weak predictor, computed via the softmax
output of its linear classification head (Section 3.1).

We adopt a weighted ensemble strategy, where
each predictor is assigned a learnable non-negative
weight wy, subject to the constraint 2%21 Wy =
1. The ensemble prediction is then:

M
Ui = Z Wm Z)Z(m)
m=1

Here, W = [wy,...,wy] € R% encodes the
contribution of each weak predictor to the final
decision.

While up to M. predictors can be initially con-
structed, the optimisation process (Section 3.3) au-
tomatically determines an effective subset M* <
Mpax. Predictors with w,, < € (e.g., € = 1073)
are pruned to improve computational efficiency and
reduce noise from low-utility models.

By combining multiple probability distributions,
this ensemble mechanism captures complementary
information from diverse annotator views, improv-
ing robustness and mitigating the bias of any single
weak predictor.

“

3.3 Optimisation

In the third stage, we optimise the ensemble
weights {wy, }M_, (and optionally other param-
eters) to improve predictive performance. Given
the ensemble prediction §j; from Eq. (4), computed
as the weighted sum of individual predictor outputs
ngm), our goal is to minimise a multi-objective loss
that balances classification accuracy, calibration,
and distributional alignment.

To accommodate the uncertainty introduced by
annotator disagreement, we investigate learning
from both soft-aggregated and hard-aggregated
labels, and explore separate and joint optimisation
strategies based on multiple objective functions.

3.3.1 Aggregated Supervision

Let D = {(ay, {yi(j)}fil) N | be a dataset anno-
tated by multiple annotators. We derive two forms
of supervision:

« Hard Aggregated Label "¢ € Y: com-
puted via majority vote over annotator labels.



» Soft Aggregated Label 7:°™ € [0,1]°: a nor-
malised label distribution over C' classes, re-
flecting the empirical frequency of annotators’
choices.

3.3.2 Objectives

To robustly train the ensemble model under vary-
ing supervision signals, we define the following
optimisation targets of the loss function L:

(1) F1-Score (F1): A discrete metric evaluated

using "4, which we aim to maximise:

—hard)
)

Lr) = —F1(arg max(y;), ¥; )

where the negative sign denotes that the F1-score
is being maximised during training.

(2) Cross-Entropy (CE) (Uma et al., 2020;
Leonardellli et al., 2023): A soft objective used

when training with %°', minimising:

N C

ECE:—Z

i=1 c=1

—soft

7;°"[c] - log Gilc],  (6)

where N is the number of training instances, C
the number of classes, 35°[c| the soft target (i.e.,
annotator-derived label distribution), and ¢;[c| the

predicted probability for class c on instance z;.

(3) Average Manhattan Distance (MD) (Rizzi
et al., 2024): A distributional similarity measure
minimising the L; distance between predicted and
soft labels:

1 N C
Lup = 57 ; ; [9ile] =gl @D

3.3.3 Separate and Joint Optimisation

We explore two optimisation paradigms:

* Separate Optimisation : Each objective is
minimised independently in different optimis-
ing regimes. For example, cross-entropy is
minimised on soft labels, while F1-score is
optimised using hard labels during model ag-
gregation.

* Joint Optimisation: A combined loss func-
tion integrates all objectives, Eq. (5), (6)

and (7), to guide the model jointly. We de-
fine:

L=a -Lri+ B8 -Leg+7 Lyvp+ A QW),
(8

where «, 8, > 0 are loss balancing coeffi-
cients, and 2(W) is an £2-norm regularisation
term to encourage balanced weight distribu-
tions to prevent overfitting. The regularisation
weight A controls the degree of smoothing
across predictors.

By jointly optimising prediction objectives and
ensemble composition, our model leverages anno-
tator disagreement as a source of diversity, improv-
ing both robustness and alignment with subjective
supervision.

3.3.4 Implementation Details

During the optimisation stage, we employ two
derivative-free optimisation algorithms: OP-
TUNA (Akiba et al., 2019) and the SciPy? dif-
ferential evolution algorithm (Storn and Price,
1997). Both are well-suited to searching contin-
uous, bounded parameter spaces without requiring
gradient information. In our setting, the optimiser
iteratively updates the ensemble weights W to min-
imise the chosen objective(s) (either a single loss
or the joint formulation in Eq. (8)), subject to the
simplex constraint:

M
m=1

For each optimisation step, the selected subset of
weak predictors is reinitialised to reduce sensitivity
to specific model subsets. We run each optimiser
for up to 100 trials or steps, and both methods
yield comparable results. OPTUNA is generally
faster due to GPU support and efficient sampling
strategies, while differential evolution offers robust
CPU-based parallelism, making it preferable in
non-GPU environments. The framework remains
agnostic to the choice of optimiser, allowing other
search strategies to be integrated as needed.

4 Experiments

To evaluate the performance of our method
across diverse domains and text genres, we use

2https://docs.scipy.org/
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Table 1: Data statistics for the four textual datasets.
#Train, #Dev, and #Test denote the number of instances
in the training, development, and test splits, respectively.
#Total Ann indicates the total number of annotators in
each dataset, while #Ann represents the minimum and
maximum number of annotators per instance.

Dataset #Train #Dev #Test #TotalAnn #Ann
ArMIS 657 141 145 3 3
ConvAbuse 2398 812 840 8 2-7
HS-Brexit 784 168 168 6 6
MD-Agreement 6592 1104 3057 670 5

four publicly available datasets from the Le-Wi-
Di shared task at SemEval 2023 (Leonardel-
i et al.,, 2023): ArMIS (Almanea and Poe-
sio, 2022), ConvAbuse (Cercas Curry et al.,
2021), HS-Brexit (Akhtar et al., 2021), and MD-
Agreement (Leonardelli et al., 2021). Each dataset
includes multiple annotations per instance, with at
least two annotators per instance sample.

To maintain the generalisability of our approach,
we exclude domain information and annotator
metadata during training. All models are trained
solely on input text and its associated labels. Sum-
mary statistics are provided in Table 1, while Ta-
ble 2 presents dataset meta-information. In partic-
ular, we distinguish between Fixed Ann. datasets,
where each instance is labelled by the same group
of annotators, and Mixture datasets, where annota-
tors vary across instances. Further details on the
datasets and preprocessing steps are provided in
Appendix A.

Table 2: Dataset metadata covering annotator contribu-
tion, diversity, language and genre.

Dataset Contribution Diversity Language Genre
ArMIS Fixed Ann. Low Arabic Short Text
ConvAbuse Mixture Low English Conversation
HS-Brexit Fixed Ann.  Low English Short Text
MD-Agreement Mixture High English Short Text
4.1 Training

While the proposed framework is model-agnostic
and compatible with various machine learning ar-
chitectures, we employ BERT (Devlin et al., 2019)
for English datasets (ConvAbuse, HS-Brexit, MD-
Agreement) and AraBERTV2 (Antoun et al., 2020)
for ArMIS, using the base checkpoints from Hug-
gingFace. We train M,,x=10 weak predictors us-
ing different selection strategies (Section 3.1). Hy-
perparameters for Transformers are tuned on devel-

opment sets (Appendix B). The predictors are fixed
before the joint optimisation of ensemble weights.

4.2 Evaluation Metrics

We evaluate model performance using three com-
plementary metrics: (a) micro-averaged F1 score
(F1), which assesses classification accuracy on
hard-aggregated labels; (b) cross-entropy loss (CE);
and (c) average Manhattan distance (MD) between
predicted and target label distributions. The lat-
ter two metrics are used to evaluate how well the
model captures soft supervision signals arising
from annotator disagreement (Leonardellli et al.,
2023; Rizzi et al., 2024).

4.3 Label Selection Strategies

First, we experiment with two label selection strate-
gies for constructing weak predictors: random sam-
pling (Random), which selects one annotation per
instance uniformly at random, and fop-ranked an-
notators (TopAnn), which trains one model per an-
notator using data from the most frequent annota-
tors. For simplicity and fair comparison, we fix all
loss coefficients and the regularisation weight to 1.

Table 3 shows results across the four datasets.
The Random strategy consistently achieves higher
F1 and better CE than TopAnn. We attribute this
to the greater diversity introduced by random sam-
pling: each weak predictor is trained on a unique
stochastic projection of the label space, encourag-
ing the ensemble to learn decision boundaries that
generalise across annotator-specific biases. This is
especially beneficial when F1 is the main objective,
as it rewards consistent hard-label predictions on
majority-vote labels, which Random sampling im-
plicitly approximates over many diverse predictors.

By contrast, TopAnn tends to produce more simi-
lar decision boundaries within the ensemble be-
cause each predictor is tied to a single annota-
tor’s style. This can be beneficial for modelling
annotator-specific distributions, but under fixed co-
efficients, it can limit the ensemble’s ability to op-
timise for F1, which benefits from capturing the
aggregate rather than individual perspectives.

Nevertheless, TopAnn achieves lower MD on
ConvAbuse and HS-Brexit, likely because these
datasets have annotators with high internal consis-
tency. In such cases, modelling them individually
yields predictions more aligned with the soft label
distribution.



Table 3: The selection strategies for constructing weak
predictors on AraBERT and BERT.

Dataset Selection Fl1 CE MD
ArMIS Random  0.7310 0.6390 0.5301
TopAnn  0.7310 0.6536 0.5487
ConvAbuse Random 0.9333 0.5559 0.1749
TopAnn 09310 0.5652 0.1645
HS-Brexit Random 0.9107 0.5842 0.2733
TopAnn  0.8929 0.6140 0.2379
MD-Agreement Random  0.8162 0.6246 0.3648
TopAnn  0.7668 0.6695 0.4156

4.4 Ensemble Optimisation Paradigms

We conduct an ablation study to assess the indi-
vidual and combined contributions of the loss com-
ponents in Eq. (8): Lg;, Lcg and Lyp. For clarity,
we fix the selection strategy to Random and acti-
vate specific losses by setting their corresponding
coefficients («, (3, ) to 1 while setting the others to
0. In each setting, we optimise both the ensemble
weights W and the number of members M.

Tables 4 and 5 show results for the ArMIS and
MD-Agreement datasets. Across both datasets,
Lwp consistently achieves the lowest MD values,
confirming its role in aligning predictions with an-
notator label distributions. Similarly, configura-
tions including Lcg tend to improve calibration
(lower CE), while Lg; boosts classification accu-
racy when paired with Lyp. However, using all
three objectives together does not yield additional
gains, and in some cases slightly reduces perfor-
mance, likely due to competing optimisation sig-
nals. Overall, these results suggest that each loss
serves a distinct purpose: Lg; strengthens hard-
label accuracy, Lcg improves probabilistic calibra-
tion, and Lyp enhances alignment with annota-
tor distributions. Effective combinations emerge
when the selected losses complement rather than
compete, even without tuning the loss coefficients,
underscoring the value of a flexible and modular ob-
jective in ensemble optimisation. The ConvAbuse
and HS-Brexit datasets corroborate these findings,
with further analysis provided in Appendix D. Sim-
ilar results were also found using TopAnn.

4.5 Loss Coefficients and Regularisation Term

The joint objective in Eq. (8) balances four compo-
nents through parameters («, 3, v and A) with the
regularisation term (W) demonstrating three key
effects. Due to the page limit, we present the im-
pact of Q(W) on MD-Agreement in Table 6: (1)
F1 improvement (up to +0.0056), (2) CE reduction
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Table 4: Ablation study of loss optimisation paradigms
on ArMIS dataset. In each setting, one loss component
is activated (associated scaler set to 1), while the remain-
ing components are deactivated (set to 0).

Case F1 CE MD

Lr; only 0.7448 0.6395 0.5048
Lcg only 0.7379 0.6385 0.5252
Lyvp only 0.7379 0.6505 0.4900
Lr1+LcE 0.7448 0.6412 0.5179
Lr1+Lyp 0.7172 0.6505 0.5111
Lce+LMp 0.7517 0.6406 0.5294
ﬁp] +£CE+£MD 0.6897 0.6468 0.5243

Table 5: Ablation study of loss optimisation paradigms
on MD-Agreement dataset.

Case F1 CE MD

Lp only 0.8132 0.6249 0.3672
Lcg only 0.8119 0.6246 0.3633
Lyp only 0.8165 0.6250 0.3626
Lr1+LcE 0.8145 0.6245 0.3660
Lr1+Lyp 0.8175 0.6245 0.3670
Lce+LMD 0.8109 0.6247 0.3626
,CF] +£CE+£MD 0.8142 0.6245 0.3647

(max —0.0005 for Lcg+Lyp) and (3) MD gains in
soft supervision (-0.0008) with limited degradation
(<+0.0020 for Lyp alone).

We conduct a Spearman correlation analy-
sis (Kendall and Stuart, 1969) over four param-
eters in the objective function, each sampled from
the range [0, 0.001,0.01, 0.1, 1], resulting in 1,295
unique combinations per dataset (excluding Os for
all). The F1 coefficient « significantly improves F1
(>+0.9) while degrading MD (>+0.7), with simi-
lar but weaker trade-offs for 8 (CE-focused) and ~
(MD-focused). The regularisation strength A shows
model-dependent effects, enhancing F1 on BERT
(~+1.0) but reducing performance on AraBERT
(<£-0.9). Finally, the optimised number of weak pre-
dictors M strongly correlates with both improved
F1 (>+0.9) and reduced CE (<-0.9), though typi-
cally at the cost of MD degradation (AMD >+0.5)
in BERT implementations.

4.6 Model Aggregation Strategies

Table 9 presents results on four datasets using three
aggregation strategies for combining weak predic-
tors: (a) Voting, which applies majority voting over
class labels; (b) Averaging, which computes the
unweighted mean of probabilistic outputs; and (c)
Optimised, which learns weighted combinations
through loss-minimising ensemble optimisation. In
binary classification settings, Voting and Averag-



Table 6: Improvements when adding regularisation term
Q(W), A = with Q(W) - without Q(W).

Case AF1 ACE AMD

Lr; only +0.0033 -0.0003 -0.0013
Lcg only +0.0039  -0.0001  +0.0001
Lvp only +0.0026  -0.0005 +0.0020
Lr+LcE 0.0000 0.0000 0.0000
Lr1+Lyp -0.0036  +0.0001 +0.0010
Lcg+Lvp +0.0056 -0.0005 -0.0008
Lr+Lcg+Lyvp  +0.0020  +0.0001  +0.0001

Table 7: Correlation between parameter and evalua-
tion metrics (F1, CE and MD) on the ArMIS and MD-
Agreement datasets. * indicates statistical significance
(p < 0.05). Green indicates improvement, red indicates
degradation. For CE and MD, negative correlations are
desirable.

Dataset ArMIS MD-Agreement
Param F1 CE MD F1 CE MD
o +0.9%  +0.7 +1.0* | +1.0* +0.6  +1.0*
B +0.2 -1.0¥* 404 -0.7 -0.6 +0.3
vy -0.9*%  +1.0* -1.0* -0.7 -0.9*%  -1.0%
A -1.0%  -1.0*  +0.7 | +0.9*% -0.3 +1.0*
M | +0.01 -1.0* -0.37 | +0.98* -0.97* +0.82%

ing yield identical predictions under a shared 0.5
threshold (Hovy et al., 2013; Plank et al., 2014).
Across all datasets, the Optimised strategy con-
sistently achieves superior performance in F1 and
MD, highlighting the benefit of learning ensemble
weights tailored to the task and supervision sig-
nal. A slight performance drop is observed in CE
on the ConvAbuse and HS-Brexit datasets. This
may be due to the optimisation process prioritising
improvements in classification accuracy (F1) and
distributional alignment (MD), potentially at the
expense of precise probabilistic calibration (CE).

4.7 Comparison with Baseline Models

To ensure a fair comparison, we use the same model
backbone with identical hyperparameters (BERT
for English datasets and AraBERT for ArMIS). We
reimplement and evaluate two baseline approaches:

e BERT-CE (Uma et al.,, 2020): a non-
ensemble single model optimised using a CE-
focused soft loss function.

Top-5 Annotator Voting (Top-5 Voting) (Xu
et al., 2024): a majority-vote ensemble of per-
annotator models, each trained on labels from
one of the top 3 or 5 most frequent annota-
tors (depending on availability). Unlike the
original version, which used multiple BERT
variants, we adopt a uniform model architec-

ture across all predictors for consistency.

Table 8 shows the best results of our proposed
method under two selection strategies: random
sampling (WEL-Random) and fop-ranked anno-
tator (WEL-TopAnn). Results correspond to the
optimal configurations found via ensemble optimi-
sation and parameter tuning (Appendix C). Both
WEL variants consistently outperform the base-
lines across most evaluation metrics, demonstrat-
ing the effectiveness of jointly optimising ensem-
ble weights while capturing annotator diversity
through weak predictors. The only exceptions
occur in MD on the ConvAbuse and HS-Brexit
datasets, where WEL-TopAnn outperforms both
WEL-Random and the baselines. Additionally, in
terms of F1, WEL-Random consistently exceeds
the baselines, reinforcing the robustness of the en-
semble approach even with random annotator se-
lection. As noted in Section 4.3, the superior per-
formance of WEL-TopAnn in MD likely reflects
the influence of a few highly consistent annota-
tors, which benefits the top-ranked selection strat-
egy. However, WEL-Random remains competitive
across other metrics (F1 and CE), suggesting that
the ensemble framework is effective even without
explicit annotator ranking.

5 Conclusions

In this paper, we introduced Weak Ensemble Learn-
ing (WEL), a flexible framework for subjective text
classification that learns from multiple annotations
by constructing diverse weak predictors and jointly
optimising their contributions. We explored two
variants: WEL-Random, which captures annota-
tor variation through random label sampling, and
WEL-TopAnn, which models the most frequent an-
notators individually. Experiments on four datasets
showed that WEL consistently outperforms base-
lines, with WEL-Random excelling in hard-label
classification and WEL-TopAnn offering advan-
tages in distributional alignment when annotator
consistency is high. Future work will integrate
annotator profiles and reliability estimates into a
unified neural architecture to improve performance
and efficiency, and extend WEL to larger annotator
pools and multilingual contexts.

Limitations

Although our method provides a general and scal-
able approach to learning from annotator disagree-
ment, it has several limitations. First, we train weak



Table 8: Comparison with baseline models. * indicates a statistically significant difference (p < 0.05, t-test) from
the BERT-CE baseline in terms of predicted labels (hard evaluation metric, F1) or soft distributions (soft evaluation

metrics, CE and MD).

Dataset ArMIS ConvAbuse HS-Brexit MD-Agreement

Metric F1 CE MD F1 CE MD F1 CE MD F1 CE MD
BERT-CE 0.6596  0.8039 0.7144 | 0.8362 0.9671 4.8068 | 0.7917  0.7652  0.7985 | 0.7880  0.9948  1.7574
Top-5 Voting | 0.7310  0.6529 0.5498 | 0.9310 0.5651 0.1648 | 0.8929* 0.6154* 0.2394* | 0.7808* 0.6629* 0.3995*
WEL-Random | 0.7793* 0.6385 0.5028 | 0.9405 0.5577 0.1709 | 0.9167  0.5889% 0.2585% | 0.8214% 0.6245% 0.3632*
WEL-TopAnn | 0.7448  0.6362 0.5143 | 0.9321 0.5662 0.1586 | 0.8929* 0.6237* 0.2354* | 0.7815* 0.6636* 0.4034*

Table 9: Aggregation strategies for the weak predictors.

Method
Voting
Averaging
Optimised
Voting
Averaging
Optimised
Voting
Averaging
Optimised
Voting
Averaging
Optimised

F1

0.7172
0.7172
0.7793
0.9333
0.9333
0.9405
0.9107
0.9107
0.9167
0.8178
0.8178
0.8214

CE

0.6389
0.6389
0.6385
0.5545
0.5545
0.5577
0.5845
0.5845
0.5889
0.6245
0.6245
0.6245

MD

0.5216
0.5216
0.5028
0.1814
0.1814
0.1709
0.2874
0.2874
0.2585
0.3659
0.3659
0.3632

Dataset

ArMIS

ConvAbuse

HS-Brexit

MD-Agreement

predictors independently and do not update their
parameters during joint optimisation. Although
this design improves computational efficiency, it
can limit the capacity of the ensemble to adapt if
individual predictors are poorly calibrated or sub-
optimal. Second, while we evaluate across multiple
data sources, our experiments are limited to mostly
short social media texts (3/4), two languages and
binary classification settings for simplicity. Addi-
tional evaluation of long-form text, multilingual
corpora or structured annotation settings would
help assess generalisability (Uma et al., 2022).

Ethical Statements

This research uses publicly available datasets from
the SemEval-2023 Le-Wi-Di shared task, including
user-generated content from social media and con-
versational agents. The datasets contain potentially
sensitive language related to hate speech, offensive
content, and abuse and were originally collected
and annotated under ethical guidelines by their re-
spective authors. We do not attempt to identify
or profile any individual users or annotators. Our
work focuses on improving the robustness and fair-
ness of machine learning models in the presence
of subjective disagreement and does not aim to
make normative judgments about content or anno-
tators. To support reproducibility and transparency,

we use standard preprocessing, avoid introducing
annotator-level biases, and refrain from incorpo-
rating demographic or personal information. All
experiments are conducted following standard ethi-
cal practices for human-centred Al research, with a
focus on minimising harm and respecting annotator
diversity.
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A Experimental Data Preprocessing and
Implementation Details

Three of the datasets (ArMIS, HS-Brexit, and
MD-Agreement) consist of tweets collected from
X3. The ArMIS dataset comprises Arabic tweets
labelled for misogyny detection, focusing on of-
fensive language directed toward women. The
HS-Brexit dataset includes English tweets anno-
tated for hate speech related to Brexit. The MD-
Agreement dataset contains English tweets la-
belled for offensive language across three domains:
Black Lives Matter, Elections, and COVID-19.
To maintain the generalisability of our approach,
we do not use domain information from the MD-
Agreement dataset during training. For these three
Twitter-based datasets, we apply a standardised
preprocessing pipeline that includes the removal
of HTML tags, URLs, hashtags, user mentions
(@names), punctuation, non-ASCII characters, dig-
its and redundant whitespace.

The fourth dataset, ConvAbuse, differs from the
others as it is not sourced from social media but
consists of English dialogues between users and
two conversational agents. We include it to assess
the model’s performance on a different text genre:
conversational dialogue. The original annotations
span five levels of abuse severity, from —3 (highly
abusive) to 1 (non-abusive). We simplify this into a
binary classification task, labelling utterances with
severity < 0 as offensive and those with severity >
0 as non-offensive. For processing, we concatenate
each dialogue into a single text sequence.

B Hyperparameter Tuning for BERT

We supervise each weak predictor using a joint
objective function as in Eq. (8) combining: (a) the
F1 micro score computed with hard labels (F1),
(b) the cross-entropy loss with soft target distribu-
tions (CE), and (c) the average Manhattan distance
(MD). For hyperparameter tuning of a single BERT
model, we fixed all loss coefficients and regular-
isation weight to 1 to simplify the optimisation
landscape. To ensure consistency and fair compari-
son across datasets, we use the ConvAbuse dataset,
which is moderate in size relative to the others, to
tune hyperparameters for fine-tuning BERT. Hy-
perparameter optimisation is performed using OP-
TUNA (Akiba et al., 2019). The model is trained on
the training set and validated on the development
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set, while the test set remains completely unseen
during both training and tuning.

The search is performed over 10 trials. The
Weight decay is held constant at 0.01 to enforce
moderate parameter shrinkage, preventing overfit-
ting while avoiding excessive bias in the learned
weights. The following hyperparameters are op-
timised: the learning rate (Ir, sampled logarith-
mically in the range [107%,107%]), number of
training epochs (n_ep € [2,5]), batch size (bs
€ {4,8,16,32,64}), and the number of warm-up
steps (w_steps € [1,500]). The detailed results are
shown in Table 10. These optimal settings are then
applied uniformly across all datasets to ensure a
consistent training setup.

Table 10: Hyperparameter tuning results sorted by joint
loss (ascending). Pruned trials (6 and 9) are excluded.
Bold values indicate best performance per column: high-
est F1, and lowest CE, MD and Joint loss.

Trial Ir n_ep bs w_steps F1 CE MD Joint
2 4.56e-6 2 32 463 0.8362 0.9678 1.1516 1.2832
0 1.48e-6 2 16 41 0.8362 0.9718 1.2891 1.4246
7 2.65e-6 3 16 342 0.8362 0.9753 1.2992 1.4383
3 4.75e-6 5 64 221 0.8818 0.8161 1.5719 1.5062
4 7.24e-5 5 8 487 0.9470 0.8082 2.0893 1.9504
1 9.80e-5 3 32 12 0.9434 0.8617 3.2045 3.1228
5 9.57e-5 5 32 150 0.9360 0.8409 3.5261 3.4310
8 4.35e-5 5 4 94 0.9200 0.8737 4.8390 4.7928

C Best Parameters for WEL

We perform a grid search over four parameters in
the objective function, each sampled from the range
[0,0.001,0.01,0.1, 1], resulting in 1,295 unique
combinations per dataset (excluding Os for all).
Table 11 reports the best-performing parameter
configurations (a, 3, v and \) for the two vari-
ants of our proposed method: WEL-Random and
WEL-TopAnn. The optimal values vary across
datasets and selection strategies, indicating that
performance is sensitive to the interplay of loss
components. Notably, there is no consistent trend
suggesting that any single parameter dominates

Table 11: Best performing hyperparameters for WEL.

Method « 153 ol A
ArMIS WEL-Random 1 0.0001 0.01 0.001
WEL-TopAnn 0.001 0.0001 0.1 0
ConvAbuse WEL-Random 0 0.1 1 0
WEL-TopAnn 0 1 0.01 0.01
HS-Brexit ~ WEL-Random 1 0.001 0 0.001
WEL-TopAnn 0.1 0.1 0 0.001
MD- WEL-Random 0.001 0.0001 0 0.001
Agreement WEL-TopAnn 1 0 0 0
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Table 12: Ablation study of loss optimisation paradigms
on ConvAbuse dataset.

Case F1 CE MD

Lp1 only 0.9298 0.5573 0.1862
Lcg only 0.9286 0.5536 0.1801
Lyp only 0.9202 0.5737 0.1680
£F1+ECE 0.9333 0.5540 0.1777
Lr1+Lyp 0.9333 0.5575 0.1689
Lce+LMp 0.9298 0.5556 0.1755
ﬁ]:] +£CE+LMD 0.9333 0.5571 0.1707

Table 13: Ablation study of loss optimisation paradigms
on HS-Brexit dataset.

Case F1 CE MD

Lg) only 0.8988 0.5868 0.2636
Lcg only 0.9048 0.5851 0.2859
Lyp only 0.8750 0.6066 0.2325
Lr1+LcE 0.9048 0.5857 0.2789
Lr1+Lyp 0.8810 0.6182 0.2374
Lce+Lyvp 0.8929 0.6035 0.2306

Lri+Lcg+Lyvp  0.8690  0.6093  0.2342

performance across settings.

D Ensemble Optimisation Paradigms on
ConvAbuse and HS-Brexit

Tables12 and 13 present ablation results for
ConvAbuse and HS-Brexit using WEL-Random.
Across both datasets, multiple configurations
achieve similar scores, suggesting that when loss
coefficients are fixed, different objectives can lead
to comparable outcomes.

For ConvAbuse, combining Lg; with either Lcg
or Lyp yields the highest F1 (0.9333), while Lyp
alone achieves the lowest MD (0.1680). For HS-
Brexit, Lcg alone gives the highest F1 (0.9048),
and the Lcp+Lyvp pairing yields the lowest MD
(0.2306). Including all three losses does not consis-
tently improve results and can slightly reduce F1,
likely due to competing objectives without tuned
coefficients.

Overall, these results indicate that when coef-
ficients are fixed, several loss configurations can
perform similarly, and gains from specific combi-
nations are modest. The impact of loss balancing
is explored further in the next subsection on param-
eter correlations.

E Parameter Impact on ConvAbuse and
HS-Brexit

Table 14 illustrates how each control parameter
balances the multi-objective trade-offs in the joint

optimisation (Eq. (8)). The regularisation term A
demonstrates consistently strong performance on
both ConvAbuse and HS-Brexit, achieving near-
perfect correlations with F1 (+1.0*/+0.99*) and
CE (-1.0%), though its effect on MD diverges from
patterns observed on MD-Agreement (Table 7).

In contrast, ~y consistently improves MD (-1.0%)
but harms F1 (-0.9*/-1.0*), making it better suited
for MD-focused objectives. The effect of « varies:
it improves CE and MD on ConvAbuse but de-
grades them on HS-Brexit. Finally, 8 reliably
improves CE (-1.0*) on both datasets, but at the
cost of worse MD (+0.7/4+0.9*). These differences
likely reflect the distinct text genres and annotation
distributions of the datasets, underscoring the need
for task-specific parameter tuning.

These results align closely with MD-Agreement
findings in the main paper.

Table 14: Correlation between parameter and evaluation
metrics (F1, CE and MD) on the ConvAbuse and HS-
Brexit datasets using WEL-Random with BERT.

Dataset ConvAbuse HS-Brexit
Param F1 CE MD F1 CE MD
«a -021 -04 -1.0%* +0.82  +1.0* +0.1
B +0.8 -1.0*  +0.7 +0.6  -1.0* +0.9%
v -0.9*  +1.0* -1.0* -1.0*  +1.0* -1.0*
A +1.0% -1.0* +0.9* | +1.0* -1.0* +1.0*
M | +1.0% -1.0%  +0.98*% | +0.99% -1.0% +0.55




