Revisiting Active Learning under (Human) Label Variation
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Abstract

Access to high-quality labeled data remains a
limiting factor in applied supervised learning.
Active learning (AL), a popular approach to
optimizing the use of limited annotation bud-
gets in training ML models, often relies on at
least one of several simplifying assumptions,
which rarely hold in practice when acknowledg-
ing human label variation (HLV). Label vari-
ation (LV), i.e., differing labels for the same
instance, is common, especially in natural lan-
guage processing. Yet annotation frameworks
often still rest on the assumption of a single
ground truth, overlooking HLYV, i.e., the occur-
rence of plausible differences in annotations, as
an informative signal. In this paper, we exam-
ine foundational assumptions about truth and la-
bel nature, highlighting the need to decompose
observed LV into signal (e.g., HLV) and noise
(e.g., annotation error). We survey how the
AL and (H)LV communities have addressed—
or neglected—these distinctions and propose a
conceptual framework for incorporating HLV
throughout the AL loop, including instance se-
lection, annotator choice, and label representa-
tion. We further discuss the integration of large
language models (LLM) as annotators. Our
work aims to lay a conceptual foundation for
(H)LV-aware active learning, better reflecting
the complexities of real-world annotation.

1 Introduction

Prediction algorithms play a central role in many
natural language processing (NLP) tasks, like hate
speech detection (Basile, 2020), sentiment analysis
(Kenyon-Dean et al., 2018), or natural language in-
ference (NLI; Pavlick and Kwiatkowski, 2019). For
training such supervised machine learning (ML)
models, a notable amount of labeled training data
is necessary. However, acquiring high-quality la-
bels is expensive as human crowd workers or, even
more expensive, domain experts need to annotate
the data. A popular scheme to efficiently guide the
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Figure 1: The traditional AL loop with possible adap-
tations in different steps, leading to generalized label
variation aware AL

annotation process and allocate annotation budgets
is active learning (AL; Abney, 2007; Settles, 2009).
AL aims to maximize the expected predictive per-
formance of the resulting model while minimizing
the required number of annotations; often done by
iterating the following three steps: (1) Training the
ML model on available labeled data. (2) Selecting
new instances for labeling from a pool of unlabeled
data, usually based on an acquisition function. (3)
Labeling these with an oracle. Those steps, which
are repeated until the available annotation budget
is depleted or the model has reached its target ac-
curacy, rest on the following assumptions:

A1 There exists a single ground truth label per
instance.

A2 The oracle provides the ground truth labels
without any noise.

A3 The annotation difficulty or cost is equal for
all instances.

Equal annotation cost is not, strictly speaking, a
critical assumption for AL, but is becoming in-
creasingly important to consider. However, in NLP,
those assumptions often are not or cannot be ful-
filled. Especially in the presence of human label
variation (HLV), i.e., differences in human anno-
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tations that are plausible variability due to subjec-
tivity or ambiguity and explicitly no sign of error
(Plank, 2022; cf. §3), even the existence of such an
omniscient oracle is questionable.

When we move away from these assumptions
and acknowledge HLYV, the AL loop is extended:
an annotator selection function is introduced to
choose among multiple annotators with varying
perspectives or expertise, rather than assuming a
single infallible oracle (cf. Figure 1).

Contributions In this work, we examine the con-
sequences for the AL cycle when its conventional
assumptions, i.e., A1 — A3, are violated due to plau-
sible variation in labels, often coined HLV. We be-
gin by discussing foundational assumptions about
truth in annotation (§2), laying out different per-
spectives on label nature and emphasizing the need
for a signal-noise decomposition of label variation
(LV) into plausible variation (e.g., HLV) and noise.
In what follows, we provide an overarching survey
of the literature of both fields, i.e., (H)LV and AL,
that reveals an emerging line of research integrat-
ing aspects of (H)LV into AL (§3), but simultane-
ously also uncovers shortcomings and misunder-
standings between the fields. We then identify and
categorize the adaptations required in the AL loop
(§4), including modifications to the annotator selec-
tion function and considerations for incorporating
LLMs. Altogether, we offer a holistic perspective
on AL in the presence of (H)LV, aiming to estab-
lish a more structured ground for discussion and
future empirical investigation by bridging ongoing
debates across NLP, empirical ML, statistics, and
philosophy.

2 Assumptions about Truth in Annotation

When observing LV in human annotations, it is
important to recognize that this variation may
arise from both error and HLV (Weber-Genzel
et al., 2024), which can be present simultaneously.
Throughout this work, we use LV to refer to the
observed differences in annotation, which can be
decomposed into signal, such as HLV, and noise,
such as actual annotation error. Reflecting on the
underlying assumptions about the true labels is cru-
cial, as it helps to distinguish between these sources
of LV, or, in other words, aids the “interpretation
of any observed annotator disagreement” (Rottger
et al., 2022, p. 3).
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Task Dependence and Subjectivity The extent
to which observed LV is attributed to HLV is of-
ten judged based on the (assumed) subjectivity of
the task (Basile et al., 2021). In domains such as
specific image classification tasks in computer vi-
sion (e.g., distinguishing between images of cats
or dogs), lower levels of HLV may be expected,
as the real-world categories constituting the data-
generating process (e.g., actual cats or dogs) are
typically less subjective. In such cases, higher
shares of the observed label variation may be at-
tributable to various types of errors, such as issues
arising from imprecise measurement, the compres-
sion of real-world information into data, or noise,
e.g., introduced during data collection like blurri-
ness in images (Gruber et al., 2025), rather than to
HLV.

The notion of inferring task subjectivity from
observed LV introduces a certain circularity: LV is
intuitively taken as evidence of subjectivity, while
assumptions about subjectivity, in turn, inform how
much of the variation is attributed to HLV. A more
thorough discussion and a systematic approach to
operationalizing subjectivity appear essential for
future work when aiming to disentangle signal and
noise in observed LV.

Worldviews and Nature of Truth Many NLP
tasks, as well as certain computer vision tasks
(e.g., image segmentation in medicine; Zhang et al.,
2020), are assumed to involve a higher degree of
subjectivity. Particularly when addressing such
tasks, different underlying philosophical assump-
tions on the nature of truth and the closely related
nature of reality can lead to varying methodologi-
cal implications. For example, adopting a monistic
worldview—drawing on the discussion of monism
by Russell (1907)—may involve the assumption of
a single underlying reality, with different annota-
tions merely being different perspectives on it. In
this context, no observed annotation could be fully
true or false, and taking individual annotations into
account as a distribution on the instance level may
be a reasonable approach.

Label Non-Determinism and Levels Whether
label variation is viewed from the annotator’s per-
spective (annotator level) or the instance’s perspec-
tive (instance level) can help clarify certain com-
plexities. For example, on the annotator level, label
non-determinism, defined as a probabilistic map-
ping between a real-world instance and a set of
labels, can vary in degree between both subjec-



tive and less subjective cases, and may even in-
clude label-deterministic subjective settings. In
contrast, on the instance level, greater subjectivity
inherently results in more label non-determinism.
Ambiguity, here clearly distinguished from subjec-
tivity, is linked to higher label non-determinism at
both levels. While factors like these—label non-
determinism, subjectivity, ambiguity, and annota-
tor level vs. instance level-—can, in principle, be
treated separately, we assume substantial dependen-
cies between them. For instance, even at the anno-
tator level, tasks that are assumed to be more sub-
jective may be likely prone to exhibiting a greater
degree of label non-determinism.

Types of Label Nature Approaching the discus-
sion from a more applied perspective, we provide
an overview of possible types of labels: (a) dis-
crete class label (also known as “hard label”), (b)
label as probability for discrete classes (sometimes
referred to as “soft label”, Uma et al., 2021, or
“human judgment distribution’), and (c) label as
continuous distribution for underlying fixed num-
ber of classes (cf. Figure 2). Note, that while the
illustration depicts only scenarios with k& € {2, 3}
classes for simplicity, this schema is generally also
applicable to settings with k£ > 3 classes. When
viewing the annotation process from a statistical
perspective, i.e. making assumptions about the data
generating process, each label y; can be regarded
as a realization of a random variable Y. For dis-
crete labels (a), an example in the binary setting
isy; = 1, with Y ~ Bin(1, p); in the ternary case,
i.e., three classes, an example is y; = [1, 0, 0], with
Y ~ Multinom(1,p), p = (pa,pn,pc). Mov-
ing to probability labels (b), the label itself rep-
resents a probabilistic belief over class member-
ship. For instance, y; = (.75 may arise from
Y ~ Beta(a, ), and y; = [0.6,0.2,0.2] may be a
realization from Y ~ Dir(a), @ = (a4, ap, ac).
Finally, in the case of distribution labels (c), y;
takes the form of a full probability distribution—
for example, y; = Beta(8, 3.5) in the binary case or
y; = Dir(8, 3, 4) in the ternary case. Here, the la-
bel y; is itself a distribution over class probabilities.
The distribution of Y is modeled hierarchically by
placing priors on the parameters of this distribu-
tion, e.g., on o, (3 in the Beta case or on « in the
Dirichlet case (Hechinger et al., 2024a).

We here challenge the common assumption of
the first type (discrete class labels, sometimes also
referred to as “single ground truths”) by propos-

77

ing the consideration of the latter two types, both
as assumed true labels and requested annotations.
The third label type appears to be the least stud-
ied of the ones listed; however, some work in un-
certainty quantification has begun to explore dif-
ferent label representations (Bengs et al., 2022;
Hechinger et al., 2024a; Sale et al., 2024; Wimmer
et al., 2023).

In practice, a discrepancy can occur between the
type of label assigned by the annotator and the as-
sumed nature of the true label. This mismatch is
especially likely when true labels are assumed to
be continuous distributions over classes (cf. case
(c) in Figure 2), as human annotators are not inher-
ently equipped to give non-discrete annotations (cf.
§4.4 for further discussion of the “oracle” in the AL
cycle). This discrepancy introduces an irreducible
uncertainty and may result in the interpretation that
the observed label variation does not necessarily
equate to HLV. This again emphasizes the impor-
tance of distinguishing between assumptions about
the true labels and assumptions that may be re-
quired for practical reasons during annotation and
the AL loop.

3 Views on Label Variation and Active
Learning

In what follows, we outline key stages in how dif-
ferent fields have approached label variation, a phe-
nomenon discussed under various terminologies
and theoretical perspectives, and illustrate them
with literature examples. Starting from work doc-
umenting its occurrence across diverse tasks, we
move from approaches that neglect or seek to miti-
gate LV, to studies that measure variation mainly to
steer away from high LV instances. Subsequently,
we summarize recent perspectives that embrace
(H)LV as a valuable signal, integrating it into learn-
ing objectives through distributional labels and mo-
tivating its decomposition. We then examine how
the field of AL has responded to, incorporated, or
overlooked these diverse understandings of LV in
its methodological developments.

3.1 Label Variation

Supervised ML depends fundamentally on anno-
tated data, making the quality and nature of labels
a central part of the learning process. The phe-
nomenon of LV, i.e., the occurrence of differing an-
notations for the same instance, both between and
within annotators, is not limited to subjective tasks



(a)

(b)

—

(c)

Figure 2: Types of labels visualized. Each label y; is a realization of a random variable Y.

Top row: binary classes; bottom row: three classes.

(a) Discrete label: y; = 1 with Y ~ Bin(1, p) (top) and y;

(b) probability label: y; = 0.75 with Y ~ Beta(c, 8) (top) and y;

[1,0,0] with Y ~ Multinom(1, p) (bottom),
[0.6,0.2,0.2] with Y ~ Dir(a) (bottom),

(c) distributional label: y; = Beta(8,3.5) (top) and y; = Dir(8, 3,4) (bottom) with a hierarchical model for the
distribution of Y with priors on the parameters of the respective distributions. In the bottom row, ternary plots
visualize the relative proportions of three classes as positions within a triangle. Each cross represents a single label,
with its location indicating the class composition: the closer a point is to a corner, the higher the class proportion.

but has been found across a wide range of applica-
tions. In NLP, this includes tasks such as sentiment
analysis (Kenyon-Dean et al., 2018), hate speech
detection (Basile, 2020), veridicality judgments
(De Marneffe et al., 2012), argumentation mining
(Trautmann et al., 2020), natural language infer-
ence (Pavlick and Kwiatkowski, 2019), and even
tasks traditionally considered “objective” like part-
of-speech tagging (Plank et al., 2014b), word sense
disambiguation (Passonneau et al., 2012), semantic
role labeling (Dumitrache et al., 2019), and named
entity recognition (Inel and Aroyo, 2017). Simi-
lar variation has also been observed in computer
vision tasks like medical image classification and
object identification (Uma et al., 2021), or remote
sensing (Hechinger et al., 2024b), where annotator
disagreement arises from ambiguity and subjectiv-
ity in visual interpretation. While most existing
works listed treat this as either signal or noise, we
refrain from exclusively assigning observed label
variation to either category in the first place.

Mitigating Label Variation The assumption of
a single ground truth label has long dominated ML
practice, as reflected in foundational ML litera-
ture (Goodfellow et al., 2016; Hastie et al., 2009;
Mitchell, 1997). Within this framework, LV is
typically regarded as erroneous and to be mini-
mized or corrected (Alm, 2011; Aroyo and Welty,
2015) with Cabitza et al. (2023), for example, doc-
umenting widespread practices of “disagreement
removal”.
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Treating ‘“Hard” Cases Moving beyond the tra-
ditional view of LV, early work has begun to ex-
plore LV as a potential source of information. Ex-
emplary, Reidsma and Op Den Akker (2008) advo-
cate for analyzing patterns of disagreement, provid-
ing an overview of the various factors that may un-
derlie annotator disagreement. However, this line
of work uses information from LV to steer ML mod-
els away from “hard” cases (i.e., items with high
LV), by, e.g., enabling classifiers to abstain from
making predictions. Plank et al. (2014a) propose
incorporating inter-annotator agreement measures
into a cost-sensitive loss function, thereby explic-
itly integrating LV into the learning process as a
signal of uncertainty. The next paragraph discusses
approaches seeking to embrace LV more directly
by explicitly modeling it, for instance, through ad-
justments to the nature and interpretation of the
labels.

Human Label Variation There are two main
bodies of literature relevant to this work addressing
differences in human annotations: one that pre-
dominantly uses the term variation and another
that refers to disagreement. We adopt the terminol-
ogy of Plank (2022), who introduced the notion of
HLV to conceptualize such differences as plausible
and meaningful variations rather than as annotation
errors. This perspective has been particularly moti-
vated by developments in NLP, where subjectivity,
leading to HLYV, is recognized as an inherent prop-
erty of many language-related tasks (Alm, 2011).



This framework further aligns with the concept of
perspectivism introduced by Cabitza et al. (2023),
which emphasizes that, rather than seeking a sin-
gle ground truth, collecting multiple labels offers a
way to sample the range of perceptions, opinions,
and judgments present in a population.

The related body of literature that adopts the
term disagreement rather than variation is more het-
erogeneous in its interpretation and evaluation of
annotation differences. While some contributions
view such disagreement as plausible or informa-
tive (Uma et al., 2021), others primarily treat it
as a source of noise or error (Beigman Klebanov
and Beigman, 2009). Throughout this section, we
review work from both terminological traditions.

Distributional Labels Several contributions
have moved beyond discrete labels by aggregat-
ing multiple annotations into distributional labels
(cf. Figure 2 for the different types of label na-
ture), aligning with a (strong) perspectivist stance.
De Marneffe et al. (2012) frame veridicality assess-
ment as a “distribution-prediction task”, using judg-
ments from 10 annotators per instance. Similarly,
Aroyo and Welty (2015) view disagreement as a
signal and introduce the “Crowd Truth” framework,
which incorporates distributional labels through an-
notation aggregation and addresses factors like the
design of annotation guidelines and differing anno-
tator expertise. In computer vision, Peterson et al.
(2019) show that training convolutional neural net-
works on soft labels derived from multiple annota-
tors improves generalization under distributional
shift. For NLI, Pavlick and Kwiatkowski (2019)
use slider-based annotations to capture uncertainty
and argue for models that predict distributions over
judgments. More recently, Chen et al. (2022) and
Gruber et al. (2024) investigated whether to priori-
tize more annotators per instance or more annotated
instances when working on the distributional level
via label aggregation.

However, these contributions primarily address
HLYV by aggregating multiple annotations per in-
stance, thereby treating distributional labels as post-
hoc constructions rather than as distributional by
nature—as in case (c) above—i.e., labels deliber-
ately designed from the outset to capture uncer-
tainty directly as a characteristic of the label.

Decomposing Label Variation Furthermore, the
above contributions tend to conflate LV with HLV,
overlooking the simultaneous presence of both
noise and signal within LV. Incorporating this con-
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ceptual distinction, Palomaki et al. (2018) highlight
the need to distinguish between actual annotation
errors and “disagreement that falls within the ac-
ceptable range”, introducing the concept of accept-
able variation, which may differ across subsets
of instances and has direct implications for task
design. Weber-Genzel et al. (2024) extend this
conceptual distinction to NLI. They address the
challenge of identifying annotation error by incor-
porating validated annotator labels with explana-
tions through a second round of validity judgments,
rather than relying on post-hoc interpretation alone.
This builds on earlier work by Jiang et al. (2023),
who identify the phenomenon of within-label vari-
ation, where, even when the same label is assigned,
annotators may vary in their explanations.

Data annotation remains a labor-intensive and
complex process, particularly when aiming to ana-
lyze or leverage a signal-noise decomposition of
LV. The following section, therefore, turns to the
field of active learning, which focuses on strategies
for optimizing annotation budgets and minimizing
annotation effort.

3.2 Active Learning

Active Learning has been a vivid field of research
for over 30 years (Aggarwal et al., 2014; Lewis and
Catlett, 1994; Settles, 2009; Seung et al., 1992).
Settles (2011) already discussed practical issues
arising in active learning, including querying in
batches, noisy oracles, and variable labeling costs.
Zhang et al. (2022) provide a survey on AL for
NLP, while Rauch et al. (2023) propose a tailored
NLP benchmark for AL.

Annotation Costs and Quality The true costs
of annotation are explored in Krishnamurthy et al.
(2019); Margineantu (2005); Settles et al. (2008);
Tomanek and Hahn (2010); Xie et al. (2018), chal-
lenging assumption A3 (“The annotation difficulty
or cost is equal for all instances.”) by model-
ing variation in annotation effort. Gao and Saar-
Tsechansky (2020); Donmez et al. (2009) extend
this by accounting for annotators with varying ac-
curacies, while Donmez and Carbonell (2008) ac-
knowledge that even oracles might be incorrect de-
pending on task difficulty, both relaxing A2 (“The
oracle provides the ground truth labels without any
noise.”). Yan et al. (2011, 2012) suggest jointly se-
lecting an instance and an annotator. Furthermore,
Zhang and Chaudhuri (2015) and Chakraborty
(2020) incorporate both low-cost and expert annota-



tors by assuming a trade-off between cost and label
quality. However, these approaches still assume a
single ground truth label per instance (reliance on
A1; “There exists a single ground truth label per
instance.”) and treat label variation as noise.

In contrast, we highlight the underexplored set-
ting where (H)LV is inherent and may carry an
informative signal, arguing that its integration into
the AL framework requires rethinking core compo-
nents such as acquisition and annotation strategies.

Relabeling Relabeling, i.e., collecting additional
annotations for previously labeled instances to re-
duce noise or correct errors, is explored in Chen
et al. (2022); Goh and Mueller (2023); Lin et al.
(2016); Yuan et al. (2024). These approaches im-
plicitly challenge assumptions A2 and A3 by ac-
knowledging annotation errors and varying diffi-
culty. However, they treat disagreement as an error
rather than a potentially meaningful signal.

HLV-aware AL A few recent studies have begun
to explore how AL can be adapted to account for
HLV. Wang and Plank (2023) and van der Meer
et al. (2024) suggest strategies to choose which
human annotator should label an instance. Further-
more, Baumler et al. (2023) suggest aligning model
uncertainty with annotator uncertainty. While these
works offer valuable insights, they address specific
assumptions or propose targeted adaptations to the
AL process. In §4, we build on these efforts by
systematically analyzing their contributions and or-
ganizing them into a broader framework. There,
we formalize and categorize key adaptations re-
quired for making AL effective in the presence of
HLYV, and point to open challenges and directions
for future research.

4 The Active Learning Loop Revisited

In the following, we discuss the consequences of
the assumptions about truth in annotation and the
nature of the labels (§2) on each of the steps of the
AL loop (as visualized in Figure 1).

4.1 Training Measure

Traditional AL assumes a single ground truth
label provided by an oracle. This aligns naturally
with classic supervised ML, where models are
optimized based on hard-label measures like
Bernoulli loss or cross-entropy. However, in
cases where label variation is not due to error but
comes from plausible causes, different soft-label
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measures are necessary. In such cases, alternative
loss measures based on label distributions, such
as Kullback-Leibler (KL) divergence (Koller
et al., 2024), Jensen-Shannon divergence, or
label embeddings (Schweden et al., 2025) have
been proposed. Baumler et al. (2023) offer
solutions by comparing the predicted and observed
label distribution, thus directly optimizing for a
trustworthy representation of LV.

(C1) Consequence: In the presence of HLV,
distributional measures must be used for opti-
mizing and evaluating the classifier.

4.2 Acquisition Function

The acquisition function ranks all unlabeled
instances by their usefulness if they were to be
labeled. The oracle then provides labels to the
most instructive cases. Traditional AL (Zhang
et al., 2022) uses querying strategies based on
either informativeness or representativeness, or
hybrid approaches (Ash et al., 2020). Informative
querying often uses uncertainty sampling (Lewis
and Gale, 1994), where the samples with the
highest predicted label entropy get labeled
first, thus the ones with the highest uncertainty.
However, with HLV, high entropy can also be
integral to the task, and thus not necessarily a sign
of uncertainty. This shows that classic entropy
sampling is not suitable for AL in the presence of
HLV. Representativeness sampling favors samples
that represent the unlabeled pool well. However,
classical representativeness sampling ignores the
option of labeling some instances multiple times to
represent HLV properly and is thus also unsuitable
for HLV. Further, defining representativeness in
distributions is not trivial. One option to take HLV
into account is to precede the AL loop by training
a prediction model for annotator disagreement
(entropy) and then changing the acquisition
function to query samples where the predicted
annotator entropy and model entropy diverge the
most (Baumler et al., 2023).

(C2) Consequence: In the presence of HLV,
classical informativeness or representative-
ness sampling are unsuitable, as they ignore
the option of labeling instances multiple times
and fail to process distributional labels.




4.3 Annotator Selection Function

The assumption of having an oracle providing
the single ground truth label is not suitable in
subjective tasks, where the distribution of human
opinions is of interest, or other tasks with high
(assumed) HLV. Therefore, an additional step in
the AL cycle needs to be considered: the selection
of annotators. In many crowd worker settings, it
is possible to inquire about labels from a specific
annotator. Extending this thought, different “types’
of annotators could be queried, e.g., not only
human workers but also large language models
(LLM). This is also known as “pre-annotation’
(Zhang et al., 2022) in the pre-LLM era, and
analogously as “LLM-as-annotator” (or “LLM-
as-a-judge”; Wu et al., 2024; Zheng et al., 2023)
today, where the idea is that a model’s predictions
are given to human annotators to confirm or adjust.
Consequently, an overarching annotator selection
strategy needs to evaluate whether a language
model or a human shall provide the label, and
whether a specific annotator (e.g., representing
a minority) or a specific LLM could provide
the label. Recent work has extended the AL
framework to include not only sample selection
but also annotator selection. Wang and Plank
(2023) introduce a multi-head model that jointly
selects the most informative instance and the
most suitable annotator. In contrast, van der Meer
et al. (2024) focus on ensuring representativeness
and diversity in annotator selection, proposing a
strategy that balances labeler perspectives to reflect
the underlying population of interpretations better.
The idea of using LL.Ms as annotators is pursued
in Bansal and Sharma (2023); Xia et al. (2025);
Zhang et al. (2023) .

’

B

(C3) Consequence: In the presence of HLV
it matters who provides the label(s). An an-
notator acquisition function must decide not
only whether to query a human or a language
model, but also whether to obtain one or mul-
tiple annotations and from which specific an-
notator or model.

4.4 Quality of Label and Uncertainty

The quality of annotators is an important area
of research in NLP, which becomes increasingly
meaningful when diversity in annotations is present
(or required; Sorensen et al., 2024) and label noise
cannot be easily separated from the plausible share
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of label variation. Currently, most work either
assumes variation is noise (Goh and Mueller, 2023;
Yan et al., 2016; Zhang et al., 2015; Zhao et al.,
2011) or all variation in labels represents true HLV
(van der Meer et al., 2024; Wang and Plank, 2023).
Particularly, when the ground truth label is a
distribution and multiple annotators provide labels,
detecting annotation noise in HLV is a complex
endeavor (Weber-Genzel et al., 2024). Now, when
not only different humans annotate the data, but
samples can also be processed by LLMs, assessing
the label quality is non-trivial either (Ni et al.,
2025). Also, in the process of labeling, human
annotators usually provide a single label, while an
LLM could directly provide distributions (Chen
et al., 2024; Pavlovic and Poesio, 2024). This
makes LLLMs as annotators especially attractive in
the presence of HLV and for providing labels for
case (c) depicted in Figure 2.

(C4) Consequence: In the presence of HLV,
it is non-trivial to distinguish true label vari-
ation from noise, especially when labels can
be sourced from both humans and language
models, each with differing capabilities and
output formats.

5 Conclusion

In this work, we provide an overview of the cru-
cial connection between the fields of (human) label
variation and active learning. Our comprehensive
overview of the existing literature in the individ-
ual fields helps building bridges between different,
but connected, streamlines of research, paving the
way for the identification of critical aspects to con-
sider in the AL loop in the presence of HLV. Our
critical assessment of these aspects aims to further
point out potential avenues for future research to
deal with them in a more nuanced and reflective
manner. In doing so, we uncover several crucial
assumptions about labels which are often implicitly
made in traditional AL. However, we argue that
they need to be made explicit. While providing a
unified and implemented solution to the discussed
problems is beyond the scope of the paper, we still
hope to contribute to ongoing research debates on
(H)LV by providing a fresh perspective from a dif-
ferent angle on existing problems and encourage
new work addressing label-variation-aware active
learning.



Limitations

While this work provides a structured discussion on
active learning in the presence of human label varia-
tion, several limitations remain. The philosophical
discussion on annotation truth is a conceptual sug-
gestion rather than a prescriptive framework. For
example, we do not address annotation tasks where
it is assumed that no ground truth exists, or discuss
other frameworks like imprecise probabilities for
representing human label variation. Moreover, not
all discussed adaptations are implemented in AL
pipelines yet, requiring empirical validation. Ad-
ditionally, we do not explore alternative methods
for gathering human annotations that may better
accommodate HLV in detail. Lastly, the reliability
of “LLM-as-annotator” remains an open question.
While LLMs can reduce costs and provide label dis-
tributions, their biases and lack of accountability
pose challenges.
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