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Abstract

The VariErrNLI task requires detecting the de-
gree to which each Natural Language Infer-
ence (NLI) label is acceptable to a group of
annotators. This paper presents an approach
to VariErrNLI which incorporates measures of
uncertainty, namely Semantic Entropy (SE), to
model human label variation. Our method is
based on the assumption that if two labels are
plausible alternatives, then their explanations
must be non-contradictory. We measure SE
over Large Language Model (LLM)-generated
explanations for a given NLI label, which rep-
resents the model uncertainty over the semantic
space of possible explanations for that label.
The system employs SE scores combined with
an encoding of the inputs and generated expla-
nations, and reaches a 0.31 Manhattan distance
score on the test set, ranking joint first in the
soft evaluation of VariErrNLIL!

1 Introduction

Annotator disagreement has recently received more
attention in NLP research (Fornaciari et al., 2021;
Leonardelli et al., 2021; Sandri et al., 2023). Hu-
man label variation has consequences for the data,
modeling, and evaluation in ML tasks (Plank,
2022). The question of data quality is related to dis-
tinguishing legitimate human label variation, which
stems from different interpretations or opinions,
from errors. In the context where a single label is
correct, the problem of determining annotation re-
liability has been addressed by Hovy et al. (2013),
who propose to evaluate the trustworthiness of each
annotator in predicting the correct label. Allowing
human label variation adds a layer of difficulty to
determining whether annotations are valid, since
every combination of labels may be correct. Some
work has used the difference between annotator en-
tropy and model entropy to predict which instances
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may require more annotations in an active learning
setup (Baumler et al., 2023).

In this work we propose to solve the VariErrNLI
task with Uncertainty Quantification (UQ), specifi-
cally Semantic Entropy (SE) (Farquhar et al., 2024).
This approach expands on the work by Baumler
et al. (2023) by including the semantics of the input
as well as sampled Large Language Model (LLM)-
generated explanations, and applies it to predicting
the soft labels themselves rather than quantifying
additional annotation needs. SE has mostly been
employed to detect hallucinations (Farquhar et al.,
2024), where a prediction with a high SE is inter-
preted as likely to have been hallucinated, given
that the model is uncertain over the semantic space
of the output. This is in line with prior work on UQ,
which focuses on model calibration (Gupta et al.,
2006) and detecting noisy training data (Northcutt
etal., 2021). Stalifinaité et al. (2025) propose to use
uncertainty metrics such as similarity-sensitive en-
tropy (Cheng and Vlachos, 2024) for detecting bias
in machine translation, by leveraging the fact that
uncertainty can also arise from ambiguity (Baan
et al., 2024). Models should be uncertain not only
when they are not apt, but also when the input is
ambiguous, where uncertainty is caused by more
than one output being acceptable.

2 Task Summary

Weber-Genzel et al. (2024) introduced the Natu-
ral Language Inference (NLI)-inspired task Vari-
ErrNLI, which contains both 1) valid annotator
disagreement and 2) annotation errors. The dataset
builds on the ChaosNLI (Nie et al., 2020) dataset,
which is composed of NLI items with soft la-
bels. A subset of ChaosNLI instances is annotated
from scratch in two rounds by Weber-Genzel et al.
(2024), with four annotators providing initial NLI
labels, and then returning to evaluate their own as
well as their peers’ judgments in a second round.
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Annotations that are self-corrected are interpreted
as errors and are not included in the gold label sets.

VariErrNLI is one of the tasks in the LeWiDi
shared task (Leonardelli et al., 2025). In this paper
we discuss a system that solves VariErrNLI with
soft label prediction. That is, for an instance of
VariErrNLI, we predict the acceptance rate of each
label after the second round of annotation. This
creates a multilabel binary classification setup with
soft targets, where the score for each label reflects
the proportion of annotators who accepted it. The
example below illustrates an instance where after
the second round of annotations, half the annota-
tors believe that the entailment label is appropriate,
three quarters of the annotators accept Neutral as
a valid label, and none support the Contradiction
label:

Context: “The next year, he built himself a palace,
Tolani, which can still be toured in Honolulu."
Statement: “Lolani was built in only 1 year."
Labels: Entailment: 0.5, Neutral: 0.75, Contradic-
tion: 0.0

In the shared task, systems are evaluated with
soft labels, measuring how well the predicted label
distribution matches the acceptability ratings of the
different possible interpretations for each instance,
as introduced by Uma et al. (2022). Specifically,
Manhattan distance is used to measure the differ-
ence between the predicted and target distributions,
which has been shown to be particularly reliable
for binary classification (Rizzi et al., 2024).

3 System Overview
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Figure 1: System pipeline: 1. An Explanation Genera-
tion (llama3-8B) model generates explanations for each
combination of <Context>, <Statement>, and one of
Entailment, Neutral, Contradiction labels; 2. Semantic
Entropy is calculated for each set of explanations for
a given instance using an Entailment model (finetuned
bart-large-nli); 3. A Text Encoder (bart-large-nli) is used
to embed the combination of <Context>, <Statement>
and explanations for each label; 4. Soft scores are pre-
dicted from the SE and Text Encoder outputs.

The goal of our system is to be able to quantify
the ambiguity in the NLI instances. We postulate
that if an instance is ambiguous, the explanations
for different labels are likely to not entail one an-
other. For instance, in the example from Section 2,
an explanation for the Entailment label could read
“The context states that he built himself a palace
next year, which means that he finished it within
the year", whereas the Neutral label could be ex-
plained with “He may have started to build the
palace the next year, but we do not know when he
finished it". These explanations do not entail each
other, which is indicative of ambiguity in the in-
stance. In contrast, explanations for an instance
which has only one valid interpretation should only
have explanations which entail one another.

Thus, we build a pipeline that uses SE over the
explanations for different labels, with the goal of
representing the ambiguity of an instance. Pre-
dictive Entropy (PE) for an input x is calculated
by taking the Shannon entropy of the model’s pre-
dicted probability distribution over labels. SE is an
extension of PE, which is calculated by sampling
multiple model outputs, clustering them into sets of
sequences of tokens that express the same meaning,
and measuring the entropy between the clusters
c (Farquhar et al., 2024):

SE(z) =—> P(c|z)logP(c|z) (1)

Clustering is performed in such a way that any
two samples are attributed to the same cluster if and
only if they entail one another. The SE of model
predictions is higher for instances where more than
one interpretation is valid, as more contradictory
generated explanations are likely to appear.

We combine the outputs of SE with an embed-
ding of the input and generated explanations for
each label. Figure 1 illustrates the full pipeline.

4 Experimental Setup
4.1 Models

This section describes the models used in each com-
ponent of the pipeline.

Explanation Generation. First, to generate the
explanations for each NLI label, we use llama3-
8B (Al@Meta, 2024), chosen for its balance of
efficiency and reasoning capabilities. The instruc-
tions for the model are as follows: “You are an NLI
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assistant. Given a statement, context, and a judg-
ment label (Entailment, Neutral, or Contradiction),
explain why the label is appropriate.\n\n <Exam-
ples>\n\n Now consider the following example:\n
Statement: <Statement>\n Context: <Context>\n
Judgment: Contradiction\n Explanation:". <Ex-
amples> contains a 6-shot list of instances with
explanations, two for each label.?

Text Encoder. Second, for embedding the inputs
along with the generated explanations, we use bart-
large-nli (Lewis et al., 2019). bart-large-nli is fine-
tuned on the NLI task, which is highly relevant
to the task we are solving, namely predicting soft
scores for each NLI label.

Entailment. Third, the calculation of Semantic
Entropy over the LLM-generated explanations re-
quires an entailment model for the clustering step.
We use bart-large-nli for this step as well. However,
we further finetune bart-large-nli on the gold ex-
planations in the VariErrNLI dataset. The data pre-
processing for this step is described in Section 4.2.
The LLM-generated explanations in our system
pipeline are clustered by the finetuned bart-large-
nli model to calculate SE.

Semantic Entropy. We follow the implementa-
tion of Semantic Entropy by Farquhar et al. (2024).
We sample 128 generated explanations for all three
NLI labels, cluster them together if and only if
they entail each other, and calculate SE over the
clusters obtained. We calculate seven SE scores,
corresponding to each member of the powerset of
NLI labels: ((Entailment), (Neutral), (Contradic-
tion), (Entailment, Neutral), (Entailment, Contra-
diction), (Neutral, Contradiction), and (Entailment,
Neutral, Contradiction)). This formulation allows
us to isolate the contribution of each label to the
total semantic uncertainty by comparing entropy
values across subsets.

4.2 Data

For training the Text Encoder we use the full
ChaosNLI dataset (Nie et al., 2020) and generate
explanations for each label with an LLM.

For training the Entailment model for clustering
explanations in SE calculation, we use the gold
explanations from VariErrNLI dataset. Each data
point is a set of two explanations from a single
instance. We assume that two explanations have
the Entailment relation if they explain the same

*Please see Appendix A for the full list of examples.

label, and that two explanations have a Neutral re-
lationship if they explain different labels but the
annotators accept each others’ judgments, and fi-
nally that two explanations are Contradictory if the
annotators reject each others’ judgments.

4.3 Configurations

Table 1 presents the different configuration values
that we experiment with. We model the task as
either a classification or regression task. In the
regression setup we directly predict the probability
of a given label being accepted, whereas in the
classification task we either predict one of seven
real values for each label: (0.0, 0.25, 0.33, 0.5, 0.66,
0.75, 1.0) or predict one of 20 combinations of real
values which sum to one: ((0.0, 0.0, 1.0), (0.0, 0.25,
0.75), (0.0, 1.0, 0.0), (0.25, 0.0, 0.75), etc).> The
classes cover the observed soft label distributions.

For the real-valued prediction setup we use either
KL divergence or MSE loss, while for classification
we use Cross Entropy loss, and we also experiment
with a cross label loss function that incorporates
dependencies between labels in multi-label classifi-
cation (Ferreira and Vlachos, 2019).

Hyperparameter Values

classification, multilabel
classification, regression
0.1,0.3,0.5

Cross Entropy, Cross
Label, KL Divergence,

Learning Objective

Dropout
Loss Function

MSE
Learning Rate le-1to le-5
Weight Decay le-2 to le-6
Unfrozen Layers 0,1,2,3
Scheduler step LR, cosine, linear, re-

duce on plateau

SE embedding size 8, 16

fusion layer size 128, 256

feature combination method concatenation, fusion, fu-
sion MLP

Entropy Penalty (3) 0, 0.05, 0.1

Temperature Annealing 1.0,1.5,2.0

Regularise Against Mean (A) 0, 0.05, 0.1

Sum < 1 Penalty (v) 0, 0.05, 0.1

Table 1: Search space for hyperparameter values, regu-
larisation terms, and other model specifications.

We explore several regularisation methods in
order to ensure that the predicted scores do not
diverge from the targets. To begin with, in ini-
tial runs we observed rather similar predictions
for instances where they should differ, and thus

3Please see Appendix B for the full list of the most com-
mon combinations of the binary soft labels.
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experiment with (1) entropy penalty, which encour-
ages the model to generate more diverse outputs
by penalising low entropy (Grandvalet and Bengio,
2004) and (2) temperature annealing (Kirkpatrick
et al., 1983; Hinton et al., 2015). Similarly, with
many scores appearing close to the mean distribu-
tion of the target values, we add a (3) regularisation
against the mean (Szegedy et al., 2016; Pereyra
et al., 2017). Finally, in order to ensure that the
sum of the predicted scores is no lower than one,
we add a (4) penalty to the loss whenever the sum
of the three scores is below one. All the penalties
are applied to the loss, except for the temperature
annealing, which is directly applied to the logits.

N C
»Centropy =p3- Z Dbij log Dij 2
i=1 j—1
exp(zi/T)
P = = 3)
P T el T)
1 N
L‘mean =A NZHPZ—DHQ (4)
=1
N C
Lam = v Zmax(oa 1- Zpij) (%)
i=1 Jj=1

We use three different methods to combine the
text embeddings with SE information. The first one
is straightforward concatenation. The second one
is a fusion model, where both representations are
projected onto the same shape and summed with
weights that are learned during training. The third
one is a fusion Multilayer Perceptron (MLP), where
the representations are first concatenated, followed
by an MLP layer that learns non-linear interactions
between the text and entropy modalities.

5 Results

Our best score on the test set is 0.31 Manhattan dis-
tance (lower is better), which is ranked number one
in the LeWiDi VariErrNLI task (soft evaluation). It
is substantially better than the most frequent base-
line score of 0.59, and is only surpassed by a sys-
tem that reaches 0.23, however the difference is
not statistically significant. The configuration that
led to the best score of our system is described in
Appendix C.

We assess the contribution of each component
of our pipeline by running an ablation study and
excluding one of: the Semantic Entropy features

Best Score by Model

No SE* 0.54
No clustering (PE)* 0.51
No explanations* | | 0.46

o ity | o
of Entailment modelt
Combined (concat) |
Combined (fusion ) | ==
Combined fusion) |
No Text Encoder | ©>*

0.0 0.1 0.2 0.3 0.4 0.5
Manhattan Distance

Figure 2: Ablation study results on the development
set. Statistical significance between each model and the
next best score is marked with * (p < 0.05 for all three
labels), and T (p < 0.05 for at least one of the labels).

altogether, the clustering step for SE, the finetun-
ing of the Entailment model, the complete Text
Encoder output or the generated explanations. The
results on the development set provide us with ad-
ditional insights into the workings of the system
(see Figure 2). We find that the SE component con-
tributes the most to the performance of the model,
as the performance drops from 0.37 to 0.54 in Man-
hattan distance without it. Furthermore, we find
that the generated explanations as well as finetun-
ing of the Entailment model are also instrumental
in our pipeline. In addition, we find that the meth-
ods for incorporating different types of input do
not significantly impact the outcomes. We further
discover that the best result on the development set
is achieved by completely excluding Text Encod-
ing features. However, this SE-only model does
not yield the best score on the test set, which we
interpret as an indication that the model overfits.

6 Conclusion

This work presents an approach to soft label NLI,
which proves to yield competitive results. The ab-
lation study shows that SE is the most important
module of the system, highlighting its versatility
beyond hallucination detection and signal for fur-
ther annotation needs. In future work this approach
could be more specifically applied to detecting an-
notation errors by learning the different Semantic
Entropy patterns associated with annotations that
are incompatible with valid interpretations. The
proposed method can further be applied to other
tasks that include generation and ambiguity.
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Limitations

The main limitation of this study is the require-
ment of an LLM for the explanation generation
step. First, generating multiple explanations and
calculating SE involves sampling and clustering
steps that are computationally expensive, which
may limit scalability or real-time applicability in
practical settings. Second, our method relies on the
quality of the explanations generated by the LLMs
or alternatively on human generated explanations,
which is labour-intensive.
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A Examples for 6-shot Setup

The following is a list of six examples, two for each
label, and their corresponding explanations:

"Statement: Everything can be found inside a
shopping mall." "Context: Enter the realm of shop-
ping malls, where everything you’'re looking for
is available without moving your car.”" "Judgment:
Entailment" "Explanation: The context implies that
the shopping mall has everything one might look
for, as it can be found without moving your car.”

"Statement: The matter of whether or not the
Mass is a sacrifice for the remission of sins is con-
troversial." "Context: As for the divisive issue of
whether the Mass is a sacrifice for the remission
of sins, the statement affirms that Christ’s death
upon the cross ..." "Judgment: Entailment"” "Expla-
nation: The context states that the Mass being a
sacrifice for the remission of sins is divisive, which
can be interpreted as a synonym for controversial.”

"Statement: Most rock concerts take place in the
Sultan’s Pool amphitheatre.” "Context: In the sum-
mer, the Sultan’s Pool, a vast outdoor amphitheatre,
stages rock concerts or other big-name events."
"Judgment: Neutral" "Explanation: The context
does not specify whether it is most or only some
rock concerts that are staged in the Sultan’s Pool."

"Statement: This information was developed
thanks to extra federal funding." "Context: Addi-
tional information is provided to help managers
incorporate the standards into their daily opera-
tions." "Judgment: Neutral" "Explanation: The
context does not indicate where the information
came from, which may or may not be federal fund-
ing."”

"Statement: He had recently seen pictures de-
picting those things." "Context: He hadn’t seen
even pictures of such things since the few silent
movies run in some of the little art theaters." "Judg-
ment: Contradiction" "Explanation: If the pronoun
"he’ and the object 'those things’ refer to the same
things in the statement and the context, then the
statement negates the context. "

"Statement: Octavius Decatur Gass refers to
four people. " "Context: One opportunist who
stayed was Octavius Decatur Gass. " "Judgment:
Contradiction” "Explanation: The context names
one person as Octavius Decatur Gass, and does

"

not mention additional referrents.

B Score Combinations

Table 2 presents the most common combinations
of binary soft labels.
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Combination Count

((1.0,0.0),(1.0,0.0),(0.0,1.9)) 30
((1.0,0.0),(0.75,0.25),(0.25,0.75)) 40
((1.0,0.0),(0.0,1.0),(1.0,0.0)) 36
((0.75,0.25),(1.0,0.0),(0.25,0.75)) 33
((1.0,0.0),(0.5,0.5),(0.5,0.5)) 32
((0.0,1.0),(1.0,0.0),(1.0,0.0)) 26
((0.5,0.5),(1.0,0.0),(0.5,0.5)) 24
((1.0,0.0),(0.25,0.75),(0.75,0.25)) 17
((0.25,0.75),(1.0,0.0),(0.75,0.25)) 15
((1.0,0.0),(0.33,0.67),(0.67,0.33)) 12
((0.75,0.25),(0.75,0.25),(0.5,0.5)) 10

((0.67,0.33),(1.0,0.0),(0.33,0.67))
((0.75,0.25),(0.25,0.75),(1.0,0.0))
((1.0,0.0),(0.67,0.33),(0.33,0.67))
((0.75,0.25),(0.5,0.5),(0.75,0.25))
((0.5,0.5),(0.75,0.25),(0.75,0.25))
((0.25,0.75),(0.75,0.25),(1.0,0.0))
((0.5,0.5),(0.5,0.5),(1.0,0.0))

((0.33,0.67),(1.0,0.0),(0.67,0.33))
((0.33,0.67),(0.67,0.33),(1.0,0.0))

NDWULUnANN I

Table 2: Frequency of label distribution combinations

C Best Configuration

The best performing variant of our system had the
following configuration: a multilabel classification
task with seven classes for each label, cross-label
loss, embedding dimension of 16 for the entropy
module, using fusion MLP to combine the text and
entropy features in a layer of size 256, dropout of
0.1, learning rate of le-5, weight decay of le-0,
step LR scheduler, all embedding layers frozen,
no regularisation against mean penalty, entropy
penalty (3 = 0.05), no temperature annealing, no
sum < 1 penalty.
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