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Abstract

Annotator-provided information during label-
ing can reflect differences in how texts are un-
derstood and interpreted, though such variation
may also arise from inconsistencies or errors.
To make use of this information, we build a
BERT-based model that integrates annotator
perspectives and evaluate it on four datasets
from the third edition of the Learning With Dis-
agreements (LeWiDi) shared task. For each
original data point, we create a new (text, an-
notator) pair, optionally modifying the text to
reflect the annotator’s perspective when addi-
tional information is available. The text and
annotator features are embedded separately and
concatenated before classification, enabling
the model to capture individual interpretations
of the same input. Our model achieves first
place on both tasks for the Par and VariErrNLI
datasets. More broadly, it performs very well
on datasets where annotators provide rich in-
formation and the number of annotators is rela-
tively small, while still maintaining competitive
results on datasets with limited annotator infor-
mation and a larger annotator pool.

1 Introduction

Human language is often subjective and open to
interpretation. In many NLP tasks, it’s common for
annotators to disagree sometimes for good reasons.
But most traditional models ignore this variation
and treat all labels as if there’s only one correct
answer. As a result, they may miss out on useful
minority viewpoints and become less adaptable.
The third edition of the Learning With Dis-
agreements (LeWiDi) shared task at EMNLP 2025
(Leonardelli et al., 2025) focuses on a critical chal-
lenge: building models that learn from disagree-
ments rather than ignore them. The main objective
of the task is to provide a unified evaluation frame-
work for learning from disagreements. It introduces
a benchmark including four datasets annotated with
both soft labels and perspectivist annotations. Here,

soft labels represent probability distributions over
possible classes, capturing the degree of annotator
disagreement, while perspectivist predictions aim
to recover the individual label choices of each an-
notator. Participating teams are evaluated based on
how accurately their models predict both types of
outputs.

In our approach, we built a simple but effective
BERT-based model (Devlin et al., 2019) that makes
use of annotator perspectives during training. In-
stead of collapsing multiple labels into one, we
create a separate training instance for each anno-
tator’s view and combine it with their background
information. This way, the model learns to un-
derstand how different kinds of annotators might
interpret the same input differently. Our approach
performed well across all four shared task datasets.
It was especially effective on tasks that involved
a small set of annotators and provided natural lan-
guage explanations alongside their labels.

2 Task Summary

2.1 Dataset

The LeWiDi 2025 shared task provides four diverse
datasets across different NLP tasks. Each dataset is
accompanied by annotator metadata, including ba-
sic demographic information about the annotators
who provided the labels. See Table 1 for dataset
statistics and Table 2 for available annotator meta-
data fields.

* The Conversational Sarcasm Corpus (CSC)
(Jang and Frassinelli, 2024): A dataset of con-
text—response pairs rated for sarcasm, with
ratings from 1 to 6.

e The MultiPico dataset (MP) (Casola et al.,
2024): A crowdsourced multilingual irony de-
tection dataset. Annotators were tasked to de-
tect whether a reply was ironic in the context
of a brief post-reply exchange on social media.
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Table 1: Dataset statistics, including task type, instance counts for each split, and annotator information. Unseen
annotators refer to annotators whose metadata is not provided.

Dataset CSC MP Par VariErrNLI
Task Sarcasm Detection | Irony Detection | Paraphrase Detection | Natural Language Inference
No. of Instances
Train 5628 12017 400 388
Dev 704 3005 50 50
Test 704 3756 50 50
Annotator Details
Total annotators 840 506 4 4
Annotators / instance 4,6 2-21 4 2,3,4
Unseen annotators 12 0 0 0
Field Description Datasets
Annotator ID Unique identifier All
Age Annotator’s age at the time of annotation All
Gender Self-identified gender All
Nationality Annotator’s nationality MP, Par, VariErrNLI
Education Highest level of education completed Par, VariErrNLI
Ethnicity (simplified) | The ethnicity of the annotator MP
Country of birth Annotator’s country of birth MP
Country of residence | Annotator’s current country of residence MP
Student status Whether the annotator is a student MP
Employment status Annotator’s employment status MP

Table 2: Annotator metadata available across datasets.

Languages include Arabic, German, English,
Spanish, French, Hindi, Italian, Dutch, and
Portuguese.

* The Paraphrase Detection dataset (Par): !
A dataset of question pairs for which annota-
tors rated whether the two questions are para-
phrases of each other on a Likert scale. In
addition to labels, annotators also provided
short explanations for their choices.

e The VariErr NLI dataset (VariErrNLI)
(Weber-Genzel et al., 2024): A dataset origi-
nally designed for automatic error detection,
distinguishing between annotation errors and
legitimate human label variation in Natural
Language Inference. Annotators also included
short textual explanations for their choices.

2.2 Tasks

The LeWiDi 2025 shared task defines two official
evaluation settings. To ensure comparability with
the leaderboard, we adopt the same metrics:

Task A (Soft Label Prediction): Given multiple
annotator labels per instance, the goal is to predict a
probability distribution over possible labels. Mod-
els are evaluated on how close the predicted label

!The dataset is maintained by the MaiNLP lab and is not
yet published.

distribution is to the empirical human label distri-
bution. Manhattan distance is used for binary label
datasets (MP, VariErrNLI), and Wasserstein dis-
tance is used for ordinal label datasets (Par, CSC).

Task B (Perspectivist Prediction): This task fo-
cuses on predicting the individual labels assigned
by each annotator. For binary label datasets (MP,
VariErrNLI), performance is measured using error
rate; for ordinal label datasets (Par, CSC), absolute
distance is used.

3 Method

3.1 System Overview

Our model aims to capture how individual annota-
tors see things differently. As shown in Figure 1,
we convert each original sample into multiple train-
ing instances, each paired with information from
a specific annotator. This lets the model pick up
on patterns in how different people label the same
text.

Dataset Construction: Instead of treating each
sample as a single data point, we decompose it
into multiple (text, annotator) pairs. Depending
on the dataset, adjustments are applied to the in-
put text (e.g., incorporating annotator explanations
or source metadata) so that the model can capture
how different annotators interpret the same input.
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Figure 1: Representation of our BERT with Annotator Information

Detailed processing steps for each dataset are de-
scribed in Section 3.2.

Input Representation: We encode the input text
using a pretrained BERT model to obtain contex-
tualized embeddings. In parallel, the annotator
metadata is processed through a projection layer
to produce a fixed-size feature vector. These two
representations are then concatenated and passed
to a classification layer.

Target Construction: Each (text, annotator) pair
is treated as a distinct training sample with its cor-
responding label. This setup enables the model to
learn from individual annotator perspectives.

Model Variants: We use MiniLM-L12-H384-
uncased (Wang et al., 2020) for the CSC,
Par, and VariErrNLI datasets, while DistilBERT-
multilingual-cased (Sanh et al., 2019) is employed
for MP, which contains multilingual samples.

Training Setup: We train the model using soft
label supervision, comparing predictions to full
label distributions. Optimization is performed us-
ing AdamW (Loshchilov and Hutter, 2019), with
dropout, early stopping, and a learning rate sched-
uler to enhance training stability.

Baselines: We compare against three baselines:
the official baseline from the organizers, a TF-IDF
+ Random Forest (Louppe, 2015) model, and a
plain BERT model that doesn’t use any annotator
information. (furthur described in subsection ??)

3.2 Text Processing

In all four datasets, each input sample is repre-
sented as a pair of textual fields, which we denote
as S1 and S2. The concrete meaning of these fields
depends on the dataset:
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* CSC: S1 = context (the situation preceding
the response), S2 = response.

* MP: S1 =post, S2 = reply to the post.
e Par: S1 = Question 1, S2 = Questio n2.

* VariErrNLI: S1 = context (premise), S2 =
statement (hypothesis).

These are concatenated using the [SEP] token:
S1 [SEP] S2

For the Par and VariErrNLI datasets, which in-
clude brief natural language explanations written
by annotators, we append the explanation (Exp) of
the corresponding annotator after a second [SEP]
token:

S1 [SEP] S2 [SEP] Exp

For the MP dataset, which contains a source
metadata field indicating the origin of the input
(Reddit or Twitter), we prepend the source before
the main text sequence to help the model disam-
biguate the context. This follows prior work on
topic infusion (Sullivan et al., 2023):

Source [SEP] S1 [SEP] S2

Text Processing in Baseline Models: For the fine-
tuned BERT baseline (which does not utilize anno-
tator information), we concatenate all available an-
notator explanations (if present) and append them
to the input sequence. This applies to datasets such
as Par and VariErrNLI. For the TF-IDF + Random
Forest baseline, we use the same input samples as
in our main model, with tokenization performed
using TF-IDF vectorization.



3.3 Annotator Metadata Encoding

Annotator metadata is encoded by combining one-
hot encoding for categorical features and standard
scaling for numerical ones. Missing or invalid val-
ues are imputed using the mode. The resulting
feature vectors are concatenated into a single meta-
data representation for each annotator. For the MP
dataset, we apply Principal Component Analysis
(PCA) (Shlens, 2014), retaining 99.5% of the vari-
ance, to reduce the dimensionality from 91 to 31.

4 Experiment Setup
4.1 Comparison Models

We compare the Most Frequent baseline provided
by the organizers with three approaches for model-
ing annotator disagreements and perspectives:

Organizer Baseline (Most Frequent): Two vari-
ants are provided by the organizers. (1) For Soft
Label Evaluation, the mean label distribution over
the training set is used as the prediction for all
test items. (2) For Perspectivist Evaluation, each
annotator’s most frequent label is assigned across
all items. Predictions are then evaluated using the
respective metrics.

TF-IDF + Random Forest (TF-IDF + RF): For
CSC, Par, and VariErrNLI, we extract TF-IDF fea-
tures from the input text using Tfidf Vectorize and
concatenate them with the annotator vectors. For
Par and VariErrNLI, where the number of annota-
tors is relatively small, we train an individual Ran-
dom Forest regressor for each annotator to better
reflect their subjective labeling tendencies. In con-
trast, for CSC, which includes over 800 annotators,
we train a single model using soft labels aggregated
across annotators. Due to the multilingual nature
of MP, this model is not applicable there.

Fine-tuned BERT (No annotator Information):
This baseline ignores annotator identity and treats
each instance as a single aggregated sample. We
fine-tune a BERT-based encoder using soft labels
as targets. Specifically, we use MiniLM-L12-H384-
uncased (Wang et al., 2020) for CSC, Par, and Vari-
ErrNLI; and DistilBERT-multilingual-cased (Sanh
et al., 2019) for MP. This setup serves as a di-
rect comparison point for evaluating the impact
of annotator-aware modeling.

Fine-tuned BERT with Annotator Information
(Main Model): The model described in subsec-
tion 3.1. It takes annotator information into account

by treating each (text, annotator) pair as a distinct
training sample. We encode the text using a BERT-
based model and transform the annotator features
via a projection layer. The two representations are
then concatenated before classification.

For both BERT-based models, we use Hugging-
Face’s AutoTokenizer (Wolf et al., 2020) associ-
ated with the respective pretrained encoder for text
tokenization.

All models are trained using soft label supervi-
sion for Task A. For models that incorporate an-
notator information, we average predictions across
annotators to obtain the final output. Predictions for
Task B are then derived directly from the outputs
of Task A. In contrast, models without annotator
information generate a single output distribution,
from which Task B labels are obtained via argmax.

4.2 Loss Function

For the CSC and Par datasets, which contain or-
dinal labels, we use Kullback-Leibler (KL) diver-
gence loss for our model and the BERT baseline.
The TF-IDF + Random Forest(RF) model is eval-
uated using the Wasserstein distance as a perfor-
mance metric. For the MP and VariErrNLI datasets,
which involve binary classification tasks, we use L.1
loss for training. The TF-IDF + RF model for these
datasets is evaluated using the Manhattan distance
as a performance metric.

4.3 Evaluation Measures

Evaluation metrics are tailored to each dataset and
task, and we follow the official definitions and eval-
uation scripts provided by the LeWiDi shared task
organizers.

Soft Evaluation (Task A):
* CSC, Par: Average Wasserstein Distance
* MP: Average Manhattan Distance

* VariErrNLI: Average Multilabel Average
Manbhattan Distance

Perspectivist Evaluation (Task B):

* CSC, Par: Average Normalized Absolute Dis-
tance

* MP: Average Error Rate

* VariErrNLI: Average Multilabel Error Rate
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Metric Summary: The evaluation metrics are
designed to capture both aggregate performance
(how well predicted distributions align with the
overall human label distribution) and perspectivist
performance (how well individual annotator per-
spectives are recovered). For brevity, we omit ex-
plicit formulas for commonly used metrics such
as Manhattan Distance and Error Rate (and their
multilabel variants). For readability, the metrics
are presented in summarized form rather than with
full mathematical expressions.

Wasserstein Distance (WD): Measures the ef-
fort required to transform one distribution into an-
other, assuming ordinal classes:

n n

WD(p,t) = min(py,x) - |h — k|

h=1k=1

where p and ¢ are discrete distributions over n ordi-
nal categories.

Average Wasserstein Distance (AWD): Let p(?)
and () denote the predicted and target distributions
for sample i, then:

N
1 N
- (1) 4@
AWD N ;_1 WD(p'",t")

The average Wasserstein Distance is O in the case
of a perfect match.

Normalized Absolute Distance (NAD): For a
sample 4, let t; = [t;1,...,%; ] be the target la-
bels and p; = [pi 1, ..., Piq] the predictions for a
annotators. The Normalized Absolute Distance is
defined as:

S

LK ik — pik
S
=1

where s is the Likert scale range. A value of 0
indicates perfect agreement.

Average Normalized Absolute Distance (ANAD):
The final score is obtained by averaging NAD over
all N samples:

N

1 .

ANAD = § 1: NAD(i)
1=

5 Result

We report system performance across all datasets
and evaluation tasks in Table 3, using the metrics

described in Section 4.3. Our model consistently
outperforms baseline methods on the VariErrNLI
and Par datasets, and shows modest improvements
over baselines on CSC and MP. According to the of-
ficial LeWiDi 2025 leaderboard?, our system ranks
top-5 on both tasks for the CSC and MP datasets,
and achieves 1st place on both tasks for the Par and
VariErrNLI datasets. These rankings are consistent
across both Task A (soft evaluation) and Task B
(perspectivist evaluation).

6 Further Analysis

We conducted further analysis to understand how
incorporating annotator information affects model
performance. Overall, models that leverage anno-
tator information tend to outperform those that do
not.

For the Par and VariErrNLI datasets, both of
our annotator-aware models (TF-IDF + RF and
our proposed BERT-based model) consistently sur-
passed the organizers’ baselines and the BERT-
based models without annotator information. With
a small and fixed set of annotators, the models can
more easily capture individual behavior, helping
them understand consistency in how samples are
labeled. Additionally, the inclusion of textual ex-
planations allows the models to learn multiple per-
spectives from each annotator, resulting in richer,
more multi-dimensional instance representations
and reducing ambiguity compared to using raw
labels alone.

In contrast, for the MP and CSC datasets, us-
ing annotator information did not lead to much
improvement. These datasets only provide basic
metadata (e.g., age, gender), and the number of
annotators is much larger, making it harder for
the model to learn how each annotator behaves.
Moreover, some annotator attributes were missing
or not provided for certain examples, so we filled
in missing values using the mode for each field.
This imputation may have introduced noise and re-
duced the effectiveness of annotator-aware model-
ing. Still, in MP, the model with annotator features
performs slightly better. In the case of CSC, our
proposed model performed worse than the BERT
model that does not use annotator information. A
likely explanation is that many annotators in CSC
lack associated metadata. As a result, we had to fill
in missing values with default values, which may

*More information about the shared task and leaderboard
is available at https://le-wi-di.github.io/.
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Table 3: System performance across datasets. Task A is evaluated using WD (Wasserstein Distance) and MD
(Manhattan Distance). Task B is evaluated using NAD (Normalized Absolute Distance) and ER (Error Rate).
Arrows | indicate lower values represent better performance. The Baseline model is provided by the organizers.
Best performance for each dataset and metric is highlighted in bold.

Model CSC MP Par VariErrNLI
WD() NAD{) | MD({) ER{) | WD{) NAD{) | MD{) ER{)
Baseline 1.169 0.238 0.518 0.316 3.23 0.36 0.59 0.34
TF-IDF + Random Forest 0.87 0.247 X X 1.2 0.34 0.42 0.24
BERT - without annotator information 0.835 X 0.48 X 2.04 X 04 X
BERT - with annotator information 0.86 0.228 0.45 0.319 0.98 0.08 0.23 0.12
have introduced noise into the input representation ~ Limitations

and negatively affected the model’s performance.
These results highlight a general challenge: when
the annotator pool is large and metadata is sparse
or missing, modeling individual annotator behavior
may become difficult.

Model rankings in Task B largely reflect those
in Task A, indicating that understanding annotator
behavior contributes to overall prediction quality.
While annotator-aware modeling benefits datasets
with small, information-rich annotator pools, gener-
alizing to larger, sparse pools remains challenging.
These results suggest that the approach is most ef-
fective when annotator numbers are limited and
data is semantically rich, but its effectiveness may
decrease as the pool grows and label distributions
become sparse, highlighting an open question for
future research.

7 Conclusion

In this work, we presented a model that predicts
labels for each (text, annotator) pair, aiming to cap-
ture individual annotator perspectives rather than
just aggregated labels. We evaluated our method on
four datasets covering sarcasm detection, irony de-
tection, paraphrase detection, and natural language
inference. Our results show that including annota-
tor information often leads to better performance,
especially in datasets where annotator perspectives
are clearly defined and consistent. However, for
datasets with many annotators or missing metadata,
the improvement is less clear, and in some cases,
using annotator features may introduce noise.

Overall, our findings suggest that modelling in-
dividual perspectives is a promising direction for
tasks involving subjective annotation. Future work
may explore more advanced architectures or evalu-
ate on additional datasets to further understand the
benefits and limitations of this approach.

Our model has several limitations. First, some
datasets (e.g., CSC) lack annotator metadata, re-
quiring us to use dummy or average values, which
may negatively affect the model’s accuracy. Sec-
ond, our model does not scale well to datasets with
a large number of annotators, since each (text, an-
notator) pair is treated as a separate input. Third,
we use a simple architecture that concatenates text
and annotator embeddings, without exploring more
advanced approaches like attention or expert mix-
tures. Lastly, we did not compare our approach
against some strong solutions such as multi-task
learning (Fornaciari et al., 2021), which could pro-
vide useful insights.
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Appendix A: Hyperparameter Details

TF-IDF + Random Forest. For CSC, we
use TfidfVectorizer(max_features=4000) for
tokenization. For Par and VariErrNLI, we
use TfidfVectorizer(max_df=0.7, min_df=2,
ngram_range=(1, 3)). Random Forest hyperpa-
rameters (n_estimators, max_depth) are selected
via grid search using the validation set.

BERT-based Models. All transformer-based
models are optimized using AdamW (weight
decay=0.01). Training is done with soft label re-
gression.

CSC and MP: We train for 5 epochs with early
stopping based on validation loss. We set dropout
rate to 0.4, batch size to 32, and learning rate to
2e-5. We use ReducelLROnPlateau (mode="min’,
factor=0.5, patience=1) . Texts are tokenized
with max_len=128.

Par and VariErrNLI: Models are trained for
up to 30 epochs with early stopping. Batch size
is 16, dropout rate is 0.3 and learning rate is 2e-5.
Texts are tokenized with max_len=128.

Classification Head: We use a linear layer fol-
lowed by a dropout layer and another linear projec-
tion to the output logits.

Annotator Projection Layer: Annotator meta-
data is passed through a linear layer followed by a
ReLU activation to obtain a fixed-size embedding
vector.

Annotator Projection Sizes: 5 (CSC), 32 (MP),
16 (Par), 16 (VariErrNLI). The size of the text repre-
sentation corresponds to the encoder’s hidden size
(e.g., 384 for MiniLM).
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