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Abstract

Recent works in Natural Language Process-
ing have focused on developing methods to
model annotator perspectives within subjective
datasets, aiming to capture opinion diversity.
This has led to the development of various
approaches that learn from disaggregated la-
bels, leading to the question of what factors
most influence the performance of these mod-
els. While dataset characteristics are a critical
factor, the choice of evaluation metric is equally
crucial, especially given the fluid and evolving
concept of perspectivism. A model considered
state-of-the-art under one evaluation scheme
may not maintain its top-tier status when as-
sessed with a different set of metrics, highlight-
ing a potential challenge between model per-
formance and the evaluation framework. This
paper presents a performance analysis of anno-
tator modeling approaches using the evaluation
metrics of the 2025 Learning With Disagree-
ment (LeWiDi) shared task and additional met-
rics. We evaluate five annotator-aware models
under the same configurations. Our findings
demonstrate a significant metric-induced shift
in model rankings. Across four datasets, no sin-
gle annotator modeling approach consistently
outperformed others using a single metric, re-
vealing that the "best" model is highly depen-
dent on the chosen evaluation metric. This
study systematically shows that evaluation met-
rics are not agnostic in the context of perspec-
tivist model assessment.

1 Introduction

The primary aim of perspectivism in (NLP) is to
preserve and leverage the diverse, subjective de-
cisions of individual annotators, both in the mod-
eling process and in the subsequent evaluation of
those models (Frenda et al., 2024; Cabitza et al.,
2023). Given the variety of annotator representa-
tion methods, a key challenge lies in how to effec-
tively incorporate annotator-specific information

during model training to capture these unique per-
spectives (Mostafazadeh Davani et al., 2022). The
efficacy of such annotator modeling techniques is
influenced by several critical factors. A founda-
tional element is the annotation paradigm used to
create the dataset (Rottger et al., 2022). Further-
more, the performance is heavily dependent on the
dataset’s statistical properties, including the num-
ber of training instances required to reliably model
an annotator, the volume of annotations per an-
notator, the degree of inter-annotator agreement
(IAA), and the number of annotations per instance.
Sarumi et al. (2024) showed that the number of
contributions from an annotator and the IAA are
particularly crucial statistics to consider.

While existing approaches capture annotator di-
versity to varying extents, their evaluation has pre-
dominantly relied on conventional metrics like the
F1-score (Uma et al., 2021; Plepi et al., 2022; Sul-
livan et al., 2023; Welch et al., 2022; Sarumi et al.,
2025a) and in some cases Cross Entropy, especially
for soft label prediction (Leonardelli et al., 2023).
It has been argued, however, that such metrics are
insufficient as they often collapse multiple valid
perspectives into a single ground truth, failing to
truly reflect the goals of a perspectivist evaluation
(Rizzi et al., 2024). As part of our submission to
LeWiDi 2025, we present a comparative study of
different annotator modeling approaches. We ana-
lyze how their performance shifts when assessed
using a range of evaluation metrics, including those
provided by the organizers. Our aim is to advance a
more nuanced view within the perspectivist frame-
work. We hypothesize that the performance of a
given modeling approach is not absolute but is con-
tingent upon the evaluation metric used. A model
that is best performing under one metric may not
perform as well under another, especially when
applied to datasets with different underlying statis-
tical properties and task natures. To investigate this,
we implemented five distinct modeling approaches
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and evaluated them on the perspectivist subtask (B)
using additional evaluation metrics.

2 Background and Summary

One of the primary challenges of the 2025 edition
of the LeWiDi shared task is the two concurrent
tasks designed to model and evaluate variations in
annotations (Leonardelli et al., 2025). Task A, the
soft label approach, focused on predicting the prob-
ability distribution of labels for each instance and
Task B, the perspectivist approach, focused on pre-
dicting the individual label assigned by each anno-
tator. The organizers introduced four new datasets
and adopted a tailored evaluation framework for
each, rather than relying on a single unifying met-
ric.

The Conversational Sarcasm Corpus (CSC)
(Jang and Frassinelli, 2024), consists of con-
text—response pairs rated for sarcasm on a Likert
scale from 1 to 6, with soft label evaluation based
on Wasserstein distance and perspectivist evalu-
ation based on Mean Absolute Distance (MAD).
The MultiPico (MP) dataset (Casola et al., 2024)
is a crowdsourced multilingual irony detection re-
source containing post-reply pairs from Twitter
and Reddit, annotated with binary labels across 11
languages. The datasets also contained annotator
metadata such as gender, age, nationality, and stu-
dent or employment status. Evaluation for the soft
label task used Manhattan distance, while the per-
spectivist task used the error rate. The Paraphrase
Detection (PAR) dataset (MaiNLP Lab, 2025) con-
tains question pairs collected from Quora and an-
notated on a Likert scale from -5 to +5, with each
annotator providing a brief explanation for their
score, as in CSC, evaluation for the soft task used
Wasserstein distance and for the perspectivist task
used MAD. Finally, the VariErrNLI dataset (Weber-
Genzel et al., 2024) was designed for error detec-
tion by distinguishing between annotation mistakes
and legitimate human label variation in natural lan-
guage inference; it includes both labels and annota-
tor explanations and was evaluated using the same
metrics as the MP dataset. In this study, we used
the official training and validation splits provided
by the organizers, and our final models performed
inference on the unlabeled test sets. The Dataset
statistics are presented in Table 1.

3 System Overview

Our system architecture for the LeWiDi task is il-
lustrated in Figure 1. Following dataset preprocess-

ing, which involves the extraction and organization
of the dataset along with annotator metadata, we
designed an embedding pipeline that begins with
pre-computations from a transformer model. For
the MP dataset, we obtained high dimentional em-
beddings from XLM-RoBERTa model' because of
the multilingual properties of the dataset. For other
datasets, we employed the all-MiniLM-L12-v2
model,” from the Sentence-Transformers library. In
our setup, after obtaining the embeddings for each
sentence pair, the model’s vocabulary was dynam-
ically extended with two special tokens. The first
token represents enrichment features, computed by
calculating cosine similarity, Manhattan distance,
and Euclidean distance, as well as element-wise
multiplication and difference, to capture multiple
similarity features between corresponding sentence
pairs. The second token represents annotator fea-
tures, following the strategies we developed for
annotator modeling. For every annotator ID, we
create three annotator tokens: a user ID token
which uses the user-id of each annotator, a user
passport token derived from annotator metadata,
and a composite token linking the annotator to its
label patterns. The user passport token incorporates
all available information about the annotator. In ad-
dition to these three tokens, we explored their com-
binations with the composite token, specifically,
composite with user ID and composite with user
passport resulting in five annotator modeling ap-
proaches. Previously, these approaches were used
for a single-sentence setup (Sarumi et al., 2024).
We performed feature fusion, combining the dif-
ferent annotator strategies with the enrichment fea-
tures (Sarumi et al., 2025b), which served as a
constant base for the fusion. The resulting vector
representation serves as input to our model, which
includes two residual blocks to mitigate gradient
vanishing, followed by a three-layer Multi-Layer
Perceptron (MLP) and a multi-head self-attention
mechanism designed to capture different aspects of
the combined features. The model then branches
into two types of prediction heads: a soft head for
predicting the probability distribution of a label,
and hard head, dedicated to predicting the specific
label for an individual annotator. The soft head is
trained with the Kullback—Leibler Divergence loss
(KLDivLoss), while the hard head is trained with

"Multilingual XLM-RoBERTa model, Hugging Face
Transformers library.

%all-MiniLM-L12-v2 model Sentence-Transformers li-
brary.
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cross-entropy loss (CrossEntropyLoss). This ar-
chitecture allows the model to simultaneously and
jointly learn the label distributions and annotator-
specific predictions.

4 Experimental Setup

Our system used the datasets provided by the orga-
nizers. Table 1 presents the statistics for the train-
ing and development splits of each dataset. Build-
ing on existing work, we implemented slightly
modified variants of some annotator modeling tech-
niques, as described earlier, and introduced a new
approach, the User Passport Model. This model
leverages extended annotator demographic profiles,
making use of rich metadata.

All five annotator modeling approaches were
trained on each dataset using a unified framework:
consistent annotator representations, feature enrich-
ment strategies, and training procedures were ap-
plied across datasets. We obtained precomputed
sentence embeddings from SBERT all-MiniLM-
L12-v2 for all datasets, with the exception of the
MP dataset, for which XLM-RoBERTa embed-
dings were used. These embeddings were concate-
nated with the enrichment features and annotator
representations to form the combined input repre-
sentation.

The downstream model employed a multi-layer
perceptron (MLP) backbone, extended with a multi-
head self-attention mechanism (two heads), which
we implemented from scratch. The first head (“soft
head”) was designed to predict label distributions
and the second head (“hard head”), aligned with
the perspectivist approach, was designed to predict
the individual annotator labels. The two objectives
were jointly optimized with a combined loss func-
tion, enabling the model to learn both soft and hard
targets concurrently.

4.1 Methods

Here we describe the various annotator modelling
approaches we implemented, drawing on existing
literature as well as the new methods we introduced,
namely the User Passport and Composite User Pass-
port modelling techniques.

User-ID Token The User ID Token approach uses
a single, unique special token for each annotator,
using its ID as provided. This token serves as a
lightweight identifier. The model learns a specific
embedding for each of these tokens, which helps it

understand that a particular annotation is tied to a
particular user (Plepi et al., 2022).

User-Passport Token The User Passport is a
unique special token that represents an individual
annotator based on their demographic metadata,
encoded as a trainable embedding. We dynami-
cally process the annotator metadata file, which
contains all available demographic information for
each annotator. During training, the model implic-
itly encodes the demographic traits associated with
each passport token, effectively creating a passport
that captures the annotator’s profile. This passport
token is appended to the input text, enabling the
model to make predictions while being aware of
the specific annotator’s profile.

Composite Token The Composite approach uses
a special token whose embedding is computed as
the average embedding of all instances in which
an annotator assigned a specific label. The model
learns an embedding for each composite token, cap-
turing the annotator’s characteristic judgment style
and linking them directly to their specific type of
annotation. (Plepi et al., 2022; Sarumi et al., 2024)

Composite+User-ID Token The Composite User
ID approach combines the strengths of the previous
two methods by appending both the unique User ID
token and the Composite User Token to the input
text. This provides the model with richer context,
enabling it to capture both the annotator’s indi-
vidual identity and their characteristic judgment
style for a given label. This dual-token strategy
strengthens the link between annotator identity and
annotator behaviour.

Composite+User-Passport Token The Composite
User Passport Token combines the User Passport
and the Composite Token by appending both the
relevant composite token for the given annotator
and the corresponding User Passport token to the
input text. This creates a robust representation of
the annotator, capturing both their demographic
profile and their characteristic judgment style.

4.2 Evaluation Metrics

Following the definitions of the two tasks A and B,
focused on predicting the probability distribution of
a value (soft labels) and the individual hard labels
of annotators, respectively, the performance of our
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#A  #l N Al CL K-

CSC 872 6,332 33+ 14 4.54£0.01 212+ 76.73 0.34

MP 506 15,022 150+0.76  5.04£0.01 293+431.81 0.26

PAR 4 450 450+ 0.00 4.00£ 0.00 108+ 45.49 0.09
VariErr NLI 4 434 419+ 453 3.86£0.04 177+£111.58 -0.06

Table 1: Dataset statistics including the number of annotators (A), the number of total instances (I), the average number of
annotations per annotator (N), average annotations per instance (A/I), the average context length (CL), the agreement as measured

by Krippendorff’s alpha. (The statistics are based only on train and dev splits).
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Figure 1: System architecture

system was primarily evaluated using the official
metrics specified by the organizers. However, we
also used additional evaluation metrics, not because
they are inherently more suitable for the tasks, but
to investigate whether the annotator model that per-
forms best under one metric remains the best when

evaluated with a different metric considering how
dynamic it is for models to learn from disagreement.
This allowed us to assess the sensitivity of model
performance to evaluation criteria across different
annotator modeling strategies. For the perspectivist
task (Task B), we further analyzed model perfor-
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mance using individual F1 scores and ROC-AUC
scores. The CSC and Paraphrase datasets were
evaluated using the official soft evaluation metric:
Average Wasserstein Distance (AW D). As seen
in equation (7).

min
761—‘ Piyti)

AWD = - Z Zme K]

h=1k=1
(1

For the perspectivist evaluation of the same
datasets, the Mean Absolute Distance (M AD) be-
tween the actual labels and the predictions were
measured. (i)

1S 1 bk — pil
MAD = — S =N Lek Z kL 100 (2
NZa ; @

=1 k=1

The MultiPico and VariErr-NLi datasets, were
evaluated with the average Manhattan distance
(AverageM D) in the Soft evaluation, see the equa-
tion (4i7), while the hard evaluation was based on
Error rates computation as in equation (7v) with
slight modification as multi-label average MD and
multi-label error rate for the VariErr-NLi dataset.

AverageM D =

1 N n
N SN pik—tixl 3

i=1 k=1

and

1 Y 1<
AverageER = N Z (1 - Z ik — Pz‘,k|>
=1 k=1
“4)

4.3 Training

The training was performed using the AdamW op-
timizer, with a fixed learning rate of 1 x 1073, A
cosine annealing learning rate scheduler was ap-
plied with Tj,,x = 10. We trained our models for
10 epochs, with early stopping based on the min-
imum validation soft metric and maximum hard
metric as the case may be, using a patience of 5.
The batch size was set to 16, and training used a sin-
gle NVIDIA A100 40GB GPU. The loss functions
combined KL divergence and Jensen-Shannon di-
vergence for the soft label head, and cross-entropy
loss for the hard label heads.

5 Results

For the evaluation of the LeWiDi shared task, two
categories of metrics were used: soft label met-
rics and perspectivist metrics. In the soft label
evaluation, the probability distribution (soft label)
predicted by the system was compared against the
distribution derived from human annotations. A
lower distance between the predicted and human
soft labels indicated better performance, with a per-
fect prediction yielding a distance of zero. For the
CSC and PAR datasets, Wasserstein distance was
used, while for the MP and VariErrNLI datasets,
Manhattan distance was applied. In the perspec-
tivist evaluation, the focus was predicting individ-
ual annotators labels. Performance was measured
using Mean Absolute Distance (MAD) between
predicted and actual annotator labels. Although
participants could submit multiple runs, our late
entry into the competition allowed only one submis-
sion before the evaluation phase closed. Based on
the evaluation scores posted on the Leadersboard,
our scores for the soft and the perspectivist tasks are
shown in Table 6 where we compared our system’s
performance to the top-performing models on the
leaderboard, including teams Opt-ICL (Leonardelli
et al., 2025; Sanghani et al., 2025). These results
placed us between 9th and 10th on the leaderboard
based on average score. Our submission was based
on our composite model, which, with the addition
of more hidden layers, improved results for most
datasets except PAR. Post-evaluation results from
our improved models, computed using the Cod-
abench platform, are presented in Table 2. Results
based on the dev splits, which were not processed
through Codabench, are reported in Table 3. Addi-
tional evaluations using traditional metrics such as
F1-score and ROC-AUC are reported in Tables 4
and 5 respectively.

6 Discussion

The performance of annotator modeling techniques
is not universal but is highly dependent on the char-
acteristics of the dataset and the focus of the eval-
uation metric. We observe key differences in how
models learn and perform on datasets with varying
numbers of annotators, annotation strategies and
subjective levels.

On the MP dataset, characterized by a large pool
of annotators (>500), the highest number of in-
stances, and the longest average context length,
cf. Table 1 the Composite + User Passport model
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Task A (Soft) Task B (Hard)

Method CSC MP PAR VariErrNLI CSC MP PAR  VariErrNLI
User-1D Token 1.171 0519 3.320 0.59 0.241  0.322 0.350 0.350
User Passport Token 1171 0510 3.280 0.590 0.247 0.322  0.340 0.350
Composite Token 1.185 0.508 3.300 0.590 0.249 0.323 0.310 0.350
Composite + User-ID 1.193  0.533 3.300 0.600 0.248 0.336  0.340 0.350
Composite + User Passport  1.175  0.538  3.280 0.610 0.246  0.353  0.290 0.350

Table 2: Results for different annotator modeling approaches (Post Evaluation computed on Codabench). The specific
evaluation metrics vary by task and dataset. Task A (Soft) metrics are Wasserstein Distance (CSC, PAR), Soft-Manhattan
Distance (MP), and Soft-Multi-Label-Manhattan Distance (VariErrNLI). Task B (Hard) metrics are Mean Absolute Distance
(CSC, PAR), Hard-Error rate (MP), and Hard-MultiLabel-Error rate (VariErrNLI). For all metrics, lower values are better. Best
results are shown in bold.

Task A (Soft) Task B (Hard)
Method CSC MP PAR  VariErrfNLI CSC MP PAR VariErrNLI
User-ID Token 1.278 0.513 2.812 0.885 0.228 0.323  3.620 0.705
User Passport Token 1.288 0.537 2.786 0.901 0.232  0.330 3.620 0.705
Composite Token 1212 0.529 2.891 0.878 0.229 0.324  3.460 0.695
Composite + User-ID 1.177  0.538 2.999 0.889 0.227 0.324 3.660 0.705
Composite + User Passport  1.253  0.524 2.846 0.881 0.226 0.318 3.620 0.705

Table 3: Results for different annotator modeling approaches (Post Evaluation (ours)). Dataset abbreviations are: CSC, MP,
PAR, and VariErrNLI. The specific evaluation metrics vary by task and dataset. Task A (Soft) metrics are Wasserstein Distance
(CSC, PAR), Soft-Manhattan Distance (MP), and Soft-Multi-Label-Manhattan Distance (VariErrNLI). Task B (Hard) metrics
are Mean Absolute Distance (CSC, PAR), Hard-Error rate (MP), and Hard-MultiLabel-Error rate (VariErrNLI). For all metrics,
lower values are better. Best results are shown in bold.

Method CSC MP PAR  VariErrNLI
User-ID Token 23.1 325 08.8 70.5
User Passport Token 234 346 14.5 70.5
Composite Token 232 38.0 16.5 69.5
Composite + User-ID  23.8 36.8 11.1 70.5
Composite + User Passport 234 39.1 11.3 70.5

Table 4: Full dataset result F1 scores on the individual annotator labels for each annotator representation method and dataset
for the Task B

Method CSC MP  VariErrNLI
User-ID Token 67.2 52.7 88.5
User Passport Token  66.4  60.4 90.1
Composite Token 649  60.2 87.8
Composite + User-ID 652 60.6 88.9
Composite + User Passport 654  61.8 88.1

Table 5: Full dataset result ROC scores on the individual annotator labels for each annotator representation method and dataset
for the Task B

consistently performed best across all evaluation
strategies, including minimising the error rate, truth
prediction measured by the F1-Score, and its clas-
sification ability measured by the ROC-AUC score,
however, this was not observed on other datasets.
A key characteristic of this annotator technique is
its use of all demographic information available
from the corpus metadata, which contributes to its
robustness. The MP dataset has more demographic
information than the other datasets.

In contrast, on the CSC dataset, Composite +
User Passport performed best when error rate was
being measured, further strengthening the ability
of the model to minimise error, especially on large
datasets; however, the CSC dataset has less demo-
graphic information than the MP dataset. We see
the impact of this without their composite token
in the ROC scores for CSC and VariErrNLI where
User-1D token performs best for the CSC and User
Passport performs best for VariErrNLI.
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CSC MP PAR  VariErrNLI
Soft Task
Baseline (Random) 1.543  0.687  3.350 0.676
Ours 1.393  0.551 3.136 1.000
Top Submission 0.746 0422 0.983 0.233
Perspectivist Task
Baseline (Random) 0.352  0.499  0.367 0.497
Ours 0291 0326 0418 0.345
Top Submission 0.156  0.289  0.080 0.124

Table 6: Leaderboard Evaluation Results. Best overall results are underlined.

Error Rate MAD F1 ROC
User ID Token v v
User Passport Token v v
Composite Token v v v
Composite User ID vV
Composite Passport v v v v
Legend

csc v

MP v

PAR v

VAR Vv

Table 7: Performance shift analysis of Anotator models across different evaluation metrics for (Task B-Perspectivist approach)

The VariErrNLI dataset is highly subjective, with
an agreement score of -0.06 and a very small num-
ber of annotators, with each annotator annotating
more than 95% of the total instances. The User
Passport model performs well while measured with
ROC score, which suggests the model is particu-
larly strong at capturing distinct classification fea-
tures of the data, which did not translate to larger
datasets. Across the datasets, all except VariErrNLI
struggled with the F1 score evaluation, plateauing
at 70.5, except for the composite model, with re-
duced performance and a slight reduction in error
rate. This shows that different models capture dif-
ferent aspects of data. Some better account for in-
dividual labels in highly subjective corpora, which
may preserve minority labels, while others output
high scores in large corpora sometimes aggregating
towards majority labels. Therefore, in modeling
perspectives, there is a need for careful consider-
ation of what has been measured vis-a-vis the mi-
nority and majority classes. An optimal model will
ultimately harness the strength of different evalua-
tion strategies.

7 Conclusion

Previous works have established that certain statis-
tics, particularly the number of annotations per an-
notator and the IAA, are critical to the performance
of annotator modeling approaches. Apparently,
these factors reflect underlying dataset character-
istics. Although prior findings were often based
on evaluations using individual macro F1 scores,
our observations as shown in Tables 1 and 7, con-
firm perspectivism even in evaluation and dataset
characteristics. All datasets in our study exhibit
low Krippendorft’s alpha scores, indicating high
disagreement among annotators with VariErrNLI
dataset with the highest disagreement score of neg-
ative alpha value.

In conclusion, the choice of evaluation metric
significantly influences which annotator modeling
approach emerges as the best-performing model,
with focus on the Task B Perspectivist Evaluation.
Across CSC, MP, PAR, and VAR, no single ap-
proach consistently ranked highest across all met-
rics. Composite+User Passport ranked best con-
sistently on the MP dataset but with lower scores
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when compared across corpora. These results con-
firm that model rankings are not metric-agnostic; a
model optimised for one evaluation metric may not
retain its advantage when assessed with another, un-
derscoring the need for further work that assesses
and harnesses the strength of perspectivist systems
while leveraging integrated evaluation approaches.

Limitations

A limitation of our system was the absence of task-
specific fine-tuning with a pre-trained language
model. We hypothesize that this approach could
significantly improve the results. The models we
implemented were also slight variants of existing ar-
chitectures, specifically adapted for this shared task.
A full implementation of these models, without the
modifications we made for the competition, could
also lead to further performance gains. These two
represent areas for future work and potential im-
provements in addition to exploring an integrated
perspectivist evaluation system. Our code is pub-
licly available on GitHub?.
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