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Abstract

We present our submission to the Learning
With Disagreements (LeWiDi) 2025 shared
task. Our team implemented a variety of BERT-
based models that encode annotator meta-data
in combination with text to predict soft-label
distributions and individual annotator labels.
We show across four tasks that a combination
of demographic factors leads to improved per-
formance, however through ablations across
all demographic variables we find that in some
cases, a single variable performs best. Our ap-
proach placed 4th in the overall competition.

1 Introduction

The shift in natural language processing toward
more perspectivist approaches has been positive, in
that it allows us to incorporate a variety of view-
points for subjective tasks and construct models
that are more aligned with, and useful for individu-
als. The number of available disaggregated corpora
is small but growing, allowing us to test more tech-
niques in annotator modeling. While the number
of available corpora has increased, the amount and
type of meta-data about annotators has not signifi-
cantly changed.

Sociodemographic variables are sometimes col-
lected with annotations for analysis or modeling
of the annotators. Without this information, we
are often left with only the set of annotations them-
selves from which to learn patterns. While these de-
mographic variables are not sufficient to represent
people or populations and their diverse viewpoints,
they give us a starting point to building annota-
tor models that can be expanded in future work as
more relevant information becomes available.

With this in mind, we developed a demographic-
aware RoBERTa model for the shared task compe-
tition. We chose RoBERTa as the transformer of
choice as it is well established, and well finetuned

† Denotes equal contribution.

which offers strong baseline results, with relatively
easy to finetune. With RoBERTa also widely used
for NLP tasks, it increased our speed of iteration,
and allowed to focus more on demographic adap-
tions. The shared task we submitted our system to
is the 3rd edition of the Learning with Disagree-
ments (LeWiDi) competition (Casola et al., 2025).
Our system uses embeddings of demographic fea-
tures and encodings of text together to predict anno-
tator labels. We evaluate using both soft-label and
perspectivist metrics, showing that our model out-
performs several baselines, including the Mistral-
7b large language model (LLM). Mistral-7b was
specifically choosen as it is lightweight enough to
run on our hardware, and has demonstrated strong
performance across benchmarks. We further per-
form ablations, exploring the significance of in-
dividual demographic variables and discuss direc-
tions for future work.

2 Background

The learning with disagreements shared task is mo-
tivated by recent efforts in annotator modeling, plu-
ralistic alignment, and data perspectivism. We first
describe work along these directions and follow
this with an in-depth description of the shared task.

2.1 Related Work

The past decade of work in natural language pro-
cessing has seen a shift from understanding ground
truth as an absolute to be uncovered through an-
notation, to a subjective value that varies across
individuals with different backgrounds and perspec-
tives (Aroyo and Welty, 2015; Frenda et al., 2024).
Majority voting can take voices away from under-
represented groups, e.g. older crowdsource work-
ers (Díaz et al., 2019). This kind of aggregation
removes perspectives of sociodemographic groups
and makes it difficult to discern causes of model
underperformance (Prabhakaran et al., 2021).
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Many recent works have begun releasing
disaggregated labels, supporting perspectivist
work (Cabitza et al., 2023). These can be used
to model annotators using a variety of approaches.
Works have used disagreements in Bayesian mod-
els to identify unreliable annotations in single
ground-truth scenarios (Hovy et al., 2013) and
in corpora with differing labels across subpopula-
tions (Ivey et al., 2025). Others have examined the
most efficient way to label data, requesting more
labels from more uncertain annotators to more effi-
ciently model a spectrum of viewpoints (Golazizian
et al., 2024). Perspectivism and personalization
have been applied simultaneously in cases where
extra annotator information is available (Plepi et al.,
2022) with extensions from classification to per-
spectivist generation (Plepi et al., 2024).

Fornaciari et al. (2021) predicted soft-label dis-
tributions for all annotators and found that their
model was more robust and higher performing even
on the aggregated labels (through majority vote
comparison). Mostafazadeh Davani et al. (2022)
implemented models with varying degrees in the
number of shared parameters across annotators,
with some fully independent models, or only shared
layers, showing improved performance. They also
showed how models that predict multiple labels
can be used to measure uncertainty. Mokhberian
et al. (2023) proposed a similar approach, which
compares multi-task models to a model that em-
beds individual annotators. These approaches are
possible when the set of annotators is not disjoint
across the train and test splits.

Deng et al. (2023) studied annotator modeling
on eight datasets, finding that demographics corre-
lated with annotation patterns but only explained
a fraction of the variance in annotations. While
demographic factors are not adequate predictors of
differences in opinion, an individuals lived experi-
ence can be viewed as a form of expertise which in-
forms their annotation (Fleisig et al., 2024). There
is a more meaningful connection between model
performance and individual annotator perception
than with sociodemographic factors (Orlikowski
et al., 2025).

2.2 Shared Task
Our system was built to address the shared task for
the 2025 Learning with Disagreements (LeWiDi)
competition (Casola et al., 2025). This task invited
submissions to build classifiers for tasks not pre-
viously addressed in earlier versions of the shared

task, including natural language inference, irony
detection, and sarcasm detection.

A variety of distributional and information-
theoretic metrics have been proposed for model-
ing human label distributions (Kurniawan et al.,
2025). Previous versions of the LeWiDi shared task
used cross-entropy and other soft evaluation met-
rics (Rizzi et al., 2024). This shared task similarly
uses soft label predictions for evaluation, where
the system outputs the distribution over labels and
uses Manhattan distance to measure distance be-
tween distributions. It also requires a perspectivist
evaluation, where performance is measured as the
percentage of correct instances classified at the in-
dividual annotator level.

3 System Description

We fined tuned RoBERTa-Large (Liu et al., 2019)
to develop a general model and apply this to all
datasets through finetuning. The model architec-
ture consisted of many different layers. This model
encodes a variable-length text sequence as input
and produces embeddings of each token, and a
sequence embedding, represented with the [CLS]
token.

For all datasets we used all available demograph-
ics. We embedded these demographics as follows.
To simplify age, we binned the ranges into groups
of: 18− 24, 25− 35, 35− 44, 45− 55, 55+, for
the datasets that provided age. Other demographic
variables had predefined sets of categorical values
from their original work. These are further listed
in the demographic breakdowns for each dataset in
the Appendix. For each field, a learnable embed-
ding matrix is created, and the text embedding and
the demographic embedding are concatenated into
a single feature vector. This vector is then normal-
ized using LayerNorm, regularized with dropout
and also passed through a linear classifier to pro-
duce the logits for classification.

The MP and CSC corpora had many annota-
tors with no instances annotated by all annotators,
whereas the Par and VarErr NLI datasets each had
only four annotators who annotated all instances.
This allows for a slightly different approach. For
the first two corpora, we predict each annotators
label individually and aggregate them afterward to
compute evaluation metrics. In this case, there are
no parameters that are specifically designated to
any individual annotator. For the latter two corpora,
we take a different approach, predicting all anno-
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tator labels at the same time. This is similar to the
multi-label model described in Mostafazadeh Da-
vani et al. (2022). This approach is tractable due
to the very small number of annotators in these
corpora. The training time substantially increases
with the number of annotators.

We also compared our approach to the Mistral-
7b model (Jiang et al., 2023). This is a large lan-
guage model shown to outperform similar sized
models across reasoning, mathematics, and code
generation tasks using several recent optimization
techniques. This is an instruction-tuned model that
is more receptive to prompting.

CSC. For the CSC (Conversational Sarcasm Cor-
pus) dataset (Jang and Frassinelli, 2024), only age
and gender were provided as demographic meta-
data for the annotator model. A notable difference
in CSC compared to other datasets is the presence
of a context situation paired with a generated "re-
sponse" from a speaker. The corpus consists of 7k
pairs. To preserve their distinct roles in sarcasm,
we concatenated the context and response fields
into a single input string, delimiting each section
with special tokens. This allowed the model to bet-
ter understand the situation (context) and interpret
the reply (response), helping it detect the mismatch
or ironic twist between them. Unlike other datasets,
the goal for this dataset was to predict the provided
sarcasm ratings, which ranged from 0 (not sarcastic
at all) to 6 (extremely sarcastic).

MP. Specifically, for the MultiPico (MP) dataset,
all of the demographic information wasn’t used.
The following wasn’t used for the final submis-
sion: country_birth, nationality, and student sta-
tus. In preliminary experiments, we found that per-
formance decreased when using all demographic
variables. We found that using a combination of
country_birth, nationality, country_residence, and
ethnicity decreased performance, perhaps due to
the inclusion of a redundant but noisy signal. The
final model we submitted used Age, Gender, Eth-
nicity, Country_residence, and Employment as the
embeddings. Similarly, the student status meta-data
didn’t provide any valuable information during pre-
liminary tests and was also omitted. This dataset
contains multilingual social media data with post-
reply pairs (Casola et al., 2024). The posts are
labeled for irony using 0s and 1s, where 1 means
that the response is ironic.

Par. The paraphrase detection dataset (Par), con-
sists of question pairs from Quora. We imple-

mented an approach that significantly enhanced
the general model architecture. We incorporated
SBERT embeddings as a layer alongside RoBERTa-
Large to capture semantic similarities between para-
phrase pairs more effectively. Specifically, we
used the pretrained "all-MiniLM-L6-v2" SBERT
model as a frozen feature extractor, concatenating
its 384-dimensional embeddings with RoBERTa’s
1024-dimensional [CLS] token representation. The
model architecture for Par consisted of three main
embedding components: RoBERTa-Large embed-
dings (1024 dimensions), SBERT embeddings (384
dimensions), and demographic embeddings. We
used a reduced set of demographic fields (age,
gender, nationality, and education) rather than the
full available set, as this improved performance
by reducing noise from redundant features. Age
was binned into discrete ranges, and each demo-
graphic field was embedded using learnable 8-
dimensional vectors. The final concatenated rep-
resentation (totaling 1424 dimensions plus demo-
graphic embeddings) was processed through Layer-
Norm and dropout for regularization before being
passed to a linear classifier for the 11-class Likert
scale prediction (-5 to +5). This approach allowed
the model to leverage both syntactic patterns from
RoBERTa and semantic similarities from SBERT
while accounting for individual annotator perspec-
tives through demographic embeddings.

VarErr NLI. For the Variable Error Natural Lan-
guage Inference, (NLI) dataset, our approach
closely followed the general model architecture.
Where it differed is in the output distribution. Each
annotator can assign more than one label, mak-
ing each output a prediction of all three labels for
each of the four annotators. This dataset consists
of around 1.9k explanations and 7.7 validity judg-
ments of NLI labels (Weber-Genzel et al., 2024).
The dataset presented natural language inference
tasks with context-statement pairs, where annota-
tors classified relationships as entailment, contra-
diction, or neutral. We maintained the standard
RoBERTa-Large text encoding approach, concate-
nating the context and statement using the separator
token and extracting the [CLS] token representa-
tion. Similar to the Par dataset, we predicted the
labels of all four annotators at the same time, us-
ing separate labels in the output layer. The de-
mographic information available in VariErr NLI
included gender, age, nationality, and education
level for four annotators. We utilized all avail-
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Demographic CSC MP Par NLI Values

Age 5
Gender 3
Nationality 33
Education 2
Ethnicity 6
Co. Birth 48
Co. Residence 23
Student Status 2
Emp. Status 7

Table 1: Inclusion of each demographic feature across
datasets, showing for which datasets the metadata is
present and the number of possible discrete values asso-
ciated with that feature. Co. stands for country of and
Emp. for employment.

able demographic features without reduction, as
the limited number of annotators and demographic
diversity made each feature valuable for captur-
ing annotator-specific biases. Age was handled
using the same binning strategy as other datasets,
and each demographic field was embedded using
8-dimensional learnable vectors. The model pro-
duced soft label distributions across the three NLI
classes (entailment, contradiction, neutral) rather
than hard classifications, allowing it to capture the
inherent disagreement and uncertainty in human
annotations.

4 Experimental Setup

CSC. The CSC model was trained using soft label
cross-entropy loss based on the annotator distribu-
tions. We optimized the model using the AdamW
optimizer with a learning rate of 2e − 5, weight
decay of 0.01, and applied a linear learning rate
scheduler with warm-up.

The primary evaluation metric was Manhattan
Distance, ranging from 0 to 1, with lower values
indicating better performance. We also calculated
Absolute Distance (Mean Absolute Error) as a sec-
ondary metric to assess the degree of convergence
between the annotators’ labels and the predicted
mean label.

To test model robustness, we experimented with
alternative architectures, such as Mistral large lan-
guage model. However, RoBERTa consistently
outperformed these alternatives across both evalua-
tion metrics. Therefore, we carried out an extensive
hyperparameter tuning process to further enhance
performance, testing with factors including batch
size, weight decay, dropout rate, and the number of
frozen layers in RoBERTa. After determining an

effective value for one of the parameters, we tuned
the others while maintaining the same value.

The prompt used for Mistral is as follows:

You are a sarcasm detection expert.

Given the following conversation, rate
how sarcastic, the response is on a
scale from 1 (not sarcastic at all) to
6 (extremely sarcastic). Respond only
with a number between 1 and 6.

Context:
{context}

Response:
{response}

How sarcastic is the response?

To create this final prompt, we applied prompt
engineering techniques. First, we specified the
role (“You are a sarcasm detection expert”) to en-
courage analytical reasoning. We then constrained
the output (“Respond only with a number”) for
machine-readability. Next, we separated Context
and Response to highlight their distinct roles in
sarcasm interpretation. Finally, we ended with a
direct question to focus the model. These changes
improved clarity, reduced variability, and ensured
consistent outputs.

MP. Training for the MP model was based on soft-
label cross-entropy loss using annotator distribu-
tions with AdamW optimization (learning rate of
2e−5, and weight decay of 0.01). Similarly, the pri-
mary evaluation was Manhattan Distance between
the predicted and the true probability distributions,
where 0 is the best possible score. The submitted
model had a Manhattan Distance of 0.442.

During training, we used plots of the loss in
training and validation, learning rate schedule, and
performance metrics to inform our tuning of hy-
perparameters. Parameters were tuned individually,
including the dimension of demographic embed-
dings of size 8, weight decay of 0.01, warm-up
ratio of 0.1 and dropout of 0.3 on the concatenated
feature vector.

We used prompting the same way as in the MP
task. The prompt used for Mistral is as follows:

Analyze this social media conversation for
irony:

Post: "{post}"
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Reply: "{reply}"
Is the reply ironic? Consider:
- Does it say something positive
about a negative situation?

- Does it use obvious exaggeration
or contradiction?

- Does it mean the opposite of
what it literally says?

Answer with ONLY a number:
0 = Not ironic/sarcastic
1 = Ironic/sarcastic

Par. Training for the Par model utilized cross-
entropy loss with hard labels rather than soft distri-
butions, as the paraphrase ratings were converted
to discrete classes on the Likert scale (-5 to +5,
mapped to 11 classes). We used AdamW optimiza-
tion with a learning rate of 1e − 5, weight decay
of 0.01, batch size of 16, and a maximum of 15
training epochs. The learning rate scheduler em-
ployed a warmup ratio of 0.15 followed by linear
decay. The primary evaluation metric was Manhat-
tan Distance between predicted and true probabil-
ity distributions, calculated after converting logits
to softmax probabilities. Early stopping was im-
plemented with a patience of 5 epochs to prevent
overfitting. We also employed gradient clipping
(max norm of 0.5) and a dropout rate of 0.3 for
regularization. During training, we generated com-
prehensive analysis plots for each epoch including:
prediction vs target scatter plots, prediction distri-
bution comparisons, error distribution histograms,
and error vs target relationships. These visualiza-
tions helped track model performance and identify
potential issues like prediction bias. Key hyperpa-
rameters that we tuned included the demographic
embedding dimension (8), SBERT embedding di-
mension (384), dropout rate (0.3), and the specific
set of demographic fields used. The reduced demo-
graphic field strategy improved performance over
using all available features.

The prompt for the Mistral model is as follows:

You are an expert at determining semantic
similarity between question pairs. Rate
how similar these questions
are on a scale from -5 to +5, where:

-5 = Completely different meanings
-4 = Very different meanings
-3 = Somewhat different meanings
-2 = Slightly different meanings
-1 = Minor differences in meaning

0 = Neutral/unclear relationship
+1 = Minor similarities in meaning
+2 = Slightly similar meanings
+3 = Somewhat similar meanings
+4 = Very similar meanings
+5 = Identical or nearly identical
meanings

Examples:
Question 1: "How do I learn Python?"
Question 2: "What's the best way to
study Python programming?"
Rating: +4 (Very similar meanings)

Question 1: "What is machine learning?"
Question 2: "How do I bake a cake?"
Rating: -5 (Completely different meanings)

Now rate this pair:
Question 1: "{question1}"
Question 2: "{question2}"
Rating:

VariErr NLI. Training for the VariErr NLI model
followed a similar approach to other datasets, using
soft-label cross-entropy loss based on the three-
class probability distributions (entailment, contra-
diction, neutral). We maintained the AdamW opti-
mizer configuration with appropriate hyperparame-
ters for the NLI task structure. The evaluation was
primarily based on Manhattan Distance between
predicted and ground truth soft label distributions
across the three NLI classes. This metric effectively
captured the model’s ability to predict not just the
most likely class, but the full distribution of anno-
tator disagreement. The model’s performance was
assessed by how well it could reproduce the uncer-
tainty and variability inherent in human NLI judg-
ments. Given the limited number of annotators, and
the importance of capturing individual perspectives
in NLI tasks, we utilized all available demographic
features without reduction. The hyperparameter
tuning focused on balancing the model’s capacity
to learn individual annotator patterns while main-
taining generalization across the three-class output
space. The perspectivist approach was particularly
important for this dataset, as legitimate disagree-
ment between annotators is common in natural lan-
guage inference tasks where context interpretation
can vary based on background knowledge and rea-
soning patterns (Pavlick and Kwiatkowski, 2019).

The prompt for the Mistral model is as follows:
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You are an expert at natural language
inference. Given a context and a
statement, determine the logical
relationship.
Choose from:
- ENTAILMENT: The statement is definitely
true given the context
- CONTRADICTION: The statement is
definitely false given the context
- NEUTRAL: The statement might be true or
false; can't be determined from context

Examples:
Context: "The cat is sleeping on the couch."
Statement: "There is an animal on the
furniture."
Answer: ENTAILMENT

Context: "All birds can fly."
Statement: "Penguins cannot fly."
Answer: CONTRADICTION

Context: "John went to the store."
Statement: "John bought milk."
Answer: NEUTRAL

Now analyze:
Context: "{context}"
Statement: "{statement}"
Answer:

5 Results

For all tasks we evaluated using multiple different
architectures to understand the impact of various
ways of find an optimal model. The summary of
results can be found in Table 2, with the compar-
ison against the Majority Baseline. Our main ap-
proach, which incorporates the Demographic Em-
beddings for the annotators performs well for the
given tasks. This row represents our submission
to the shared task competition, which landed us in
fourth place when results were computed using the
grand average. This scoring approach assigned a
rank the same as the random baseline for any par-
ticular dataset for which a team performed below
that baseline or did not submit any results. De-
mographic embeddings generally improved model
performance. Our model outperformed the simple
baseline, the RoBERTa base model, and the Mistral
LLM model. The Mistral LLM was prompted to
generate responses for each instance in each corpus.

Figure 1: PCA plot showing similarity of embeddings
of nationality for the MP task.

We found that even though neither the RoBERTa-
base nor Mistral models incorporated annotator-
specific features, the LLM performed much worse
than RoBERTa.

We performed an ablation by each demographic
factor, including only one piece of information at a
time. We found that some variables have a much
more significant impact on the model than others.
The nationality/ethnicity variables appeared to per-
form best. Gender performed best for the Par and
VariErr NLI corpora on the perspectivist evaluation.
Surprisingly, we found that some of the single de-
mographic models outperformed our submission
to the shared task, showing that even better perfor-
mance with a demographic-aware RoBERTa model
is possible. The VariErr NLI task was the most dif-
ficult for our model, as our model underperformed
on the soft evaluation and was close to the baseline
on the perspectivist evaluation. Future work should
explore these relationships in more detail.

6 Discussion

We noted that the LLM performance was substan-
tially worse than the RoBERTa-based models. It is
possible that the LLM could perform better with
more effort put into prompt-tuning, though this re-
mains to be shown. The added computational over-
head and tuning efforts pose barriers to their practi-
cal use, over much more readily high-performing,
and smaller BERT-based models.

The much smaller RoBERTa models were suc-
cessful in this task, placing high on the leader-
board and showing greater improvement in our
subsequent ablation experiments. Where a per-
son is from, which is partially covered by four
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Soft Eval. ↓ Perspectivist Eval. ↓
Method CSC MP Par VariErr NLI CSC MP Par VariErr NLI

Majority Baseline 1.169 0.518 3.23 0.590 0.238 0.316 0.360 0.340
Demographic Embeddings 0.803 0.439 1.610 0.640 0.213 0.311 0.200 0.340
- Age Only 0.809 0.443 1.118 0.635 0.216 0.314 0.190 0.335
- Country of Residence Only - 0.470 - - - 0.329 - -
- Country of Birth Only - 0.442 - - - 0.309 - -
- Employment Only - 0.442 - - - 0.313 - -
- Ethnicity Only - 0.435 - - - 0.311 - -
- Gender Only 0.811 0.444 1.145 0.633 0.215 0.310 0.188 0.333
- Education Only - - 1.114 0.650 - - 0.250 0.400
- Nationality Only - 0.435 1.063 0.630 - 0.307 0.270 0.380
- Student Only - 0.449 - - - 0.315 - -
RoBERTa Base 0.821 0.450 1.64 0.645 0.225 0.318 0.380 0.350
LLM (Mistral) 1.020 0.536 2.300 0.680 0.352 0.326 0.450 0.360

Table 2: Breakdown of results for the majority baseline, our submission to the LeWiDi competition, the RoBERTa
base model, the large language model Mistral, and an ablation for all demographics. Empty cells mean the
demographic is not available for that dataset according to Table 1. Results are shown for both the soft and
perspectivist evaluations. Lowest (best) results for each column are shown in bold.

different demographic variables, appeared to have
the strongest effect. As participants in the studies
which collected the four datasets come from many
different countries (see Appendix for details), it
makes sense that this would be a variable that cor-
relates strongly with differences in viewpoints or
opinion. A PCA plot of the embeddings learned
by our best RoBERTa model is shown in Figure 1,
showing some regional clusters.

Sarumi et al. (2025) found that of the datasets
for this shared task, VariErr NLI had the lowest
annotator agreement measured by Krippendorff’s
alpha, α = 0.06, while Par agreement was α =
0.09, MP α = 0.26 and CSC α = 0.34. The low
agreement for VariErr NLI, coupled with the low
number of annotators may contribute to our lower
performance on this task.

As noted in previous work, it is important to
emphasize that demographics do not and cannot
tell the full story (Fleisig et al., 2024). Given the
historical context in which data as been collected
and annotated for building NLP models, it is often
the case that no meta-data is available for annota-
tors, and when data is available it is often in the
form of a handful of demographic variables. This
provides us a rough starting point for beginning to
explore annotator modeling, but future work must
find ways to gather or infer more individual annota-
tion patterns or those that do not directly align with
sociodemographic factors.

7 Conclusion

We developed a demographic-aware RoBERTa
model for annotator modeling on four tasks, includ-

ing irony detection, sarcasm detection, paraphrase
detection, and NLI. We found that our model could
outperform baselines including a large language
model; Mistral-7b. In an ablation of demographic
factors, we found that nationality and ethnicity led
to the biggest performance increases. We note that
although demographics provide a starting point to
exploring annotator modeling approaches, more
individualized approaches will be needed to fully
capture differences in annotation patterns.

Limitations

Our experiments with LLMs used only one type of
model, which limits the generalizability of the find-
ings, but nonetheless provides a point-of-reference
for future exploration. Furthermore, our budget
for hyperparameter tuning and further optimization
was relatively low given our time constraints and
higher performance of the BERT-based models is
likely achievable as well.

Importantly, while demographics show that we
can improve the model to some extent, they do
not provide the full picture. We believe that more
individualized approaches will be necessary to im-
prove performance on perspectivist NLP tasks. Ap-
plications and developers should not assume that
demographics are a sufficient proxy for modeling
stakeholders in any scenario. Doing so poses risks
to users, the severity of which depend on the spe-
cific application, but include both harms of repre-
sentation and allocation (Blodgett et al., 2020).
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Appendix

The following tables in this appendix describe the
demographic breakdowns for all datasets used in
the shared task.

Table 3: Age distribution of MP dataset annotators

Age Group Count Percentage

18–24 133 26.3
25–34 219 43.3
35–44 88 17.4
45–54 42 8.3
55+ 24 4.7

Table 4: Gender distribution of MP dataset annotators

Gender Count Percentage

Male 274 54.2
Female 230 45.5
<UNK> 1 0.2

Table 5: Ethnicity distribution of MP dataset annotators

Ethnicity Count Percentage

White 315 62.3
Other 66 13.0
Mixed 64 12.6
Asian 44 8.7
Black 13 2.6
<UNK> 4 0.8

Table 6: Country of residence distribution of MP dataset
annotators

Country Count Percentage

United States 66 13.0
United Kingdom 54 10.7
Germany 43 8.5
Spain 38 7.5
Canada 37 7.3
Portugal 36 7.1
Netherlands 34 6.7
France 31 6.1
Italy 30 5.9
Mexico 27 5.3
Austria 25 4.9
Switzerland 21 4.2
Australia 20 4.0
Ireland 18 3.6
Hungary 12 2.4
South Africa 5 1.0
Sweden 2 0.4
Israel 2 0.4
Poland 1 0.2
New Zealand 1 0.2
Belgium 1 0.2
Greece 1 0.2
Czech Republic 1 0.2
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Table 7: Nationality distribution of MP dataset annota-
tors

Nationality Count Percentage

United States 42 8.3
India 39 7.7
Canada 27 5.3
Germany 27 5.3
Netherlands 27 5.3
France 25 4.9
Austria 25 4.9
Portugal 25 4.9
Mexico 25 4.9
Colombia 25 4.9
Italy 24 4.7
Brazil 24 4.7
Spain 24 4.7
Argentina 24 4.7
Switzerland 21 4.2
United Kingdom 18 3.6
Australia 15 3.0
Ireland 15 3.0
Egypt 14 2.8
Syrian Arab Republic 8 1.6
Lebanon 6 1.2
Morocco 5 1.0
Jordan 4 0.8
Palestinian Territory 4 0.8
Saudi Arabia 3 0.6
Algeria 2 0.4
Israel 2 0.4
Slovenia 1 0.2
Bahrain 1 0.2
Tunisia 1 0.2
Sweden 1 0.2
Iraq 1 0.2
Yemen 1 0.2

Table 8: Employment status distribution of MP dataset
annotators

Employment Status Count Percentage

Full-Time 178 35.2
<UNK> 109 21.5
Part-Time 74 14.6
Unemployed (and job seeking) 74 14.6
Other 36 7.1
Not in paid work (e.g. home-
maker, retired)

24 4.7

Due to start a new job within next
month

11 2.2

Table 9: Student status distribution of MP dataset anno-
tators

Student Status Count Percentage

No 260 51.4
Yes 165 32.6
<UNK> 81 16.0

Table 10: Country of birth distribution of MP dataset
annotators

Country of Birth Count Percentage

India 34 6.7
United States 31 6.1
Mexico 27 5.3
Colombia 26 5.1
Germany 25 4.9
Austria 25 4.9
Portugal 25 4.9
Netherlands 24 4.7
Brazil 24 4.7
Spain 24 4.7
Argentina 24 4.7
Canada 23 4.5
Italy 23 4.5
France 23 4.5
United Kingdom 17 3.4
Switzerland 17 3.4
Ireland 15 3.0
Egypt 14 2.8
Australia 11 2.2
Syrian Arab Republic 10 2.0
Lebanon 9 1.8
<UNK> 7 1.4
Morocco 7 1.4
Jordan 5 1.0
Saudi Arabia 5 1.0
UAE 4 0.8
Algeria 3 0.6
Togo 2 0.4
Israel 2 0.4
Iraq 2 0.4
Haiti 1 0.2
New Zealand 1 0.2
Hong Kong 1 0.2
South Africa 1 0.2
Dominican Republic 1 0.2
Martinique 1 0.2
Bosnia and Herzegovina 1 0.2
Romania 1 0.2
China 1 0.2
Nicaragua 1 0.2
Chile 1 0.2
Puerto Rico 1 0.2
Kuwait 1 0.2
Bahrain 1 0.2
Somalia 1 0.2
Tunisia 1 0.2
Palestinian Territory 1 0.2
Yemen 1 0.2

Table 11: Age distribution of CSC dataset annotators

Age Group Count Percentage

18–24 134 16.5
25–34 273 33.6
35–44 217 26.7
45–54 106 13.0
55+ 83 10.2
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Table 12: Gender distribution of CSC dataset annotators

Gender Count Percentage

Male 418 49.8
Female 397 47.3
<UNK> (Nan, Data_expired,
Consent_revoked)

17 2.9

Table 13: Age distribution of Paraphrase dataset annota-
tors

Age Group Count Percentage

25–34 3 75.0
35–44 1 25.0

Table 14: Gender distribution of Paraphrase dataset
annotators

Gender Count Percentage

Male 2 50.0
Female 2 50.0

Table 15: Nationality distribution of Paraphrase dataset
annotators

Nationality Count Percentage

Chinese 3 75.0
German 1 25.0

Table 16: Education distribution of Paraphrase dataset
annotators

Education Count Percentage

Master student 4 100.0

Table 17: Age distribution of VariErrNLI dataset anno-
tators

Age Group Count Percentage

18–24 1 25.0
25–34 2 50.0
35–44 1 25.0

Table 18: Gender distribution of VariErrNLI dataset
annotators

Gender Count Percentage

Male 2 50.0
Female 2 50.0

Table 19: Nationality distribution of VariErrNLI dataset
annotators

Nationality Count Percentage

Chinese 3 75.0
German 1 25.0

Table 20: Education distribution of VariErrNLI dataset
annotators

Education Count Percentage

Master student 3 75.0
Postdoc 1 25.0
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