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Abstract

The Learning With Disagreements (LeWiDi)
2025 shared task aims to model annotator dis-
agreement through soft label distribution predic-
tion and perspectivist evaluation, which focuses
on modeling individual annotators. We adapt
DisCo (Distribution from Context), a neural
architecture that jointly models item-level and
annotator-level label distributions, and present
detailed analysis and improvements. In this pa-
per, we extend DisCo by introducing annotator
metadata embeddings, enhancing input repre-
sentations, and multi-objective training losses to
capture disagreement patterns better. Through
extensive experiments, we demonstrate substan-
tial improvements in both soft and perspectivist
evaluation metrics across three datasets. We
also conduct in-depth calibration and error anal-
yses that reveal when and why disagreement-
aware modeling improves. Our findings show
that disagreement can be better captured by
conditioning on annotator demographics and
by optimizing directly for distributional met-
rics, yielding consistent improvements across
datasets.

1 Introduction

As machine learning systems increasingly medi-
ate social, legal, and civic decision-making, their
alignment with human values becomes paramount.
However, as any participant in a democratic pro-
cess knows well, human disagreement is always
present. This includes many existing problems,
such as hate speech detection, intent classification,
or moral judgment. The LeWiDi 2025 shared task
(Leonardelli et al., 2025) directly addresses this
need by evaluating models on their ability to (1)
predict soft label distributions derived from anno-
tator disagreement and (2) approximate individual
annotator behavior in a perspectivist setting.
Supervised learning typically resolves annotation
disagreement by aggregating labels into a single

*Equal contribution.

ground truth, often via plurality vote. However,
doing so can obscure valuable minority perspec-
tives, especially on subjective or contentious con-
tent (Basile et al., 2021; Prabhakaran et al., 2021;
Uma et al., 2021b; Plank, 2022; Cabitza et al.,
2023; Homan et al., 2023; Weerasooriya et al.,
2023a; Prabhakaran et al., 2023; Pandita et al.,
2024). However, preserving and modeling this
disagreement can improve system robustness, fair-
ness, and social accountability. Tasks such as
MultiPICo (Casola et al., 2024), Paraphrase, Vari-
ErrNLI, and CSC (Jang and Frassinelli, 2024) ex-
emplify domains where capturing nuanced human
perspectives, rather than just the majority opinion,
is essential for ethical and practical deployment.
LeWiDi-2025 challenges systems to go beyond
single-label classification and instead model the
full distribution of possible human responses.

The core challenge lies in modeling disagree-
ment when annotation is both sparse and noisy.
Annotators may vary in reliability, background, and
interpretation, and most datasets provide only a
few annotations per item. Moreover, models must
predict not only soft aggregate distributions but also
simulate individual annotator responses, requiring
them to generalize from partial supervision over
complex, entangled signal sources. Compound-
ing this difficulty is the need for robust evaluation
across both soft (e.g., Manhattan, Wasserstein) and
perspectivist (e.g., Error Rate, Normalized Abso-
lute Distance) metrics, which test a model’s fidelity
to human-like prediction under both collective and
individual frames. The four datasets utilized in
the shared task are Conversational Sarcasm Cor-
pus (CSC), MultiPico (MP), Paraphrase (Par), and
VariErr NLI (Ven).

We adapt the DisCo (Weerasooriya et al., 2023b)
model to the LeWiDi 3rd Edition datasets. DisCo
consumes item—annotator pairs as input and jointly
predicts three interconnected distributions: the
specific label an individual annotator would assign,
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the soft label distribution over all annotators for
that item, and the annotator’s own distribution over
all items.

While DisCo demonstrated the value of jointly
modeling item- and annotator-level distributions,
it treated annotators as one-hot IDs and optimized
losses misaligned with evaluation. We address
both limitations by embedding annotator metadata
and by designing loss functions directly tied to
disagreement-aware metrics, enabling more inter-
pretable and robust models.

For the post-evaluation phase, we made the fol-
lowing contributions:

1. The original DisCo model relied solely on
simple annotator ID mappings, limiting its
ability to understand annotator characteristics
and biases. We modified it to account for anno-
tator metadata features such as age, nationality,
gender, education, etc.

2. We extended DisCo’s preprocessing capabili-
ties to process a wider range of data formats.

3. We updated the underlying sentence trans-
former models on which DisCo may depend.

4. We modified the loss functions to align with the
evaluation for soft label distribution prediction
and perspectivist modeling.

5. We perform extensive failure mode analysis
on the model.

With these updates, we observed a substantial
improvement in the scores for three datasets: CSC,
MP, and Par. Additionally, this placed us as rank 4
instead of 7 for Par and Rank 5 instead of 9 for MP
in the post-evaluation phase.

2 Background

The LeWiDi shared task has emerged as a focal point
for advancing methods that embrace, rather than
suppress, annotator variation, since its inception
(Uma et al., 2021a). The third edition, LeWiDi-
2025 (Leonardelli et al., 2025), further extends
these efforts by evaluating both distributional and
perspectivist modeling across diverse datasets.

LeWiDi-2025 focuses on four core benchmark
datasets, each designed to probe different facets
of human interpretative variation. Please refer
to Appendix A.1 for further information on the
datasets.

The LeWiDi evaluation draws on two comple-
mentary research traditions. First, item—annotator
modeling, the goal is to explicitly account for indi-
vidual annotator behaviors when aggregating labels.
Dawid and Skene (1979)’s foundational model rep-
resents each annotator’s reliability via a latent con-
fusion matrix, enabling joint estimation of true item
labels and per-annotator error rates. Subsequent
work extended this framework with fully Bayesian
treatments (Raykar et al., 2010; Kim and Ghahra-
mani, 2012) and introduced clustering techniques
to group annotators by shared labeling patterns
(Lakkaraju et al., 2015).

In the second paradigm, label distribution learn-
ing (LDL) reframes “ground truth” not as a single
class but as a probability distribution over all possi-
ble labels. Under this view, models are trained to
match the full annotator-derived distribution rather
than just the majority vote. Early LDL work demon-
strated strong performance in tasks like facial age
estimation (Geng, 2016; Gao et al., 2017) and has
since been applied to diverse applications, from
short text parsing (Shirani et al., 2019) to climate
forecasting (Yang et al., 2020), showing that dis-
tributional targets can yield richer, more nuanced
predictions.

By learning shared embeddings for both items
and annotators, DisCo effectively regularizes sparse
annotation settings and pools context across related
examples. In experiments on six publicly avail-
able datasets, DisCo matched or exceeded state-
of-the-art LDL approaches, such as multinomial
mixture models combined with CNNs, and outper-
formed annotator-modeling baselines like Crowd-
Layer across both single-label and distributional
evaluation metrics.

Since SemEval-2023, researchers have contin-
ued to push toward richer annotator-aware mod-
eling. IREL (Maity et al., 2023) conditions
toxicity predictions on anonymized user meta-
data—integrating each annotator’s identity embed-
ding directly into both the model input and the
loss function to improve alignment with individual
judgments. CICL_DMS (Grétzinger et al., 2023),
by contrast, builds on large pre-trained language
models and explores ensemble learning, multi-task
fine-tuning, and Gaussian process calibration to
better match the full distribution of annotator labels.
Together, these contributions underscore a growing
emphasis on leveraging demographic, behavioral,
and contextual signals to capture the nuances of
human disagreement.
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Figure 1: Data representation for DisCo: each item x,,
is paired with per-annotator responses y. ,, and their
empirical distribution #y. ,,,, and each annotator n has
a response vector y,, . with distribution #y, ..

3 System Overview

Our system builds upon the DisCo (Distribution
from Context) architecture originally proposed by
Weerasooriya et al. (2023b). To adapt it for the
LeWiDi-2025 task, we introduced several targeted
enhancements, including the use of task-specific
sentence encoders, integration of annotator meta-
data via pretrained embeddings, and modified loss
functions to reflect task evaluation metrics. These
adaptations enable the model to generalize more ef-
fectively from sparse supervision and better capture
the complexity of annotator behavior and disagree-
ment.

DisCo is designed to jointly model individual an-
notator responses, aggregate item-level label distri-
butions, and annotator-level behavior distributions
in a unified probabilistic framework.

Each data item x,,, € R’ is represented as a
column vector of J features, and its associated
annotations from N annotators are collected in
the matrix Y € ZV*M_ We denote the vector of
responses for item m as y. ,, and the histogram of
these responses as #y. ,,. Similarly, each annotator
n’s behavior across all items is summarized by y,, .
and its histogram #y,, .. This setup is illustrated in
Figure 1.

In the encoder (Figure 2), item and annotator
inputs are mapped into separate subspaces. The
item vector X, is projected via a learnable matrix
W € R/1%7 to yield the embedding z; = W X,
while the one-hot annotator identifier a,, is projected
through W 4 € R74*N to produce z4 = W 4a,,.
These embeddings are concatenated and passed
through a two-layer MLP with softsign activations

2 W,
24 I
= B
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Figure 2: Block diagram of the DisCo encoder and
decoder. The encoder maps item and annotator inputs
into a joint latent code z g, and the decoder produces
three parallel distributions via softmax heads.

and a residual connection:

Zp = ¢(WP : ¢ZI7 ZA)7 (1)
zp = p(Wg -zp zp), (2)

where W p and W are learned projection matri-
ces.

The decoder takes the joint code zg and out-
puts three softmax-normalized vectors: z, =
softmaxWzp, for the per-annotator label distri-
bution Py | Xm,an, 2yr = softmaxWrzp
for the item-level distribution, and z,4 =
softmaxW 4z for the annotator-level distribu-
tion. Training minimizes a composite loss that
combines the negative log-likelihood of observed
annotator responses with KL divergence terms that
align predicted and empirical label distributions at
both the item and annotator levels.

At inference time, for an unseen item x,,, without
a specific annotator ID, we embed x,,, to obtain z;
and tile it across all annotator embeddings in W 4
to form N joint codes. Each code is decoded to
yield per-annotator distributions, which are then
aggregated by expectation or majority vote to pro-
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Figure 3: Metadata Embedding Pipeline for DisCo_New:
After converting raw metadata into Natural language, it
is passed through a transformer to generate embeddings
and eventually generate a,,

duce the final item-level prediction. This procedure
preserves the learned annotator diversity even when
specific annotator metadata is unavailable.

In the post-evaluation phase, we extended the
DisCo architecture to better leverage annotator and
item information. Annotators were no longer repre-
sented by one-hot identifiers but instead by metadata
derived from structured JSON inputs. The meta-
data preprocessing pipeline (Figure 3) concatenated
demographic attributes into a textual description,
which was then encoded using a transformer-based
sentence embedding model fieta-. This produced
annotator embeddings &, = fimetaJSONn € RP,
which were projected through a learnable ma-
trix W4 € R%*D to yield the annotator repre-
sentation z4 = W4a,,. On the item side, the
generic encoder was replaced with a task-specific
transformer encoder fien-, producing item vectors
z7 = W7 fitemXm. Both item and annotator vectors
were mapped into semantically aligned subspaces
and concatenated into a joint latent representa-
tion z g, which was decoded following the original
DisCo framework.

In parallel, we revised the training objective
to incorporate additional distributional and per-
annotator losses. Beyond categorical negative log-
likelihood and KL divergence, we explored Wasser-
stein distance for soft-label alignment and mean
absolute error for per-annotator alignment, as well
as combined and alternating formulations. These
revisions aligned optimization more closely with
the evaluation metrics. Full implementation details,
loss formulations, and dataset-level hyperparameter
configurations are described in Section 4.4.

These modifications to the DisCo architecture are
not cosmetic but address fundamental gaps: richer
annotator modeling and task-aligned optimization.

4 Experimental Setup

4.1 Datasets

Experiments are conducted on three datasets pro-
vided by LeWiDi-2025: Conversational Sarcasm
Corpus (CSC), MultiPico (MP), and Paraphrase
(Par). Each dataset is provided in a unified JSON
format, including item-level features, per-annotator
labels, and annotator identifiers. The datasets and
their evaluation metrics are discussed further in
Appendix A.1.

4.2 Tasks

The system is evaluated on the two complemen-
tary tasks defined in the LeWiDi-2025 shared task
framework. In Task A (Soft Label Prediction), a
probability distribution over the label space must be
output for each instance. Evaluation is conducted
using the Manhattan distance for MP and Ven, and
the Wasserstein distance for Par and CSC. In Task
B (Perspectivist Prediction), the individual labels
assigned by each annotator must be predicted. Eval-
uation is performed using Error Rate for MP, and
Normalized Absolute Distance for Par and CSC.
This setup reflects the task’s emphasis on modeling
annotator disagreement rather than collapsing it
into a single ground-truth label.

4.3 Model Configuration: DisCo_OG

The original DisCo model was adapted to the
LeWiDi-2025 tasks with minimal modifications.
Annotators were represented using simple identi-
fiers, and the model jointly optimized soft-label
and perspectivist objectives. Training used a com-
posite loss combining negative log-likelihood of
annotator responses with KL divergence against
empirical distributions. Hyperparameters such as
activation function, optimizer, dropout rate, learn-
ing rate, and fusion strategy were tuned based on
validation performance.

4.4 Model Configuration: DisCo_New

Building on the architectural extensions described
above, we implemented several systematic modifi-
cations.

First, the metadata preprocessing pipeline was
redesigned to extract annotator attributes (age,
gender, nationality, education, etc.) from struc-
tured JSON files. These attributes were verbalized
into natural language templates and embedded us-
ing transformer-based sentence encoders such as
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Hyperparameter Par Value MP Value CSC Value
Activation ReLU Softsign elu
Annotator Latent Dim 64 64 256

Item Latent Dim 128 256 256
Fusion Type Concat Concat Concat
Optimizer Adam Adam Adam
Learning Rate 0.001 0.001 0.001
Embedding paraphrase-mpnet-base-v2 paraphrase-multilingual-mpnet-base-v2  all-mpnet-base-v2
Loss Wasserstein + MAE (a = 0.6) KL Divergence KL Divergence
Weight Init Gaussian Uniform Gaussian

Table 1: Best hyperparameters.

paraphrase-mpnet and all-mpnet. Each annota-
tor’s metadata embedding was 768-dimensional
and projected into the model space via a learnable
transformation matrix, replacing the simple one-hot
identifier scheme used in DisCo_OG. This richer
representation enabled the model to capture sys-
tematic annotator behavior beyond identity-level
patterns.

Second, the training objectives were expanded.
In addition to KL divergence and categorical cross-
entropy, we introduced multi-objective loss func-
tions: (i) Wasserstein distance for aligning pre-
dicted and true soft-label distributions (applied to
Par and CSC), (ii) mean absolute error (MAE) for
per-annotator alignment (also on Par and CSC),
(iii) a weighted combined loss that optimized both
simultaneously, and (iv) an alternating formula-
tion that switched objectives between epochs. The
combined loss proved most effective, defined as:

L = o - Lwasserstein 1 — @ - Limag,

with o = 0.6 favoring the soft-label component.
This formulation produced the most consistent im-
provements across datasets.

Finally, extensive hyperparameter sweeps were
conducted per dataset. The optimal configurations
covering activation functions, latent dimensions,
fusion strategies, optimizers, learning rates, embed-
ding models, loss functions, and weight initializa-
tion schemes are reported in Table 1.

4.5 Reproducibility

To ensure reproducibility, all experiments were con-
ducted with fixed random seeds and repeated five
times per dataset. The optimal hyperparameter
settings for each dataset are reported in Section 4.4.
Source code is publicly available at https://
github.com/Homan-Lab/lewidi3_public. The
metadata prompt templates are included in Sec-
tion A.3 in the appendix to facilitate end-to-end
replication of our results.

5 Results

We report the official results of our submitted sys-
tem (under the name “LPI-RIT”) on the final leader-
board of the LeWiDi 2025 shared task. Table 2
presents our ranking and evaluation metrics across
the three datasets, under both tasks. Our team, “LPI-
RIT”, placed tenth in both soft and perspectivist
tasks among fifteen and eleven teams (including
LeWiDi baselines), respectively.

Compared to the two official baselines, our sys-
tem outperformed the random baseline across all
submitted tasks except for Paraphrase, but per-
formed worse than the most frequent label baseline.
For soft labels, our results were 1.45 (CSC), 0.54
(MP), and 3.71 (Par) while in the perspectivist task,
they were 0.33 (CSC), 0.32 (MP), and 0.44 (Par).

Despite not achieving top rankings, our system
provided a consistent output across tasks and served
as a solid implementation of the DisCo modeling
framework. These results highlight several areas
for improvement—particularly in soft-label predic-
tion on CSC and in modeling individual annotator
behavior under the perspectivist setup—while af-
firming the feasibility of generalizing DisCo to
the LeWiDi setting without extensive task-specific
modifications.

In the post-evaluation phase, we introduced sev-
eral improvements to the DisCo model, including
the use of annotator metadata, expanded preprocess-
ing support, stronger sentence encoders, and loss
functions better aligned with soft-label and perspec-
tivist objectives. These changes led to consistent
gains across all datasets. Table 3 summarizes these
results; further analysis is provided in Section 6.

6 Discussion

Having established that DisCo_INEW consistently
outperforms both OG and baselines, we now analyze
how and why these improvements occur. In the
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Participant TASK A - Soft Evaluation | TASK B - PE Evaluation
CSC | MP | Par CSC | MP | Par
taysor 0.746 | 0.422 1.200 0.156 | 0.288 0.120
dignatev 0.792 | 0.469 1.12 0.172 | 0.300 0.130
azadis2 0.803 | 0.439 1.610 0.213 | 0.311 0.200
aadisanghani 0.803 | 0.439 3.050 0.213 | 0.311 0.490
twinhter 0.835 | 0.447 0.980 0.228 | 0.319 0.080
tomasruiz 0.928 | 0.466 1.800 0.231 | 0.414 0.230
LeWiDi_mostfrequent | 1.169 | 0.518 3.230 0.238 | 0.316 0.360
aadisanghani 0.803 | 0.439 3.051 0.213 | 0.311 0.491
funzac 1.393 | 0.551 3.140 0.291 | 0.326 0.420
LPI-RIT (DisCo_OG) | 1.451 | 0.540 3.710 0.331 | 0.324 0.440
LeWiDi_random 1.549 | 0.689 3.350 0.355 | 0.500 0.380

Table 2: Final leaderboard scores for LeWiDi 2025. Scores reflect error or distance metrics (lower is better).

subsequent comparisons and analyses, the original
and updated models are referred to as DisCo_OG
and DisCo_New, respectively.

Across all datasets and both tasks, the post-
evaluation model (DisCo_NEW) consistently out-
performs both our original submission (DisCo_OG)
and the strongest LeWiDi baselines. On CSC
and Par, DisCo_New reduces error substantially in
both soft-label and perspectivist metrics, while
on MP the gains are smaller but still clear.
These results demonstrate that the proposed ex-
tensions—metadata embeddings and task-aligned
loss functions—yield tangible improvements over
the baseline DisCo architecture and most frequent
baselines.

6.1 MultiPICo Analysis

Evaluation: A modest but consistent reduction in
Manhattan distance was observed for DisCo_New
compared to DisCo_OG (evaluation score reduced
from 0.54 to 0.45), indicating that tighter pre-
dicted distributions around human soft labels were
achieved. A comparison of soft-label confusion
matrices (Figure 4) shows a clear improvement in
recall for the [ronNic class—true positives increased
from 92 to 116, while false negatives decreased
from 711 to 687. We interpret this shift as evidence
of improved sensitivity to sarcastic and ironic in-
stances, which is a core objective of the MP task.
Importantly, these gains were achieved with only
a small increase in false positives, suggesting that
minority perspectives were captured more effec-
tively without over-predicting irony. The error-rate
distribution for individual annotator predictions
also improved from 0.32 to 0.31. Overall, stronger
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Figure 4: Soft-label confusion matrix for MP dev set
(DisCo_New). Improved recall for the IroNIC class is
shown compared to DisCo_OG.

alignment at the class level and consistency through
replication were demonstrated by DisCo_New.

Confidence Calibration: Improvements in
model calibration were also observed. Figure
(5), a scatterplot of prediction error versus modal
label probability, compares model performance
DisCo_OG and DisCo_New using Manhattan dis-
tance against modal prediction confidence. In the
original submission, the model exhibited numerous
high-error predictions even at high confidence, and
the error spread remained large across the confi-
dence spectrum. After improvements, the updated
model shows a tighter error distribution, particu-
larly in the 0.7-0.95 confidence range, and fewer
catastrophic failures at high confidence. This indi-
cates improved calibration and reliability, although
low-confidence predictions continue to produce er-
ratic errors, suggesting room for further refinement
in uncertain regions of the prediction space.

6.2 Paraphrase Analysis

Evaluation: For the Par dataset, the largest im-
provement in soft-label matching was recorded,



Dataset Task _OG Score _New Score LeWiDi Most Frequent Label LeWiDi Random Label
CSC Soft 1.45 0.87 1.17 1.54
PE 0.33 0.22 0.24 0.36
MP Soft 0.54 0.45 0.52 0.69
PE 0.32 0.31 0.32 0.5
P Soft 3.71 2.21 3.23 3.35
ar PE 0.44 0.28 0.36 0.38

Table 3: Original vs. new scores across datasets.
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Figure 5: Prediction error vs. modal label probability
for the MP dev set. Fewer high-error outliers at high
confidence are seen for DisCo_New.
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Figure 6: Mean absolute error per Likert label on the
Par dev set. DisCo_New (blue) shows a more balanced
and lower error profile, especially at the extremes.

with the Wasserstein distance decreasing from 3.71
to 2.21. This indicates substantially better align-
ment with annotator distributions. The absolute
distance was also reduced from 0.44 to 0.28, show-
ing that gains in the soft-label space translated to
higher accuracy under the perspectivist evaluation
metric. We believe these results demonstrate that
DisCo_New can capture annotator-specific varia-
tions more effectively.

Error Calibration by Label: To assess model
behavior across the Likert scale, mean absolute
error per label was examined. As shown in Figure 6,
predictions from DisCo_OG were highly skewed,
with excessive probability mass assigned to label
+5, producing sharp error peaks. A more balanced
error profile was seen in DisCo_New, with reduced
overcommitment to extreme positive labels while
calibration error in the mid-range was maintained
or slightly increased. This suggests that output bias
was corrected in a way that more faithfully reflects
the true distribution of paraphrase strength.

50 200 250 300 o 50 100 00 250 300

100 150 150 2
Per-item NAD (%) Per-item NAD (%)

Figure 7: Distribution of Normalized Absolute Distance
(NAD) for the Par dev set. DisCo_New exhibits a sharper
peak and lower error across the board.

Normalized Error Distribution: Overall soft-
label alignment was further assessed using Normal-
ized Absolute Distance (NAD), which measures
deviation from the gold distribution relative to total
mass. Asshown in Figure 7, lower and more concen-
trated NAD scores were achieved by DisCo_New,
with most predictions deviating less than 75%. In
contrast, DisCo_OG exhibited inflated NAD values
due to label scale mismatches and miscalibration.
We view this as evidence that DisCo_New better
captures the inherent ambiguity and subjectivity in
paraphrase judgments.

6.3 Conversational Sarcasm Corpus (CSC)

Evaluation: For CSC, clear gains in soft-label
alignment were recorded. The Wasserstein dis-
tance decreased from 1.45 in DisCo_OG to 0.87
in DisCo_New, indicating a closer approximation
to gold label distributions. This improvement was
especially evident for examples with low annotator
consensus. The absolute distance also fell from
0.33 to 0.22, showing significant enhancement in
the perspectivist task.

Confidence Sensitivity: The effect of gold label
certainty on model performance was examined
by plotting prediction error against modal label
probability. As shown in Figure 8, lower error for
cases with low modal confidence (high annotator
disagreement) was achieved by DisCo_New. While
DisCo_OG exhibited the highest Wasserstein error
in these ambiguous cases, DisCo_New maintained
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Figure 8: Prediction error vs. modal label probability
on the CSC dev set. Reduced error on low-agreement
cases is observed for DisCo_New.
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Figure 9: Mean absolute error per Likert label on the
CSC dev set. DisCo_New reduces overprediction of
non-sarcastic responses (label 0) and achieves smoother
calibration overall.

greater stability and resilience, capturing soft-label
nuances even when consensus was weak. We see
this as further support for the model’s improved
perspectivist capabilities and robustness in handling
disagreement.

Error Calibration by Label: Mean absolute
error per Likert label (Figure 9) showed that
DisCo_OG over-predicted label &—non-sarcastic
interpretations—resulting in large mismatches.
This overcommitment was reduced by more than
half in DisCo_New. A smoother error profile across
all sarcasm intensities was also observed, avoiding
the sharp asymmetries seen in DisCo_OG. These
findings indicate a more balanced and context-aware
handling of literal and sarcastic language, with im-
proved soft-label calibration overall.

6.4 Cross-Dataset Insights

Several cross-cutting patterns emerged across CSC,
MP, and Par, providing broader insight into the han-
dling of label ambiguity, annotator disagreement,
and error sensitivity.

Annotator-Level Evaluation: Annotator error
distributions (Figure 10) showed that for CSC, vir-
tually all annotators were predicted incorrectly
by DisCo_OG—error rates clustered at 1.0. In
contrast, a more varied distribution was seen for
DisCo_New, with many annotators achieving error
rates below 0.6. We interpret this as evidence of
better alignment with annotator-specific viewpoints.

MP remained largely stable, with a slightly tighter
distribution under DisCo_New. For Par, high error
persisted in both models, driven by strong prior bias
in predictions. These findings confirm that while
overall system-level scores improved modestly, sub-
stantial gains in modeling annotator diversity and
disagreement were achieved for CSC.

Additional linguistic and entropy-based analyses
in Appendix A.2 further support these findings.
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Figure 10: Annotator-level error distributions for the
DisCo_New model. Each histogram shows the distribu-
tion of absolute error per annotator across the dataset.

These analyses show that beyond leaderboard
scores, disagreement-aware modeling yields inter-
pretable and socially relevant gains.

7 Conclusion

We presented enhancements to the DisCo architec-
ture in the context of the LeWiDi-2025 shared task,
addressing key limitations in annotator modeling,
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input representation, and loss formulation. By em-
bedding annotator metadata, refining item encoders,
and introducing task-aligned multi-objective losses,
our post-evaluation system achieved consistent im-
provements across CSC, MP, and Par in both soft-
label and perspectivist evaluations.

Beyond leaderboard performance, our analyses
revealed important behavioral patterns: improved
calibration under uncertainty, stronger alignment
with annotator-specific perspectives, and greater ro-
bustness to label ambiguity. These findings demon-
strate that modeling disagreement is not only a
technical challenge but also an opportunity to cap-
ture the diversity inherent in human annotation.

Looking ahead, we see promising directions in
scaling demographic-aware modeling, developing
systematic ablation studies, and exploring methods
that safeguard fairness and privacy while leveraging
annotator metadata. Our work underscores the
value of moving beyond aggregated ground truth
toward systems that better reflect the complexity of
human judgment.

Limitations

Our study has some limitations. First, we did not
evaluate on the VariErrNLI dataset, primarily due
to time constraints and the additional modeling
adjustments the dataset features would require. As
a result, our findings are restricted to CSC, MP,
and Par, and may not fully generalize to NLI-style
disagreement tasks.

Second, while our system integrates multiple ex-
tensions to DisCo, including metadata embeddings
and revised loss formulations, we did not conduct
full ablation studies. Consequently, it is difficult
to isolate the contribution of each component, and
future work should aim to quantify their relative
impact more systematically.

Finally, the use of annotator metadata raises ethi-
cal considerations. Demographic information such
as age, gender, and nationality can be valuable for
modeling disagreement, but also introduces poten-
tial risks around privacy and fairness if applied
in real-world systems. These aspects warrant fur-
ther investigation before deployment in sensitive
applications.

Future work should address these limitations by
extending evaluation to broader datasets, perform-
ing systematic ablations, and developing methods
that leverage annotator metadata while safeguarding
privacy and fairness.
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A Appendix
A.1 Datasets

Conversational Sarcasm Corpus (CSC): Itcom-
prises roughly 7,000 context-response pairs, each
annotated for sarcasm intensity on a six-point scale
by both the original response generators (“‘speak-
ers”) and subsequent external observers (Jang and
Frassinelli, 2024). In an initial online experiment,
speakers wrote a reply to a given situational context
and self-rated the sarcasm of their own utterance
from 1 (“not at all”) to 6 (“completely”). In follow-
up studies, fresh cohorts of observers provided
independent ratings for the same context-response
pairs—six observers per item in Part 1 and four in
Part 2—yielding rich soft label distributions that
reflect both insider and outsider perspectives.

MultiPico (MP): The dataset is a multilingual
irony-detection corpus built from short post—reply
exchanges drawn from Twitter and Reddit (Ca-
sola et al., 2024). For each entry, crowdsourced
annotators judged whether the reply was ironic
in light of the preceding post, producing a bi-
nary label. Crucially, MP includes sociodemo-
graphic metadata (gender, age, nationality, race,
student/employment status) for each annotator, and
covers eleven languages—among them Arabic,
Dutch, English, French, German, Hindi, Italian, Por-
tuguese, and Spanish. On average, each post-reply
pair receives five independent annotations, making
MP a challenging benchmark for cross-lingual and
demographic-aware perspectivist modeling. The
paper describing this dataset is available here.

Paraphrase Detection (Par): The benchmark
adapts the Quora Question Pairs (QQP) format to a
fine-grained judgment task. Four expert annotators
each assigned an integer score from -5 (“com-
pletely different”) to +5 (“exact paraphrase’) for
500 question pairs, and provided brief justifications
for their ratings. Unlike typical NLI-style datasets,

Par uses scalar labels and limits each annotator to
one judgment per item, emphasizing inter-annotator
variance in graded semantic similarity. This dataset
is maintained by the MaiNLP Lab and is not yet
formally published.

VariErr NLI ((VariErrNLI)): The corpus was
specifically designed to disentangle genuine human
label variation from annotation errors in Natural
Language Inference (NLI) tasks (Weber-Genzel
et al., 2024). In the first round, annotators re-
labeled 500 premise—hypothesis pairs drawn from
the MNLI corpus, providing both labels (Entail-
ment, Neutral, or Contradiction) and free-text expla-
nations for their choices. In the second round, these
same annotators validated each label-explanation
pair, yielding 7,732 judgments that pinpoint er-
ror versus variation. LeWiDi-2025 focuses on
the Round 1 soft label distributions, challenging
systems to model nuanced NLI judgments at the
intersection of semantics and annotator reasoning.
The paper describing this dataset is available here.

A.2 Supplementary Analysis

This section provides additional analyses for the
three datasets, supplementing the main results dis-
cussed in Section 6. The figures below explore
linguistic complexity, annotator alignment, and
perspective variance in greater detail.

A.2.1 Qualitative Insights from Word Clouds:

Word clouds (from the top 25% hardest and easiest
examples (by error) (Figure 11) in each dataset
provided further interpretability. In CSC, hard ex-
amples in the new system reflected more nuanced so-
cial situations (e.g., “borrowed,” “paid,” “trust”),
while easy examples featured clear sentiment or
tonal markers (e.g., “congrats,” “hang,” “job”).
The new system appeared to better distinguish prag-
matic cues of sarcasm. In MP, multilingual word
clouds remained dense and difficult to interpret
visually, but no major shifts were observed in the
most frequent hard/easy terms. Par’s clouds showed
consistent emphasis on mechanical or structured
terms (e.g., “support,” “contact”) in hard cases
and evaluative language in easy ones (e.g., “best,”
“make,” “win”). These patterns support the conclu-
sion that the new system is sensitive to social and
tonal variation, particularly in CSC.

A.2.2 Error vs. Token Length and Entropy:

Across datasets, we examined how item-level er-
ror varied with input length and gold label en-
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Figure 11: Word clouds.

tropy, refer Figure 12. In CSC, the updated
model showed improved behavior on high-entropy
items—error steadily decreased as label entropy
increased, whereas the original model incurred the
highest errors for ambiguous cases. This suggests
that the revised model better approximates human
uncertainty. A similar trend was observed in MP,
although gains were more moderate. For Par, error
increased slightly with entropy in the new model,
possibly reflecting persistent overfitting to majority-
label patterns. Overall, the improved system is
more robust to uncertainty in CSC and MP, a key
desideratum in perspectivist modeling.

A.3 Reproducibility - Metadata Prompts

For full transparency, we provide the exact tem-
plates used to verbalize annotator metadata into
natural language prompts. These were applied
consistently across datasets to ensure reproducible
results.

Par: The annotator is gender, age years old,
from nationality with an education level of
education.

MP: The annotator is a gender, age years old, of
nationality nationality, born in country_birth
and residing in country_of_residence, with stu-
dent status student_status and employment sta-
tus employment_status, and of ethnicity eth-
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Figure 12: Error vs.
across datasets.

token length and gold entropy

nicity.

CSC: The annotator is a gender and age years
old.

These templates allow consistent regeneration of
metadata embeddings and support faithful repro-
duction of our experiments.



