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Abstract

This system paper presents the DeMeVa team’s
approaches to the third edition of the Learning
with Disagreements shared task (LeWiDi 2025;
Leonardelli et al., 2025). We explore two di-
rections: in-context learning (ICL) with large
language models, where we compare example
sampling strategies; and label distribution learn-
ing (LDL) methods with RoBERTa (Liu et al.,
2019b), where we evaluate several fine-tuning
methods. Our contributions are twofold: (1) we
show that ICL can effectively predict annotator-
specific annotations (perspectivist annotations),
and that aggregating these predictions into soft
labels yields competitive performance; and (2)
we argue that LDL methods are promising for
soft label predictions and merit further explo-
ration by the perspectivist community.

1 Introduction

In natural language processing (NLP), annotations
are often treated as a gold standard, implying a
single, unambiguous truth. However, for tasks that
involve, among other things, cultural norms or sub-
jectivity, human judgments can vary substantially,
often reflecting diverse annotator backgrounds or
personal perspectives (Plank, 2022; Cabitza et al.,
2023). Customary approaches that aggregate these
diverging annotations with techniques like majority
voting disregard the potential validity of pluralis-
tic interpretations, which may lead to the loss of
valuable information about both the data instances
and the people who annotated them. The Learning
with Disagreements (LeWiDi) shared task shifts
the focus to learning from unaggregated crowd la-
bels, whether through learning from soft labels or
through aligning models with specific annotators’
viewpoints (i.e., perspectivist training).

The DeMeVa team ranks 2nd overall on the
leaderboard of the LeWiDi 3rd Edition shared task
(LeWiDi 2025; Leonardelli et al., 2025). In this
system paper, we describe the contributions of the

DeMeVa team and discuss both our highest-scoring
method and the other approaches that did not make
it onto the leaderboard. We hope that our interpreta-
tion of these results will offer insights into learning
with disagreement in NLP.

We obtained our score on the leaderboard by em-
ploying in-context learning (ICL) for perspectivist
modeling. ICL refers to the ability of pre-trained
large language models (LLMs) to perform NLP
tasks without task-specific training; in ICL, these
models are instead conditioned on input-output ex-
amples (“demonstrations”) provided in the prompt
(Brown et al., 2020). Recent studies have demon-
strated ICL’s success on a wide range of tasks (see
e.g. Dong et al., 2024). However, they have also
shown that ICL is sensitive to the choice, order,
and format of demonstrations. We explore how
and to what extent ICL can be leveraged to steer
LLMs toward the annotation patterns of individual
annotators in natural language understanding.

In parallel with perspectivist ICL, our team also
pursued alternative directions aimed at modeling
label distributions. In this context, we drew on
existing research from both NLP and other com-
munities. Specifically, we refer to studies in label
distribution learning (LDL), a research vein that
focuses on modeling probability distributions over
full label spaces and which has its roots in the
broader machine learning community. We note
that some of the insights from LDL have not yet
fully found their way into NLP-specific research.
In our experiments, we build on such works by us-
ing two LDL-specific fine-tuning methods, neither
of which has been widely applied in NLP: ordinal
label distribution learning (Wen et al., 2023) and
predicting population-level label distributions via
clustering (Liu et al., 2019a).

The structure of this paper is as follows. In Sec-
tion 2, we briefly reintroduce the datasets and sub-
tasks of the LeWiDi shared task. Next, we describe
our ICL approaches in Section 3 and our LDL-
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Dataset Task #E (train/dev/test) #Ann/E #Ann

CSC (Jang and Frassinelli, 2024) Sarcasm detection 5628/704/704 4+ 840
MP (Casola et al., 2024) Irony detection 12017/3005/3756 5+ 506
Par (as yet unpublished) Paraphrase detection 400/50/50 4 4
VariErrNLI (Weber-Genzel et al., 2024) NLI 388/50/50 4 4

Table 1: Overview of datasets used in LeWiDi 2025. E denotes entries, Ann denotes annotators.

related fine-tuning strategies in Section 4. Finally,
we make our concluding remarks in Section 5.

2 Datasets, tasks, and evaluation metrics

In this section, we discuss the datasets and evalua-
tion metrics of the LeWiDi 2025 shared task.

2.1 Datasets

The LeWiDi 2025 shared task includes 4 datasets
covering various aspects of natural language under-
standing (see Table 1 for an overview).

CSC The Conversational Sarcasm Corpus (CSC;
Jang and Frassinelli, 2024) is a richly annotated
sarcasm dataset containing 7,040 context-response
pairs. For each of these pairs, the authors provided
self-ratings on a 6-point Likert scale, and third-
party annotators (360 in total, with 6 per author in
Part 1 and 4 per response in Part 2) rated the level
of sarcasm in the responses on the same scale.

MP The MultiPICo Dataset (MP; Casola et al.,
2024) is a multilingual, socio-demographically
grounded dataset of irony on social media, compris-
ing 18,778 post-reply pairs from Reddit and Twitter
across 9 languages and 25 linguistic varieties. Each
received a mean of 5.02 binary irony labels from a
pool of 506 crowd annotators balanced by gender
and nationality.

Par The Paraphrase Detection Dataset (Par; as
of yet unpublished) contains 500 sentence pairs
from the Quora Question Pairs dataset, each an-
notated by 4 expert annotators on a Likert scale
ranging from -5 to +5 based on paraphrase quality.
Annotators were asked to provide short explana-
tions justifying their scores as well.

VariErrNLI The VariErrNLI Dataset (Weber-
Genzel et al., 2024) is designed to disentangle gen-
uine human label variation from annotation errors
in natural language inference (NLI). It features a
two-round annotation protocol applied to 500 multi-
genre NLI (MNLI; Williams et al., 2018; Nie et al.,

2020) items, resulting in 1,933 label-explanation
pairs in the first round and 7,732 validity judgments
in the second round. The dataset serves both as a
benchmark for Automatic Error Detection methods
and a resource to improve dataset trustworthiness.
It also includes explanations for each annotation.

2.2 Tasks and evaluation metrics

LeWiDi 2025 introduces two tasks for the two es-
tablished main approaches to unaggregated data: 1)
Task A—soft label modeling, where systems gen-
erate probability distributions over all classes for
each item; and 2) Task B—perspectivist modeling,
where systems predict individual annotators’ labels
for specific items. At the same time, within each of
these two tasks, the evaluation metrics vary depend-
ing on the structure of the concrete dataset they are
paired with: e.g., Par and CSC, which both include
Likert-scale values, require a different metric suite
compared to datasets with unranked labels.

For Task A, the MP and VariErrNLI datasets
make use of the Manhattan distance as the evalua-
tion metric. The Manhattan distance measures the
sum of absolute differences between the predicted
and the target distributions. For VariErrNLI, this
is extended to a Multi-label Average Manhattan
Distance (MAMD), averaging the Manhattan dis-
tances across multiple labels. Performance on the
Par and CSC datasets is assessed with the Wasser-
stein distance, which measures the minimum cost
to transform one distribution into another.

Regarding Task B, MP and VariErrNLI are
paired with the error rate (ER) and multi-label
error rate (MER), respectively. ER measures the
proportion of incorrectly matched values between
predicted and target label vectors, while MER aver-
ages the error rates across multiple labels. For Par
and CSC, the average normalized absolute distance
(ANAD) is used, which normalizes the average ab-
solute difference between Likert scale values based
on the range of the scale. In all cases, a lower
score indicates better performance, with a score of
0 indicating a perfect match.
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3 In-context learning

Recent work has explored in-context learning for
steering language models toward diverse human
label distributions, primarily focusing on persona-
based prediction for tasks like toxicity and hate
speech detection (Sorensen et al., 2025; Radlin-
ski et al., 2022; Ramos et al., 2024). In that vein,
many studies focus solely on the effect of steering
models with persona descriptions (Hu and Collier,
2024; Kambhatla et al., 2025; Sun et al., 2025);
in the meantime, prompts that also incorporate an-
notations have been shown to elicit better predic-
tions (Meister et al., 2025). While these inquiries
are mostly based on more widely used datasets,
LeWiDi 2025 presents new challenges on tasks
that have received limited attention so far in the
domain of perspectivist NLP such as paraphrase
evaluation and sarcasm detection.

We explore different ICL strategies on these
novel datasets to advance perspective-aware mod-
eling, leveraging state-of-the-art generative mod-
els: OpenAI’s GPT-4o (Achiam et al., 2023),
Claude Haiku 3.5 (Anthropic, 2024), and Llama
3.1 70B-Instruct (Grattafiori et al., 2024). How-
ever, we do not explore persona-based steering as
the LeWiDi 2025 datasets contain relatively few
sociodemographic variables, making sociodemo-
graphic prompting infeasible.

3.1 System pipeline

To accomplish both tasks of LeWiDi 2025, we pro-
pose a two-step pipeline (Figure 1). First, we use
ICL to prompt LLMs to predict individual annota-
tors’ labels based on their previous responses (Task
B). We then use these predictions to calculate the
final soft label (Task A).

The two key components of ICL are demonstra-
tion selection and prompt engineering. Our main
focus is on finding the most appropriate example
sampling method (demonstration selection). As for
the prompt engineering component, we use a sim-
ple template adapted from Dutta et al. (2025) that is
applicable to all datasets in the shared task (see Fig-
ure 2 for the prompt template and Appendix A for
a filled example for the CSC dataset). The template
is designed to be flexible enough to accommodate
different tasks and input formats while also being
straightforward enough for the LLM to leverage.
For every experiment, we set the temperature to
0.0 to enforce greedy decoding and yield the most
probable sequence with minimal randomness.

AggregationIn-Context Learning

Sampling

Figure 1: Our two-step pipeline to solve both tasks,
based on ICL. In the first step (Task B), we sample ex-
amples from an annotator’s past annotations and prompt
the LLM to model annotator-specific behavior and pre-
dict labels for test inputs. In the second step, we aggre-
gate these predictions into soft labels (Task A).

Prompt Template

[INST] You are an expert in guessing my
response against a {TASK_NAME} task.

Your task is to analyze and predict my
response to {INPUT_FORMAT} between <<<
and >>>, and label it with {RESPONSE
_FORMAT} {LABEL_EXPLANATION}.

Below are some of my previous responses.
You should learn my response behavior
from them and then make the prediction.

{EXAMPLES}
[/INST]

>>>
{INPUT}
>>>

Figure 2: Our ICL prompt template. The template sup-
ports varied tasks and input formats without sacrificing
clarity.

3.2 Example selection strategies

ICL is sensitive to how demonstrations are sampled
and supplied to the model. We therefore compare
two strategies for example selection: similarity-
based and stratified label-based sampling. Addi-
tionally, we examine whether explanations avail-
able in the Par and VariErrNLI datasets can im-
prove model personalization when included in
prompts. This test builds on the work started by
Ye and Durrett (2022) and Jiang et al. (2023), who
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stress the ambiguous role of explanations in NLI
labeling.

The standard approach of retrieving semantically
similar examples faces challenges with respect to
perspectivist learning. BERT-based cosine similar-
ity primarily ensures lexical and topical proximity
(Kaster et al., 2021), but perspectivist tasks may
require more nuanced selection. First, as Jiang and
Marneffe (2022) show, annotators in NLU tasks
rely on specific linguistic heuristics rather than
topical similarity; hence, similarity with respect
to these heuristics would offer a better selection
criterion. Second, annotator-specific subsets can
be arbitrarily small, which means they may lack
enough similar examples for meaningful retrieval.
Our two sampling strategies are as follows.

Similarity-based sampling For a test input q
(the current query) and annotator a, let Da de-
note the set of training examples annotated by a.
Let h(x) ∈ Rd be the sentence embedding of x
produced by Sentence-Transformers (Reimers and
Gurevych, 2020). We measure the relevance using
the cosine similarity: s(q, x) = cos

(
h(q), h(x)

)
.

We select k demonstrations starting with S = ∅
and at each step, we add to this set the element

x∗ = argmax
x∈Da\S

λ s(q, x) − (1−λ) max
x′∈S

s(x, x′).

and update S ← S ∪ {x∗} until |S| = k. We
set λ = 0.7 to reduce redundancy among selected
shots via the Maximal Marginal Relevance (MMR)
method.

Stratified label-based sampling For each anno-
tator a, let Da denote the training set, Ya the full
set of their annotations, and ya(x) ∈ Ya the label
assigned by this annotator for data sample x. We
first drop labels that occur less than two times to
ensure stratification. Let L = max{|Ya|, k}. If
|Da| ≤ L or only one label remains, we sample
up to k examples uniformly from Da. Otherwise,
we construct a stratified subsample S′ ⊂ Da that
approximately preserves the empirical label propor-
tions over ya(x). We do this using scikit-learn (Pe-
dregosa et al., 2011), and we then draw k examples
uniformly without replacement from S′.

We hypothesize that label-based sampling yields
more representative examples by exposing models
to diverse annotation patterns, which can be par-
ticularly effective for nuanced label scales (such
as those found in CSC and Par) compared to bi-
nary tasks. This approach increases the likelihood

that relevant linguistic heuristics appear in demon-
strations, helping models learn annotator-specific
decision patterns. We set the number of demonstra-
tions to k = 10.

3.3 Model performance

We report the experiment results in Table 2. While
the performance differences between ICL ap-
proaches are relatively subtle, they mostly yield
substantial improvements over the baseline meth-
ods across the datasets and tasks.1

Similarity-based sampling performs best on MP,
whereas label-based sampling tends to improve
(lower) Task A distances on the other datasets with-
out reducing the error rate. For MP, both error rate
and distance are lower when using similarity-based
sampling. This is to be expected: with binary la-
bels, stratified label-based sampling is practically
equivalent to random sampling. On the other three
datasets, label-based sampling often results in im-
provements on Task A, while the error rate often
changes insignificantly or even increases compared
to stratified label-based sampling. Our explanation
for this is that the metrics for Task A show more
sensitivity toward numeric values of predictions,
and label-based sampling offers more control of
said numeric values since the model limits its out-
puts to within the provided label range. At the
same time, since the error rate is not significantly
influenced, our assumption that the sampled exam-
ples are more representative of this method does
not appear to hold.

For Par and VariErrNLI, the results show that the
inclusion of explanations further enhances perfor-
mance; remarkably, this trend is more pronounced
in Task A metrics compared to Task B metrics, as
the error rate remains roughly in the same range
for both settings. However, the calibration effect of
label-based sampling is more notable (especially
for GPT-4o), showing that it is amplified by rea-
soning examples. The fact that explanations im-
prove performance in this regard may complement
the results of Ni et al. (2025), who find that CoT-
prompting helps steer RLHF models toward human
perspectives. While explanations only contain one
reasoning step, they still can be regarded as being
analogous to more complex reasoning examples.

1MP stands out as an exception to that. We explain the
poor performance of Llama and Haiku on MP by the fact
that they do not adequately support several of the languages
present in MP.
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Task A Task B
CSC MP Par VariErrNLI CSC MP Par VariErrNLI

baseline_random 1.549 0.689 3.35 1.0 0.355 0.5 0.38 0.5
baseline_most_frequent 1.169 0.518 3.23 0.59 0.238 0.316 0.36 0.34

GPT-4o +sim 0.84 0.466 1.17 0.46 0.175 0.294 0.13 0.26
GPT-4o +strat 0.792 0.469 1.25 0.44 0.172 0.3 0.14 0.25
Haiku-3.5 +sim 1.005 0.657 1.58 0.43 0.205 0.375 0.15 0.26
Haiku-3.5 +strat 0.95 0.684 1.47 0.42 0.201 0.392 0.16 0.27
Llama-3.1-70B-Inst +sim 1.192 0.691 1.41 0.44 0.226 0.392 0.14 0.24
Llama-3.1-70B-Inst +strat 1.157 0.706 1.38 0.36 0.227 0.399 0.15 0.22

+ Explanation:

GPT-4o +sim – – 1.17 0.43 – – 0.12 0.24
GPT-4o +strat – – 1.12 0.38 – – 0.13 0.23
Haiku-3.5 +sim – – 1.36 0.44 – – 0.13 0.24
Haiku-3.5 +strat – – 1.35 0.45 – – 0.15 0.25
Llama-3.1-70B-Inst +sim – – 1.35 0.46 – – 0.14 0.25
Llama-3.1-70B-Inst +strat – – 1.39 0.44 – – 0.14 0.25

Table 2: Results of ICL Strategies on LeWiDi 2025. +sim denotes similarity-based example sampling, and +strat
denotes stratified label-based sampling. We additionally experiment with including annotator explanations in the
Par and VariErrNLI datasets (+Explanation). The results submitted to the leaderboard are shown in bold.

3.4 Discussion

To further validate the results of ICL, we examine
its predictions on each development set in more
detail. While the development sets of Par and Vari-
ErrNLI both comprise only 50 examples, those of
MP and CSC consist of hundreds of items each,
making it more challenging to inspect them thor-
oughly. We therefore sample a smaller subset of
items from both datasets: for CSC, we randomly
select 50 items, whereas for MP, we extract 50 ran-
dom items for each included language (totaling 450
items). Although this strategy makes the analysis
more feasible, it effectively prevents us from com-
paring per-annotator label distributions on CSC, as
the down-sampled sets only include a few exam-
ples per worker. Nevertheless, we can still identify
the strengths and weaknesses of our ICL methods
based on specific data items.

One notable tendency is that models often pre-
dict unanimous agreement on instances that appear
straightforward on the surface, but which are actu-
ally annotated differently. We illustrate this with
an example from MP–dev–1597 in Figure 3. While
the reply is directly licensed by the first utterance,
that utterance does not give an immediate and ob-
vious reason for an ironic reply. However, more
than half of the annotators labeled this example
as ironic. Similar cases can also be identified in

MP–dev–1597 (snippet)

[Post]: We once used coins such as Annas, paise,
even half annas! and one could survive a day! The
rupee used to be made of silver which would be a
day’s salary back then.

[Reply]: How old are you?

Figure 3: A sample from the MP development set.
The majority of the annotators marked this example
as ironic.

the three other datasets, as annotators often demon-
strate vastly different annotation behaviors. These
examples possibly show that complete pluralistic
alignment of language models may be impossible
to fully achieve (at least in the linguistic domain),
as the model adhering to common sense in all ex-
amples appears to be more important in this con-
text when compared to adhering to the plurality of
views.

At the same time, we note that the tested mod-
els are generally successful in mimicking specific
annotators’ labeling strategies. This is best illus-
trated in the VariErrNLI and Par datasets, since
the annotators’ motivations are directly available
for analysis. For example, in the Par dataset, an-
notator Ann3 uses label 0 considerably more often
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than their peers, consistently labeling most non-
contradicting examples with 0 rather than negative
values even when they are non-relevant. This rea-
soning is also reflected in Ann3’s explanations. The
models, particularly when combined with label-
based sampling, tend to imitate this peculiarity
while also never predicting 0 for annotators Ann1
and Ann2 (who rarely use it). Likewise, the pre-
dictions also reflect less subtle differences, like the
annotators’ inclination toward positive or negative
scale values (for Par) and entailment or neutral
labels (for VariErrNLI). For example, Ann3’s pref-
erence for positive values is also discernible in the
predicted labels. In this respect, it can be argued
that ICL can be successful when used for perspec-
tivist modeling of individual perspectives.

4 Fine-tuning approaches

In this section, we discuss the various fine-tuning
approaches we have explored for Task A. While
the overall performance of these approaches was
ranked lower on the leaderboard than the in-context
learning methods from Section 3—in part because
we merely tackled a subset of Task A—we believe
that these fine-tuning methods are still a valuable
contribution to understanding how we can learn
from disagreements. All fine-tuning experiments
were done using the base RoBERTa (Liu et al.,
2019b) model.

4.1 Approach 1: Cumulative distances for
Likert scales

In the machine learning and computer vision com-
munities, Geng and Ji (2013) introduced label dis-
tribution learning (LDL) as an alternative to single-
label and multi-label learning (MLL). While MLL
allows data instances to be assigned to multiple
classes, LDL aims to solve the ambiguity prob-
lem (i.e., instances potentially belonging to several
classes) by predicting how much each label de-
scribes an instance. In other words, just like the
soft evaluation approaches developed in perspec-
tivist NLP communities, LDL predicts a probability
distribution over the set of available labels. Wen
et al. (2023) remark that LDL algorithms gener-
ally fail to accurately predict distributions for tasks
where the labels are inherently ordered, such as
age estimation. They propose the ordinal label
distribution learning (OLDL) paradigm and intro-
duce evaluation metrics which take the ordinality
of labels into account.

The Par and CSC datasets both contain anno-
tations based on a Likert scale. These scales are
ordered: higher ranks represent a higher degree
of the measured concept. In the first part of our
fine-tuning efforts, we experiment with using two
evaluation metrics proposed by Wen et al. (2023) as
loss functions when fine-tuning RoBERTa: cumu-
lative Jensen–Shannon divergence and cumulative
absolute distance. During experimentation, we
freeze all but the last six layers.

Let CDFP and CDFQ be the cumulative distri-
bution functions of distributions P and Q, respec-
tively. We define the two loss functions as follows.

Cumulative Jensen–Shannon The cumulative
Jensen–Shannon (CJS) divergence between P and
Q is defined as:

CJS(P,Q) =

C∑

n=1

Djs(CDFP (n)||CDFQ(n)),

(1)
where Djs(X||Y ) denotes the Jensen–Shannon di-
vergence between distributions X and Y .

Cumulative Absolute Distance The cumulative
absolute distance (CAD) is defined as:

CAD(P,Q) =

C∑

n=1

|CDFP (n)− CDFQ(n)|. (2)

We make the following observation: the evaluation
metric used for both Par and CSC in Task A is the
Wasserstein distance (WSD). Intuitively, the WSD
reflects how much mass has to be moved, and how
far, to transform one distribution into another. In
the discrete 1-dimensional scenario, as is the case
for Likert labels, the Wasserstein distance reduces
to:

W1(P,Q) =

C∑

n=1

|CDFP (n)− CDFQ(n)|, (3)

which is the same as CAD (Equation 2). Indeed,
Wen et al. (2023) proposed CAD as an adaptation
of the Mallows distance, which is also known as
the Wasserstein-2 distance.

Results We report our results in Table 3. We
concluded that straightforwardly using one of the
given formulas as a loss function for fine-tuning
RoBERTa would not be sufficient. The reason for
this is that although CAD is equal to the Wasser-
stein distance in 1D, minimizing CAD loss during
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CSC Par

CJS 0.831± 0.01 1.677± 0.10
CJS+MAE 0.813± 0.00 1.694± 0.03
CAD 0.800± 0.01 1.590± 0.12
CAD+MAE 0.797± 0.01 1.558± 0.10

Table 3: Fine-tuning results (Wasserstein distance) for
the CAD and CJS loss functions on the test sets. All
results are averaged across three random seeds. Here,
CJS+MAE is the average of predictions from CJS and
MAE; CAD+MAE is defined in a similar fashion.

training might not guarantee good generalization:
the cumulative nature of CAD/W1 could allow
small prediction errors to be diffused across sub-
sequent labels. As a result, we hypothesized that
it might not strongly penalize localized prediction
errors if the overall CDF stays close, potentially
leading to blurry or smeared distributions. For
this reason, we also experimented with combining
CJS/CAD with the mean absolute error (MAE), en-
couraging the mode of the predicted distribution
to align better with the “ground truth” distribution
while still respecting the ordinal structure of the
data. However, Table 3 suggests that this does not
make a difference. For the CSC dataset in particu-
lar, we find that CAD/CAD+MAE can yield scores
that are competitive with in-context learning (0.792
in Table 2).

4.2 Approach 2: Population-level label
distributions

Liu et al. (2019a) introduce a strategy for learning
label distributions designed to significantly reduce
the total number of human labels required for each
data item. They suggest that even if humans can in-
terpret a data item in many ways, their annotations
tend to reduce these interpretations to a limited
number of distinct “ground truth” label distribu-
tions. Therefore, the annotations for any given
item are seen as a sample drawn from one of these
distinct underlying distributions. They found that
this technique works well for datasets with 5-10 an-
notations per data item. Given that the Par dataset
only has four annotations per sentence pair, we
used this approach on this dataset alone. Liu et al.
(2019a) also hypothesized that semantically sim-
ilar items tend to have similar label distributions.
For this reason, they proposed to (1) cluster the
data into semantically similar groups using unsu-
pervised learning, (2) aggregate the annotations of

the clusters to create a single soft label for each
cluster, and (3) use supervised learning to learn to
predict the unified label distributions.

When dealing with the Par dataset, we assume
that some sentence pairs are inherently more dif-
ficult to annotate than others. The annotations for
these pairs may be more spread out and sparse
as a result, while those for other samples may be
more unified. We adopt the clustering and two-
stage training methodology proposed by Liu et al.
(2019a). However, instead of using a single soft la-
bel distribution for all items in a cluster, we trained
the classifiers on the original soft labels and then in-
cluded clustering information to push the predicted
soft labels to fall within a certain range.

Model Specification For the clustering, we opted
for k-means clustering with a maximum of 5 clus-
ters. We clustered the sentence pairs into groups
with similar soft label distributions and then used
their cluster numbers to guide the training process.
We then fine-tuned RoBERTa to predict the soft la-
bels. To leverage the resulting clusters, we trained
multitask classifiers with 2 prediction heads.

Soft Label Head The soft label head is a simple
feedforward layer outputting logits over 11 anno-
tation scores from -5 to 5. In this case, we used
cross-entropy loss as the loss function.

Cluster Classification Head To classify the clus-
ters, we used a separate feedforward layer for pre-
dicting the logits for n discrete cluster IDs. The
head is trained to predict the corresponding cluster
assignment of each example. For the loss func-
tion, we tried several options, namely KL diver-
gence, Wasserstein distance, and all loss functions
described in Section 4.1.

The overall training loss is the sum of the soft
label loss and the weighted cluster classification
loss:

Ltotal = Lsoft + α · Lcluster. (4)

In this formula, Ltotal represents the total training
loss, Lsoft is the loss for soft label prediction, and
Lcluster is the loss for cluster prediction. α is a
tunable parameter that varies the overall influence
of Lcluster.

Results Our best score with this approach is a
Wasserstein distance of 1.66 for the Par dataset.
We achieved this by classifying the dataset into
3 clusters. While the performance is above the
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baseline by a notable margin, this method still un-
derperformed compared to the other fine-tuning
method described in Section 4.1 and the in-context
learning method described in Section 3.

4.3 Discussion

For the loss functions, it comes as no surprise that
CAD yields better results than CJS on the test set,
given that the evaluation metric is CAD/WSD. Ta-
ble 3 suggests that a standard fine-tuning setup
with this loss function might be enough to yield
competitive scores on the CSC dataset.

Note that the Par dataset in particular had a rela-
tively small number of annotators. Given that only
four annotators were annotating on an 11-point Lik-
ert scale, sparse distributions are inevitable. We
find that our methods are not able to handle this
sparsity well enough to yield scores comparable to
those for CSC. On a related note, we would like to
make one additional observation: when working
with sparse annotations, it is highly important to
consider how the models are evaluated. When anno-
tations are sparse, the “ground truth” distributions
may only be a noisy, undersampled proxy of the
underlying human opinion distribution. As well,
relying on raw empirical frequencies can exagger-
ate annotation noise, and evaluating against them
with strict distance metrics such as the Wasserstein
distance may unfairly penalize models that produce
smoother (and arguably more plausible) distribu-
tions. However, as it was not possible to apply
smoothing to the unseen test set, we found that
models optimized for smoother distributions will
generally perform poorly according to the LeWiDi
scoring mechanism. All results reported in this sec-
tion were obtained without additional smoothing.

As with many other domains, it appears that
the NLP community can take inspiration from the
computer vision and machine learning communi-
ties (and vice versa). Indeed, the perspectivist ap-
proaches in NLP appear to have emerged indepen-
dently from label distribution learning in CV/ML
(and also with different objectives; note, for ex-
ample, the fact that CAD and 1D WSD are the
same), yet both grapple with similar challenges.
We argue that perspectivist NLP could benefit from
the probabilistic and distributional modeling tech-
niques developed in these other communities.

5 Conclusion

In this paper, we introduced the two main ap-
proaches taken by the DeMeVa team for the
LeWiDi 2025 shared task. Our comparison of ICL
approaches on perspectivist modeling, while not
yielding fully conclusive results, suggested that
sampling examples based on labels can help gener-
ative models calibrate their predictions—especially
for numeric outputs like Likert scale values. Mod-
els calibrated in this way can trace and mimic an-
notators’ behavior down to more specific, granular
details. However, their reliance on common sense
(possibly induced by RLHF) may hinder their abil-
ity to recognize plurality when it is not overtly
expressed.

The second contribution of this work is a call
for the perspectivist NLP community to look out-
ward. In particular, we can learn from how ma-
chine learning communities have addressed un-
certainty and label distribution learning. While
perspectivist NLP rightly centers the diversity of
annotator perspectives, it can benefit from estab-
lished techniques such as probabilistic modeling
and smoothing methods that account for annotation
noise and limited sample sizes. We have merely
scratched the surface here by borrowing simple
loss functions and a clustering method from LDL,
but we believe that engaging with other fields can
be beneficial to the perspectivist community as a
whole.

Ethical Considerations

In this work, we make use of personalized an-
notations, which, inter alia, include sociodemo-
graphic variables related to the annotators. How-
ever, anonymization by their respective original
authors ensures that this data cannot be used in a
manner that is harmful to individuals.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments. This work is funded by the Dutch Re-
search Council (NWO) through the AiNed Fellow-
ship Grant NGF.1607.22.002, Dealing with Mean-
ing Variation in NLP.

References
OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,

Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-

178



man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, and
260 others. 2023. Gpt-4 technical report.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Federico Cabitza, Andrea Campagner, and Valerio
Basile. 2023. Toward a perspectivist turn in ground
truthing for predictive computing. Proceedings
of the AAAI Conference on Artificial Intelligence,
37(6):6860–6868.

Silvia Casola, Simona Frenda, Soda Marem Lo, Erhan
Sezerer, Antonio Uva, Valerio Basile, Cristina Bosco,
Alessandro Pedrani, Chiara Rubagotti, Viviana Patti,
and Davide Bernardi. 2024. MultiPICo: Multilingual
perspectivist irony corpus. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
16008–16021, Bangkok, Thailand. Association for
Computational Linguistics.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, and 1 others. 2024. A survey on
in-context learning. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1107–1128.

Sujan Dutta, Deepak Pandita, Tharindu Cyril Weera-
sooriya, Marcos Zampieri, Christopher M Homan,
and Ashiqur R KhudaBukhsh. 2025. Annotator reli-
ability through in-context learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 39, pages 14230–14237.

Xin Geng and Rongzi Ji. 2013. Label distribution learn-
ing. In 2013 IEEE 13th International Conference on
Data Mining Workshops, pages 377–383.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Tiancheng Hu and Nigel Collier. 2024. Quantifying the
persona effect in LLM simulations. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 10289–10307, Bangkok, Thailand. Association
for Computational Linguistics.

Hyewon Jang and Diego Frassinelli. 2024. Generaliz-
able sarcasm detection is just around the corner, of
course! In Proceedings of the 2024 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 4238–4249,
Mexico City, Mexico. Association for Computational
Linguistics.

Nan-Jiang Jiang and Marie-Catherine de Marneffe.
2022. Investigating reasons for disagreement in natu-
ral language inference. Transactions of the Associa-
tion for Computational Linguistics, 10:1357–1374.

Nan-Jiang Jiang, Chenhao Tan, and Marie-Catherine
de Marneffe. 2023. Ecologically valid explanations
for label variation in NLI. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 10622–10633, Singapore. Association
for Computational Linguistics.

Gauri Kambhatla, Sanjana Gautam, Angela Zhang, Alex
Liu, Ravi Srinivasan, Junyi Jessy Li, and Matthew
Lease. 2025. Beyond sociodemographic prompting:
Using supervision to align llms with human response
distributions. arXiv preprint arXiv:2507.00439.

Marvin Kaster, Wei Zhao, and Steffen Eger. 2021.
Global explainability of bert-based evaluation metrics
by disentangling along linguistic factors. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 8912–8925.

Elisa Leonardelli, Silvia Casola, Siyao Peng, Giu-
lia Rizzi, Valerio Basile, Elisabetta Fersini, Diego
Frassinelli, Hyewon Jang, Maja Pavlovic, Barbara
Plank, and Massimo Poesio. 2025. Lewidi-2025 at
nlperspectives: third edition of the learning with
disagreements shared task. In Proceedings of the
4th Workshop on Perspectivist Approaches to NLP
(NLPerspectives). Association for Computational Lin-
guistics.

Tong Liu, Akash Venkatachalam, Pratik Sanjay Bon-
gale, and Christopher Homan. 2019a. Learning to
predict population-level label distributions. In Com-
panion Proceedings of The 2019 World Wide Web
Conference, WWW ’19, page 1111–1120, New York,
NY, USA. Association for Computing Machinery.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Nicole Meister, Carlos Guestrin, and Tatsunori B
Hashimoto. 2025. Benchmarking distributional align-
ment of large language models. In Proceedings of
the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 24–49.

Jingwei Ni, Yu Fan, Vilém Zouhar, Donya Rooein,
Alexander Hoyle, Mrinmaya Sachan, Markus Leip-
pold, Dirk Hovy, and Elliott Ash. 2025. Can reason-
ing help large language models capture human anno-
tator disagreement? Preprint, arXiv:2506.19467.

179

https://api.semanticscholar.org/CorpusID:257532815
https://anthropic.com/claude-3-model-card
https://anthropic.com/claude-3-model-card
https://doi.org/10.1609/aaai.v37i6.25840
https://doi.org/10.1609/aaai.v37i6.25840
https://doi.org/10.18653/v1/2024.acl-long.849
https://doi.org/10.18653/v1/2024.acl-long.849
https://doi.org/10.1109/ICDMW.2013.19
https://doi.org/10.1109/ICDMW.2013.19
https://doi.org/10.18653/v1/2024.acl-long.554
https://doi.org/10.18653/v1/2024.acl-long.554
https://doi.org/10.18653/v1/2024.naacl-long.238
https://doi.org/10.18653/v1/2024.naacl-long.238
https://doi.org/10.18653/v1/2024.naacl-long.238
https://doi.org/10.1162/tacl_a_00523
https://doi.org/10.1162/tacl_a_00523
https://doi.org/10.18653/v1/2023.findings-emnlp.712
https://doi.org/10.18653/v1/2023.findings-emnlp.712
https://doi.org/10.1145/3308560.3317082
https://doi.org/10.1145/3308560.3317082
https://arxiv.org/abs/2506.19467
https://arxiv.org/abs/2506.19467
https://arxiv.org/abs/2506.19467


Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020. What
can we learn from collective human opinions on
natural language inference data? arXiv preprint
arXiv:2010.03532.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Barbara Plank. 2022. The “problem” of human label
variation: On ground truth in data, modeling and
evaluation. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10671–10682, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Filip Radlinski, Krisztian Balog, Fernando Diaz, Lucas
Dixon, and Ben Wedin. 2022. On natural language
user profiles for transparent and scrutable recommen-
dation. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’22, page 2863–2874,
New York, NY, USA. Association for Computing
Machinery.

Jerome Ramos, Hossein A. Rahmani, Xi Wang, Xiao Fu,
and Aldo Lipani. 2024. Transparent and scrutable
recommendations using natural language user pro-
files. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 13971–13984, Bangkok,
Thailand. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Taylor Sorensen, Pushkar Mishra, Roma Patel,
Michael Henry Tessler, Michiel Bakker, Georgina
Evans, Iason Gabriel, Noah Goodman, and Verena
Rieser. 2025. Value profiles for encoding human
variation. arXiv preprint arXiv:2503.15484.

Huaman Sun, Jiaxin Pei, Minje Choi, and David Ju-
rgens. 2025. Sociodemographic prompting is not
yet an effective approach for simulating subjective
judgments with LLMs. In Proceedings of the 2025
Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Pa-
pers), pages 845–854, Albuquerque, New Mexico.
Association for Computational Linguistics.

Leon Weber-Genzel, Siyao Peng, Marie-Catherine
De Marneffe, and Barbara Plank. 2024. VariErr NLI:
Separating annotation error from human label varia-
tion. In Proceedings of the 62nd Annual Meeting of

the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2256–2269, Bangkok,
Thailand. Association for Computational Linguistics.

Changsong Wen, Xin Zhang, Xingxu Yao, and Jufeng
Yang. 2023. Ordinal label distribution learning. In
2023 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 23424–23434.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Xi Ye and Greg Durrett. 2022. The unreliability of
explanations in few-shot prompting for textual rea-
soning. Advances in neural information processing
systems, 35:30378–30392.

180

https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.1145/3477495.3531873
https://doi.org/10.1145/3477495.3531873
https://doi.org/10.1145/3477495.3531873
https://doi.org/10.18653/v1/2024.acl-long.753
https://doi.org/10.18653/v1/2024.acl-long.753
https://doi.org/10.18653/v1/2024.acl-long.753
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://doi.org/10.18653/v1/2025.naacl-short.71
https://doi.org/10.18653/v1/2025.naacl-short.71
https://doi.org/10.18653/v1/2025.naacl-short.71
https://doi.org/10.18653/v1/2024.acl-long.123
https://doi.org/10.18653/v1/2024.acl-long.123
https://doi.org/10.18653/v1/2024.acl-long.123
https://doi.org/10.1109/ICCV51070.2023.02146
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101


A Example of an ICL prompt

CSC–test–2143–Ann743

[INST] You are an expert in guessing my
response against a sarcasm detection task.

Your task is to analyze and predict my
response to a pair of context and
response between <<< and >>>, and label
it with an integer from 1 to 6 where 1
means not sarcastic at all and 6 means
completely sarcastic.

Below are some of my previous responses.
You should learn my response behavior
from them and then make the prediction.

Example 0:
[Context]: Steve is a fan of Bulgarian
folk music. Every week, he finds a
different song and plays it on his phone
and says, "I finally found one you'll
like! This one is really good. Come on!"
[Response]: Bulgarian folk music is for
old people Steve, didn't you say you
wanted to be young and cool?
[Label]: 2

Example 1:
[Context]: You are watching TV with Steve.
Whenever you set the volume to an odd
number, Steve takes the remote control
away from you and sets the volume to an
even number.
[Response]: My mistake, I never useally
do that.
[Label]: 2

...

Example 9:
[Context]: Steve and you are hanging out
tonight. He shows up wearing a red tank
top, green shorts, and yellow sneakers.
[Response]: Did you go to a yard sale or
something?
[Label]: 5
[/INST]

>>>
[Context]: You walk into the room and
Steve is wearing his shoes on his hands.
When you see him, he says "look at me! I'
m Mr. Shoehand!"
[Response]: Are you 5 or 50?
[Label]:
>>>

Figure 4: ICL prompt for entry CSC-test-2143 and
Annotator Ann743 (excerpt). The in-context examples
are selected from Ann743’s annotations in the train set,
following the stratified label-based sampling method.
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