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Abstract

Test-time scaling is a family of techniques to
improve LLM outputs at inference time by per-
forming extra computation. To the best of our
knowledge, test-time scaling has been limited
to domains with verifiably correct answers, like
mathematics and coding. We transfer test-time
scaling to the LeWiDi-2025 tasks to evaluate
annotation disagreements. We experiment with
three test-time scaling methods: two bench-
mark algorithms (Model Averaging and Major-
ity Voting), and a Best-of-N (BoN) sampling
method. The two benchmark methods improve
LLM performance consistently on the LeWiDi
tasks, but the BoN method does not. Our exper-
iments suggest that the BoN method does not
currently transfer from mathematics to LeWiDi
tasks, and we analyze potential reasons for this
gap.

1 Introduction

Supervised learning typically assumes a single
fixed label per example. However, prior work doc-
uments substantial interpretative variability in hu-
man annotations, with annotators often disagreeing
on labels (Roß et al., 2016; Warner and Hirschberg,
2012; Baan et al., 2022), especially for subjective
Natural Language Processing (NLP) tasks (Oves-
dotter Alm, 2011). Plank (2022) and Cabitza et al.
(2023) argue that this variability is informative
rather than problematic and Röttger et al. (2022)
suggests that variability should be explicitly inte-
grated into the annotation processes.

The shared task Learning With Disagreement
(LeWiDi) 2025 (Leonardelli et al., 2025) tackles
this opportunity and provides four datasets with
annotator-level metadata and label variation. We
document the datasets in detail in subsection 3.6.
The datasets support two different tasks: (1) Per-
specivist task: Predicting the label of each indi-
vidual annotator. (2) Soft-label task: Predicting
the distribution of human annotations for a single
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Figure 1: Best-of-N sampling with step-wise scores.
For each problem a reasoning LLM generates N soft-
labels and Chains-of-Thought (CoTs). Next, an LLM-
as-a-judge scores each step in the CoT for correctness,
and BoN selects the soft-label with the highest total
score. Takeaway: Sampling multiple times increases the
chances for a good prediction.

problem instance. This distribution is known as a
soft-label, or a human judgement distribution (Nie
et al., 2020).

In the previous iteration of the LeWiDi shared
task (Leonardelli et al., 2023), many teams trained
encoder-based models like BERT (Devlin et al.,
2019) directly on soft-labels. However, the innova-
tions in generalist Large Language Models (LLMs)
and the rise of “reasoning” capabilities (Wei et al.,
2022; OpenAI, 2025; Yang et al., 2025; DeepSeek-
AI et al., 2025) motivated us to answer the follow-
ing question:

“Can reasoning LLMs handle interpretative vari-
ability and annotation disagreement effectively at
inference time?”

To answer this question, we turn to test-time
scaling methods, like BoN sampling, which im-
prove the LLMs performance by spending more
compute per problem (Cobbe et al., 2021; Shen
et al., 2021). These methods have been very suc-
cessful in mathematics and coding, but have not
been applied yet to NLP tasks with annotation dis-
agreement, as far as we know. In this paper, we
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take established test-time scaling methods and ap-
ply them to the LeWiDi tasks.

Our contributions are:

• A metric named prediction diversity, used to
analyze the performance of test-time scaling
methods on soft-label tasks. We show that it
tracks problem difficulty on the LeWiDi tasks.

• We show that Model Averaging and Major-
ity Voting consistently improve LLMs perfor-
mance across all LeWiDi datasets.

• Finally, we show that BoN sampling with step-
wise scores does not work well on the LeWiDi
tasks, and analyze potential causes.

2 Related Work

2.1 Learning Interpretative Variability

Modeling the diverse perspectives that human an-
notators have on the same problems is impor-
tant to prevent minority voices from being ig-
nored (Leonardelli et al., 2021). Prior work on
modeling annotator disagreement has explored vari-
ous techniques, such as using separate model heads
for each annotator (Mostafazadeh Davani et al.,
2022), learning specific representations for anno-
tators (Mokhberian et al., 2024), separating stable
opinions from annotation mistakes (Gordon et al.,
2021; Weber-Genzel et al., 2024), and using soft-
labels to aid learning (Fornaciari et al., 2021; Uma
et al., 2020). To evaluate models on soft-labels,
Rizzi et al. (2024) propose using the Manhattan or
Euclidean distance rather than the Cross-Entropy
loss. In terms of quantifying the diversity of soft-
labels, Singh et al. (2024) proposed the Jensen-
Shannon Divergence in the context of ensemble
classification.

2.2 Test-Time Scaling

Test-time scaling methods improve the perfor-
mance of LLMs by spending more compute per
problem instance. One approach is to refine
an initial response iteratively with self-feedback
(Madaan et al., 2023), or improve the response
by following a set of rules (a constitution, Bai
et al. 2022). Another common test-time scaling
approach is Best-of-N sampling, where multiple
solutions are sampled in parallel, and a verifier
model scores or ranks the solutions to select the
best one (Cobbe et al., 2021; Shen et al., 2021). The
scores are computed based solely on the outcome

(correct or incorrect) of the task (Outcome Reward
Model). But the scores can also be computed for
the correctness of individual reasoning steps used
to arrive at the answer (Process Reward Model).
Lightman et al. (2024) showed that scoring indi-
vidual steps in a Chain-of-Thought (CoT) for cor-
rectness, and discarding CoTs with faulty steps
improves the performance of LLMs on the MATH
dataset (Hendrycks et al., 2021). In their work,
the scoring annotations were provided by humans.
Follow-up work replaced the human scores with
automated scoring, using either Monte Carlo (MC)
sampling (Wang et al., 2024) or an LLM judge
(LLM-as-a-judge, Zheng et al., 2023). Research
by Zhang et al. (2025) and Zheng et al. (2025)
showed that using LLMs to provide these scores
generalizes well and is competitive with training a
custom model.

A different approach that leverages diversity plus
selection is Mixture-of-Experts (MoE): multiple
parallel expert subnetworks, with a gate that selects
a few experts per input. Both MoE and test-time
scaling are independent approaches that can be
combined during model evaluation, e.g. as did Co-
manici et al. (2025) for the SWE-Bench (Jimenez
et al., 2024).

3 Method

Nomenclature: A dataset is a collection of prob-
lem instances (problem in short). We sample a
reasoning LLM N times to solve a problem. Each
sample contains a prediction and a CoT. A predic-
tion could be text, a soft-label or a list of integers
(perspectivist task).

Our test-time scaling method is not novel but
rather a combination of methods already estab-
lished in the literature. Our innovation is to apply
it to a new domain: the LeWiDi-2025 tasks. We
refer to the method as BoN sampling with step-wise
scores, or just BoN sampling in short. The method,
shown in Figure 1, consists of three steps: (1) A
reasoning LLM generates N samples for a prob-
lem. (2) A judge LLM scores each CoT-step in
each sample for correctness. (3) We choose the
sample with the best score for the final prediction.
We explain all method details in subsection 3.1 and
subsection 3.2. Table 1 is an overview of all meth-
ods we run experimentally, which include different
baselines and benchmarks.
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Method Samples Use CoT
Most Frequent - -
Simple Sampling 1 ✗

Model Averaging N ✗

Majority Voting N ✗

BoN Oracle N ✗

BoN + SWS N ✓

Table 1: Methods Overview. The first two methods
are baselines (subsection 3.4). The next two methods
are our own benchmarks (subsection 3.5). The BoN
Oracle (subsection 3.3) is a performance upper bound
on our proposed method BoN + SWS (Step-Wise Scores,
subsection 3.2). The models we submitted to the shared
task are in italic.

3.1 LLM Setup

Prompts We prompt a reasoning LLM to solve
the soft-label and perspectivist tasks directly. For
example, in the soft-label task, we present the
dataset (e.g. sarcasm detection), and instruct the
model to predict the human soft-labels (snippet in
Listing 1, full prompt in Listing 12).

Listing 1: Prompt Snippet (Soft-label Task)
Below is a context+response pair where
human annotators rated the sarcasm
level of the 'response ' ranging from 1
(not at all) to 6 (completely). Please
guess the distribution of ratings and
output it in the final_response field
in JSON format [...]

In the perspectivist task, we instead instruct the
model to predict the label for each annotator (snip-
pet in Listing 2, full prompt in Listing 13).

Listing 2: Prompt Snippet (Perspectivist Task)
Below is a context+response pair [...].
Please guess the rating given by each
annotator and output them all in a
list , in the same order as the
annotators. [...]

We include a prompt section that explicitly instructs
the model to reason about the diverse perspec-
tives and interpretations that annotators could have.
This improved performance by a small, but statis-
tically significant margin, so we included it in all
later experiments (see Appendix H).

3.2 BoN Sampling with Step-Wise Scores

In BoN sampling we score each of the N model
samples and select the best for the final prediction.
The score for a sample depends on the correctness
of each step in its CoT. Our BoN sampling method

borrows heavily from Lightman et al. (2024), so in
Table 2 we summarize the differences and similari-
ties between both.

Lightman et al. Ours
Domain Math LeWiDi Tasks
Model GPT-4 Qwen3-32B
Scorer Human(s) LLM-as-a-judge
Reduction Product Mean
Sampling Best-of-N
Scores bad=0, okay=0, good=1

Table 2: Comparison to Lightman et al. (2024). First
4 rows are differences, last 2 rows are similarities.

First, we split the CoT into logical steps (details
in Appendix B), and then score each step as either
“great”, “okay”, or “bad” in line with Lightman
et al. (2024). They used human annotations to train
a scoring model, but we use an LLM-as-a-judge
instead to provide the scores directly, as suggested
by Zheng et al. (2025). The prompt for the LLM-
as-a-judge is based on their scoring instructions
(snippet in Listing 3, full prompt in Listing 14).

Listing 3: Prompt Snippet (LLM-as-a-judge)
Your goal is to grade an LLM 's
step -by-step solution to a problem. The
model will often say things that look
ok at first , but will turn out to be
wrong on closer inspection - stay
vigilant!
Please mark each step with (great ,
okay , bad). [...]

We follow Lightman et al. (2024) to convert the
three scores to numbers (bad=0, okay=0, good=1),
and average all the step-wise scores to compute a
prediction-level score. Lightman et al. (2024) used
a product reduction, but in our experiments, mean
reduction outperformed product. This step-wise
scoring is repeated for N = 10 model samples
and their corresponding CoTs. We select the one
with the highest prediction-level score as the final
prediction.

Models Previous research in hate speech detec-
tion and Natural Language Inference (NLI) showed
that explanations are useful to judge the plausibil-
ity and correctness of annotations and model pre-
dictions (Mathew et al., 2020; Jiang et al., 2023;
Weber-Genzel et al., 2024). We hypothesize that
reasoning about annotator disagreements also re-
quires a deliberative and explanatory approach that
considers multiple interpretations and weights their
likelihoods. Therefore, we use a reasoning LLM
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for our experiments (Qwen3-32B, Yang et al. 2025).
For LLM-as-a-judge we use a model from a dif-
ferent family besides Qwen3 (DeepSeek-R1-0528-
Qwen3-8B, DeepSeek-AI et al. 2025). Sampling
parameters are detailed in Appendix A.

3.3 Upper Bound on Performance
We determine the upper bound on performance
of any BoN sampling method by computing a so-
called BoN oracle. The BoN oracle is a hypothet-
ical model that always selects the best prediction
among N predictions (in our case, lowest distance).
We compute the oracle in the training set by choos-
ing the soft-label among the N predictions with the
lowest distance to the human soft-label. However,
for a dataset with unknown human soft-labels, we
cannot compute the oracle. The oracle is an analyti-
cal tool to determine the BoN performance ceiling,
rather than an algorithm to use in practice. The
oracle soft-label po for a set of predictions P (size
N ) is defined as:

po = argmin
p∈P

W (p, ph) (1)

where ph is the human soft-label. We compute it
for both the soft-label and perspectivist tasks.

3.4 Baselines
The LeWiDi 2025 shared task proposed the Most
Frequent Baseline. In the soft-label task, this is
the mean label value for each label across all train-
ing problems. In the perspectivist task, it is the
most frequent label for each individual annotator.
Our own basic baseline is the performance of the
LLM without any test-time scaling, i.e. with a sin-
gle sample per problem (N = 1). We call this
Simple Sampling.

3.5 Test-Time Scaling Benchmarks
BoN sampling uses a lot more compute per prob-
lem than Simple Sampling (N times more). To
benchmark BoN sampling fairly, we compare it
with two test-time scaling algorithms that also cre-
ate a single prediction out of N predictions.

Soft-label task We benchmark against Model Av-
eraging, where all N soft-labels pn are averaged
into a single soft-label p̄. The resulting soft-label p̄
is a valid probability distribution. Each entry i of p̄
is defined as:

p̄i =
1

N

N∑

n=1

pni (2)

Perspectivist task We benchmark against Major-
ity Voting, where we sample the model N times per
problem, each prediction resulting in a label per
annotator, and then select the most frequent label
(within the N predictions) for each annotator.

3.6 LeWiDi-2025 Datasets

We report the datasets as provided by the LeWiDi-
2025 shared task. All datasets provide some level
of annotator-level metadata like gender, age, na-
tionality, education and more.

The Conversational Sarcasm Corpus (CSC):
The CSC dataset by Jang and Frassinelli (2024)
is a dataset for sarcasm detection with 7,036 en-
tries (5,628 train, 704 dev, 704 test). Each entry
consists of a context+response pair, where the re-
ponse is rated for sarcasm on a 6-point Likert scale,
by either 4 or 6 annotators.

The MultiPico dataset (MP): The MP by Ca-
sola et al. (2024) is a dataset for irony detection
with 18,778 entries (12,017 train, 3,005 dev, 3,756
test). Each entry consists of a post-reply pair from
Twitter and Reddit, and the reply’s irony is rated as
either ironic (1) or not ironic (0) by between 2 and
21 annotators.

The Paraphrase Detection dataset (PAR): The
Paraphrase is a dataset by the MaiNLP lab1 for
paraphrasing detection with 500 entries (400 train,
50 dev, 50 test). Each entry has two questions from
Quora Question Pairs (QQP), and annotators rate
how strongly the questions are paraphrases of one
another from -5 to 5. Each entry is rated by 4
annotators.

The VariErr NLI dataset (VEN): VariErrNLI
by Weber-Genzel et al. (2024) is a dataset for NLI
with 500 samples (400 train, 50 dev, 50 test). An-
notators can assign any and multiple of the NLI
categories (entailment, contradiction, neutral) for
each entry. Each entry is annotated by 4 annotators.

3.7 Metrics

Soft-label Task As suggested by the LeWiDi
task, we report Manhattan Distance for the MP
and VEN datasets, and Wasserstein Distance for the
CSC and PAR datasets. Both distances are exactly
equivalent when applied to binary datasets (Rizzi
et al., 2024). The Wasserstein distance measures
the minimum “work” needed to transform one

1https://mainlp.github.io/
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probability distribution into another, where “work”
equals the amount of mass moved times the dis-
tance.

Perspectivist Task For the perspectivist task, we
report Error Rate (1 - accuracy) for the MP and
VEN datasets, and Absolute Distance for the CSC
and PAR datasets. We divide the Absolute Dis-
tance by the range of the Likert scale, in line with
the LeWiDi organizers. Both metrics are exactly
equivalent when applied to binary datasets.

Prediction Diversity BoN sampling requires a
diverse set of predictions for each problem. Oth-
erwise, if all predictions were the same (or very
similar), it would not matter which one is selected,
and BoN sampling would provide no improvement
over Simple Sampling. Therefore, we quantify the
variability of the soft-labels across the N predic-
tions for each problem, and call this the prediction
diversity.

We implement this as the average pair-wise dis-
tance between all N soft-labels for a single prob-
lem. For the LeWiDi datasets, we use the Wasser-
stein distance because it can capture distances in
Likert scales. We do not compare soft-labels to
themselves, because the distance is 0. This is why
we divide by N(N − 1) rather than by N2. The
formula for diversity D is:

D(P ) =
1

N(N − 1)

N∑

i=1

N∑

j ̸=i

W (pi, pj) (3)

where P is the set of N soft-labels, and W (pi, pj)
is the Wasserstein distance between the soft-labels
pi and pj . Note that measuring the diversity of a
set of predictions P is different from measuring
the spread of a single soft-label (i.e. measuring the
entropy of the soft-label).

Problem Difficulty Classically, problem diffi-
culty is measured as the percentage of correct an-
swers over N attempts. For soft-label tasks, it can
instead be defined as the distance between predic-
tions and human soft-label across N attempts. In
the LeWiDi task, we posit a relationship between
prediction diversity and problem difficulty: low di-
versity arises when the model perceives no ambigu-
ity (the problem is easy or only one interpretation is
considered), while high diversity arises when mul-
tiple plausible interpretations exist and the model’s
N predictions vary. Since both prediction diversity
and distances (Wasserstein, Manhattan) are com-
putable, their correlation is empirically measurable.

4 Results

In Table 3 we summarize the results on the test,
taken from the LeWiDi leaderboard2, since we have
no access to the test set ground truth. In Table 4 we
present a performance overview of all methods for
the LeWiDi datasets. We did not train on the train
set, so we used it for evaluation.

Task
Dataset Soft-label (↓) Perspectivist (↓)
CSC 0.928 0.231
MP 0.466 0.414
PAR 1.797 0.228
VEN 0.356 0.272
Avg. Rank 5th 6th
Out of 15 11
Method Model Averaging Majority Voting

Table 3: Results on the test set of the LeWiDi datasets
(lower is better). Values are from the LeWiDi leader-
board. We submitted our best performing methods,
Model Averaging and Majority Voting.

4.1 Test-Time Scaling Benchmarks
We first report the performance of all methods ex-
cept BoN sampling. The orange bar in Figure 2
is the performance Simple Sampling with Qwen3-
32B. It outperforms the Most Frequent Baseline on
3 out of 4 datasets in the soft-label task, but only in
2 out of 4 datasets in the perspectivist task. The test-
time scaling benchmarks (green) are Model Averag-
ing and Majority Voting. Both methods consistently
improve performance over Simple Sampling across
datasets and tasks. We discuss the effects of Model
Averaging on soft-label entropy in Appendix E and
compare it with naive soft-label smoothing. The
BoN oracle (red) is meant to show the performance
ceiling of any BoN sampling method. Its strong
performance indicates that, at least theoretically, a
good BoN sampling method can achieve very good
performance on the LeWiDi tasks.

4.2 Best-of-N Sampling with Step-Wise Scores
The BoN sampling method has inconsistent perfor-
mance in the LeWiDi datasets, as shown in Figure 3.
Performance is often flat with the number of sam-
ples N , or varies wildly with judge model. E.g in
the MP dataset, the Deepseek judge is consistently
worse (higher distance) than Simple Sampling on
both tasks (soft-label and perspectivist). BoN sam-
pling is only competitive with the benchmarks (red

2LeWiDi leaderboard: https://le-wi-di.github.io/
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Soft-label Task Perspectivist Task
Method CSC Par MP VEN CSC Par MP VEN
Most Frequent Baseline 1.14 2.89 0.26 0.27 0.21 0.36 0.30 0.33
Simple Sampling 1.00 1.96 0.26 0.22 0.24 0.25 0.43 0.32
Model Averaging 0.91 1.78 0.24 0.20 - - - -
Majority Voting - - - - 0.23 0.25 0.40 0.30
BoN Sampling + SWS 1.01 1.93 0.26 0.22 0.24 0.25 0.42 0.32
BoN Oracle 0.51 1.29 0.11 0.11 0.15 0.18 0.18 0.16
Metric (↓) Wasserstein Manhattan Abs. Dist. Error Rate

Table 4: Results on the train set of the LeWiDi datasets. In bold is the best performing method by column. BoN
sampling underperforms the test-time scaling benchmarks, even though the BoN oracle suggests a high performance
ceiling. We submitted to the LeWiDi shared task the Model Averaging (soft-label task) and Majority Voting
(perspectivist task) methods, since they perfomed best.
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Figure 2: Test-time Scaling Benchmarks. Top: soft-
label task. Bottom: perspectivist task. Distance metric
on the x-axis (lower is better). Model Averaging and
Majority Voting (green) are consistently better than Sim-
ple Sampling (orange) in the soft-label and perspectivist
tasks, respectively.

horizontal lines) in a single case (perspectivist task,
PAR dataset, Qwen3-32B judge). These inconsis-
tent results raise the question why step-wise scoring
is not effective in the LeWiDi tasks. For the BoN
sampling numbers in Table 3, we report the Qwen3-
32B judge, because it performs slightly better than
the Deepseek judge on the perspectivist task. For
the LeWiDi shared task, we submitted the predic-
tions for Model Averaging and Majority Voting,
rather than BoN sampling.
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Figure 3: Best-of-N Sampling on LeWiDi Tasks. Top:
soft-label task. Bottom: perspectivist task. Distance
metric on the y-axis (lower is better). Higher N should
lead to better performance, but does not. No consistent
pattern emerges across datasets and tasks. In red are
the test-time scaling benchmarks, which BoN generally
does not beat. The shaded areas show the 0.25 and 0.75
quantiles.
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4.3 Prediction Diversity
Back to the LeWiDi tasks, we empirically observe
that prediction diversity correlates with model per-
formance (Figure 4): diversity increases for diffi-
cult problems and decreases for easier ones. For
analysis, we binned prediction diversity into five
quantiles (but the trends hold for any number of
bins). We document the distribution of prediction
diversity across datasets in Appendix F. Prediction
diversity strongly affects test-time scaling methods,
as shown in Figure 5: the BoN oracle performance
(the upper bound for any BoN sampling method) in-
creases with diversity. The same applies for Model
Averaging.
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provement over Simple Sampling.

Table 5 shows that Model Averaging achieves a
significant fraction of the theoretical performance
gains dictated by the BoN oracle. For example, in
the top quantile of the PAR dataset, Model Averag-

ing achieves 46% of the performance gains of the
BoN oracle.

Prediction Diversity
Dataset Q1 Q2 Q3 Q4 Q5
CSC 0.11 0.16 0.14 0.19 0.29
PAR 0.09 0.14 0.17 0.24 0.46
MP 0.03 0.09 0.12 0.13 0.17
VEN 0.03 0.11 0.18 0.18 0.27

Table 5: Fraction of the BoN oracle performance gains
that Model Averaging achieves for different datasets and
prediction diversities.

5 Discussion

5.1 BoN Sampling Underperformance
We were surprised by the underperformance of
BoN sampling in the LeWiDi datasets. To verify
that we had not made a mistake in our implementa-
tion of BoN sampling, we ran our method on two
math datasets (PRM800K and AIME), as shown
in Figure 6.
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Figure 6: Best-of-N Sampling in Mathematics: The
performance of BoN sampling (Correct answers, higher
is better) improves with the number of samples N and
with stronger judges. The shaded area shows the 0.25
and 0.75 quantiles: improvements are consistent.

The results are in line with Lightman et al. (2024).
Using the best judge and N = 10 samples, the rate
of correct answers jumps by 14% on PRM800K
and by 18% in AIME. More information about both
datasets is in Appendix C.

Why is BoN sampling effective in math, but not
in the LeWiDi tasks? We think the LeWiDi tasks
are not inherently harder or more intractable than
math problems. The gap we observe is a failure
of cross-domain generalization. For example, we
observed that the shift in domain introduces unex-
pected side-effects:

1. We found qualitative evidence of the LLM
being more vague in its formulation of CoT
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steps in LeWiDi tasks (see Appendix I). When
steps are vague, it is harder for a judge to dis-
criminate between good and bad steps. During
post-training, the Qwen3 model was likely
never rewarded for summarizing precise ar-
guments around interpretative variation and
different perspectives. In contrast, we know
that Qwen3 has been post-trained to reason
on “[...] math, code, logical reasoning, and
general STEM problems.” (Yang et al., 2025).
We find same in the technical reports for
Deepseek R1 and Gemini-2.5 (DeepSeek-AI
et al., 2025; Comanici et al., 2025).

2. We empirically observe that LLMs and judges
both spend a higher compute budget (i.e.
they produce more tokens) on reasoning when
solving the mathematical tasks than on the
LeWiDi tasks as shown in Figure 7. Since
reasoning capabilities are learned during post-
training, we hypothesize that this difference
is also caused by the standard post-training
recipe.
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LLM: Qwen3-32B

0 1000 2000
Output Tokens

Judge: Qwen3-32B
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Judge: DeepSeek-R1-8B

Domain
LeWiDi Math

Figure 7: Compute Budget used by LLM and judges
on different domains. Error bars are the 0.25 and 0.75
quantiles: they show large variability in output length.
The models invest an order of magnitude more com-
pute budget into solving AIME problems than in the
LeWiDi tasks. Both Qwen3 and Deepseek-R1-8B show
this bias.

5.2 Logical Steps in LeWiDi Tasks

One might argue that step-wise scoring requires a
clear boundary between correct and incorrect steps,
which is lacking in tasks with strong interpretative
variation. We argue against this for two reasons:

1. Mathematical problem solving is also not al-
ways clear-cut. Lightman et al. (2024) show
many steps add no insight or progress, leading
them to use an “okay” label alongside “great”
and “bad”.

2. LeWiDi tasks define correctness precisely
(e.g., Wasserstein Distance 0). Steps that are
logical, plausible, and advance a prediction
are “great”, while vague or unsound steps are
“bad”. Previous perspectivist research has also
leveraged explanations to judge the validity of
annotations (Weber-Genzel et al., 2024).

We see no theoretical conflict between perspec-
tivism and step-wise scoring. Rather, adjusting the
method to incorporate perspectivist principles is an
avenue for future work. For example, using dif-
ferent step labels like “plausible”, “implausible”,
“vague”, etc.

6 Conclusion

We present a systematic evaluation of three test-
time scaling methods on the LeWiDi tasks. Our
key findings are: (1) Our prediction diversity met-
ric correlates with test-time scaling performance
and problem difficulty on the LeWiDi soft-label
task. (2) Model Averaging and Majority Voting
consistently improve LLM performance across the
LeWiDi tasks. (3) BoN sampling with step-wise
scores does not transfer from the domain of math-
ematics to the LeWiDi tasks, potentially due to
vague reasoning steps and lower reasoning com-
pute used. We hypothesize that this difference is
caused by the post-training recipes of current rea-
soning LLMs, which lean towards mathematical
and logical reasoning. The performance on datasets
with annotation disagreements could potentially be
improved by including similar tasks in the post-
training recipe.
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Limitations

We articulated the limitations of BoN sampling
with step-wise scores in the LeWiDi tasks. We
do not explore prompt optimization thoroughly,
because we think that methods should be robust
over different prompts. In terms of the prediction
diversity metric, we suggest that authors evaluate
the correlation with problem difficulty on their own
datasets, since we showed an empirical rather than
theoretical relationship.
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A Sampling Parameters

Yang et al. (2025) suggest two different param-
eter configurations for Qwen3: for thinking and
non-thinking modes. In early expriments we found
almost no difference in performance between both
configurations, but observed less variation with
the non-thinking configuration, so we used thoese
parameters in our experiments: top-k=20, top-
p=0.8, temperature=0.7, presence-penalty=1.5. We
used the same parameters for the Deepseek-R1-8B
model. For Gemini-2.5-flash we used the default
parameters documented in Google’s documenta-
tion: top-k=64, top-p=0.95, temperature=1.03.

B Splitting the CoT into Steps

To score each step of a CoT for correctness, it must
be first split into steps. We instruct the model to
answer using a structured format (JSON) with sep-
arate fields for the prediction and the CoT steps, as
shown in Listing 4.

Listing 4: Output format for the LLM
{

'steps ': [
'<step 1 text >',
'<step 2 text >',
...

],
'final_response ': '<text >'

}

We found that this approach to get logical steps
is more robust than two alternatives: (1) Using
string matching (e.g. on double line breaks) to split
a CoT into steps, because it produces overly gran-
ular, incoherent steps, where e.g. a bulleted list
becomes a step on its own. (2) Using a separate
LLM to reformat the CoT into logical steps, be-
cause the reformatting model sometimes rephrases
and truncates the original CoT instead of only re-
formatting it. We think that the original LLM is
best positioned to split its own reasoning process
into coherent, logical steps.

One might argue these steps are constructed ex-
post and do not reflect the model’s true reasoning.
However, during a math exam, students are allowed
to sketch ungraded work on separate sheets, and
then present a clean step-by-step solution. We fol-
low this same principle, and our math experiments
show that the ex-post steps are expressive enough
to discriminate good and bad reasoning.

3https://cloud.google.com/vertex-ai/generative-
ai/docs/models/gemini/2-5-pro

C Mathematical Datasets

Our method for providing step-wise scores is com-
pletely automated and requires no human annota-
tions for the CoT steps at all. As a sanity check
that our test-time scaling implementation is correct,
we also include in our BoN evaluation two datasets
with mathematical problems, where we expect step-
wise scoring to perform very well. The datasets
are: (1) High-school math problems and solutions
compiled in the PRM800K dataset by Lightman
et al. (2024). The problems are originally from
the MATH dataset by Hendrycks et al. (2021). (2)
Mathematical problems given to the top 2.5% to
5% of high-school students in the US from the
American Invitational Mathematics Examination
(AIME) compiled by Veeraboina (2023) and rang-
ing from 1983 to 2024. The AIME problems are
generally more difficult than those in PRM800K.
Many math problems are solved by Qwen3-32B
in 10/10 samples, which makes BoN sampling un-
necessary. We skipped these problems in our BoN
evaluation, which is why the horizontal line for
Simple Sampling is relatively low in Figure 6.

D LLM Compliance

When using an LLM with structured output, we
need to measure its adherence to the output format
of the prompt. We call this compliance. As we
show in Table 6, the compliance level varies by
dataset and by task.

Dataset Perspectivist Soft-label
MP 100.0 100.0
CSC 100.0 99.3
VEN 100.0 93.9
PAR 100.0 86.2

Table 6: Percentage of compliant predictions sorted by
dataset from highest to lowest. The PAR soft-label task
is difficult because the weight of 11 classes must sum
to 1.0.

We observe near-perfect compliance for the CSC
and MP datasets. The VEN dataset has lower com-
pliance because of the nested strucure of the predic-
tions (one for each NLI category). The lowest com-
pliance is in the PAR datasets, which has 11 classes
(-5 to 5, including 0). We found that the LLM
outputs correct JSON for PAR, but often the soft-
labels did not sum exactly to 1. We experimented
with enforcing structured outputs in vLLM, but
initial experiments showed that the LLM would
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sometimes output infinite newline characters until
it reached the output token limit, which is valid
JSON, so we dropped this constraint.

E Model Averaging and Entropy

Model Averaging has an adaptive flattening ef-
fect on the model’s soft-labels: When the model
identified a consensus interpretation (regime of low
prediction diversity), Model Averaging keeps soft-
labels intact (e.g. peaky). And when the model’s
answers are diverse, Model Averaging flattens the
soft-labels, which has a hedging effect. We com-
pare Model Averaging with a naive smoothing
method, which flattens a soft-label by averaging it
with the uniform distribution, therefore increasing
the entropy of the soft-label.

Figure 8 shows the entropy of the soft-labels for
Qwen3-32B, for different datasets and sampling
methods. It shows that smoothing the soft-labels
does not automatically improve the model perfor-
mance and that Model Averaging is much more
adaptive than the naive smoothing.

0 1

Simple Sampling
Model Averaging

Smoothing

dataset = CSC

0.00 0.25 0.50

dataset = MP

0 1 2
Entropy

Simple Sampling
Model Averaging

Smoothing

dataset = PAR

0.00 0.25 0.50
Entropy

dataset = VEN

Figure 8: Entropy of soft-labels: We observe that both
smoothing (green) and Model Averaging (orange) in-
crease the entropy of the soft-labels, but only Model
Averaging improves the model performance.

F Prediction Diversity

The distribution of prediction diversity by dataset is
shown in Figure 9. We observe that it is distributed
with a single peak in the center, and sometimes has
a right tail.

G Compute Infrastructure

We use the vLLM engine (Kwon et al., 2023) to run
the models, because of its high throughput, which
help us compute N samples per example in parallel.
vLLM can also be configured to parse the CoT and
return them separately from the final answer. All
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Figure 9: Distribution of prediction diversity by dataset.
The distributions follow a normal-like distribution, and
the PAR dataset shows a longer tail to the right. The
colors indicate the quantiles of the distribution.

our experiments are run on a single NVIDIA H100
GPU, except for the Qwen3-32B model, which is
run on two GPUs. We called Gemini-2.5-flash over
the Google Cloud API.

H Prompt Ablations

We created two prompt variations that could po-
tentially affect performance for interpretative tasks:
(1) One variant provides a dictionary definition4

of sarcasm (for CSC), or irony (for MP). (2) The
second variant explicitly instructs the model to con-
sider different perspectives and interpretations.

Listing 5: Prompt Section Defining Sarcasm
Use this definition for sarcasm: "The
use of remarks that clearly mean the
opposite of what they say , made in
order to hurt someone 's feelings or to
criticize something in a humorous way"

Listing 6: Prompt Section to Consider Perspectives
Think about the perspectives that
different annotators might have and how
they could potentially interpret the
post -reply pair.

We perform an ablation analysis to determine
the impact of the two prompt variants: (1) first,
we remove the prompt section that defines irony
and sarcasm and (2) we remove the prompt section
about considering diverse perspectives.

As shown in Table 7 for ablation 1, we observe
mixed effects: In the CSC dataset, including the
definition of sarcasm improves performance, while
in the MP dataset, including the definition of irony

4Online dictionary: https://dictionary.cambridge.org/
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decreases performance. We compute the 95% con-
fidence interval of mean performance using the
bootstrap method to rule out the possibility that
performance differences between prompts are a
sampling artifact.

For ablation 2, we observe that prompting the
model to consider diverse perspectives improves
performance in 3 out of 4 datasets (CSC, MP, VEN).
In the PAR dataset, performance is not affected by
the prompt section on diverse perspectives.

I Vague CoT Steps

Below is a qualitative comparison of two responses
to the same problem by Qwen3-32B. Listing 7 de-
scribes the problem (ID=637 of the CSC dataset
on sarcasm detection). Listing 8 shows a response
with very vague CoT steps, which are not strictly
wrong, but are so general that they could be applied
to any or all problems. Listing 9 shows a different
response with very specific CoT steps that directly
refer to the problem statement and are easier to
judge.

Note that these are the structured logical steps,
rather than the raw CoT. The raw CoT for the
vague answer is in Listing 10 and the one for the
concrete answer is in Listing 11. Neither of the raw
CoT are vague, so there is no reason why the model
should generate vague logical steps from either
of them. We observed this “vagueness” behavior
particularly in the CSC dataset.

Listing 7: Problem Description (Sarcasm Detection)
{

"context ": "You and Steve went out
last night and drank a lot. The
next day , Steve excitedly says that
he fell in love with the girl he
met last night and that he is going
to quit his job and join her on a
backpacking trip. Steve says ,
\"this girl is totally amazing and
I'm not gonna miss the opportunity
to be with her. I'm quitting my job
and traveling with her!\"",

"response ": "Man , you are fucking
serious right now? You 're going to
quit your job and travel with some
girl you just met last night while
drunk? No girl is worth quitting
your job and screwing your life
over , especially not a girl you
just met last night."

}

Listing 8: Vague Logical Steps

"Analyze the context and response to
identify elements of sarcasm based on
the given definition .",

"Determine if the response uses remarks
that mean the opposite of what they say
to criticize or hurt someone
humorously .",

"Assess the likelihood of different
annotator interpretations , considering
variations in perception of sarcasm.",

"Assign probabilities to each rating
(1-6) based on the analysis , ensuring
the sum equals 1.0."

Listing 9: Specific Logical Steps
"Analyze the context and response to
determine if sarcasm is present. The
response directly criticizes Steve 's
decision without evident irony or mock
praise.",

"Consider that the response uses
rhetorical questions and direct
statements to express disapproval ,
which aligns more with blunt criticism
than sarcasm.",

"Assess potential annotator
perspectives: most may view the
response as non -sarcastic (rating 1),
while others might detect mild sarcasm
in the tone (ratings 2-3).",

"Distribute probabilities accordingly ,
allocating higher weights to lower
sarcasm ratings and minimal
probabilities to higher ones."

J Prompts
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Dataset
CSC MP PAR VEN

Prompt low high low high low high low high
Default 1.002 1.013 0.256 0.258 1.838 1.920 0.217 0.227
-Definition (ablation 1) 1.057 1.071 0.246 0.248 - - - -
-Perspectives (ablation 2) 1.027 1.040 0.263 0.265 1.840 1.924 0.236 0.247

Table 7: Two Prompt Ablations: The numbers are mean performance in terms of Wasserstein Distance (lower is
better). The column “low” and “high” are the bounds of the 95% confidence intervals on the performance computed
with the bootstrap method. Ablation 1 shows that including/excluding the definition of irony / sarcasm has mixed
effects. Ablation 2 shows that not instructing the model to consider diverse perspectives has negative consequences
in 3 out of 4 datasets.

Listing 10: Raw CoT for Vague Answer
Okay , let 's tackle this problem step by step. First , I need to understand the task. The user provided a
context and a response pair , and I have to guess how human annotators would rate the sarcasm level of the
response on a scale from 1 to 6. The final answer should be a probability distribution over these ratings ,
with each probability summing to 1.0.

The definition given for sarcasm is important here: using remarks that mean the opposite to hurt or
criticize humorously. So , I need to analyze if the response fits this definition and how different
annotators might perceive it differently.

Looking at the context: Steve met a girl after drinking a lot and decided to quit his job to travel with
her. The response is a friend (the speaker) reacting to Steve 's decision. The response says , "Man , you are
fucking serious right now? You 're going to quit your job and travel with some girl you just met last night
while drunk? No girl is worth quitting your job and screwing your life over , especially not a girl you just
met last night."

First , I need to determine if there 's any sarcasm in the response. Sarcasm often involves irony or mock
praise. In this case , the speaker is clearly criticizing Steve 's impulsive decision. The phrases like
"you 're fucking serious" and "screwing your life over" indicate frustration or disapproval. However ,
there 's no direct use of words that mean the opposite. Instead , the speaker is being straightforward in
their criticism. They are pointing out the irrationality of Steve 's actions without obvious irony.

But maybe some annotators could interpret parts of the response as sarcastic. For example , when the speaker
says "especially not a girl you just met last night ," they might be emphasizing the absurdity , which could
be seen as a form of understatement or rhetorical question. However , under the given definition , sarcasm
requires the remark to clearly mean the opposite. Here , the speaker is directly stating their opinion
without such inversion.

Considering different perspectives: Some annotators might think that the speaker is being sarcastic in
their tone , even if the words aren 't technically ironic. Others might see it as direct criticism without
sarcasm. Since sarcasm can be subtle , there 's a chance that a portion of annotators might rate it as
low -level sarcasm (like 2 or 3), but most might see it as non -sarcastic (rating 1). A few might
misinterpret and give higher ratings , thinking the speaker is being sardonic , but that 's less likely given
the explicit criticism.

I should distribute the probabilities accordingly. Most of the probability mass would be on 1 (not at all
sarcastic) and 2 (slightly sarcastic). Maybe a small portion on 3 for those who see some underlying
sarcasm. Higher ratings (4-6) would be minimal since the response is pretty straightforward. Let me check
if the sum adds up to 1.0 and adjust the probabilities.
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Listing 11: Raw CoT for Concrete Answer
Okay , let 's tackle this problem. So , the task is to guess the distribution of sarcasm ratings given a
context and response pair. The possible ratings are from 1 to 6, with 0 not allowed. The final answer needs
to be a JSON object where each key is the rating (as a string) and the value is the probability that an
annotator gave that rating.

First , I need to understand what sarcasm means here. The definition provided says it 's when someone says
the opposite of what they mean , usually to criticize or hurt someone in a humorous way. So , I have to
analyze the response to see if it uses sarcasm and how different people might rate it.

Looking at the context: Steve met a girl while drunk , fell in love , and wants to quit his job to travel
with her. The response is from someone else reacting to Steve 's decision. The response says , "Man , you are
fucking serious right now? You 're going to quit your job and travel with some girl you just met last night
while drunk? No girl is worth quitting your job and screwing your life over , especially not a girl you just
met last night."

Now , I need to check if this response is sarcastic. Sarcasm often involves irony or mock praise. Here , the
speaker is clearly criticizing Steve 's impulsive decision. They 're questioning his seriousness and pointing
out the impracticality. There 's no obvious use of words that mean the opposite. Instead , it's
straightforward criticism without humor. The tone is more disapproving than sarcastic.

So , most annotators might rate this as low sarcasm (like 1 or 2). Some might think there 's a bit of sarcasm
in the rhetorical question ("you are fucking serious "), but that 's more shock than sarcasm. Others might
see it as direct advice rather than sarcastic. Maybe a few could interpret the repeated emphasis on "just
met" as mocking , but that 's a stretch.

I should consider possible distributions. If the response isn 't sarcastic , the majority would rate 1 (not
at all). Some might give 2 for slight sarcasm. Very few might go higher if they think there 's hidden
mockery. Let 's say 70% rate 1, 20% rate 2, and 10% split between 3 and maybe 4. But wait , the sum has to be
1.0. Let me adjust. Maybe 0.7 for 1, 0.2 for 2, 0.05 for 3, and 0.05 for 4. That adds up to 1.0.
Alternatively , perhaps even less for higher numbers. Another approach: since the response is direct and not
using irony , most will rate 1. A small percentage might see some sarcasm in the phrasing. Maybe 0.8 for 1,
0.1 for 2, and 0.1 distributed among others. But ensuring the total is 1.0. Let 's try:

- 1: 0.7
- 2: 0.2
- 3: 0.05
- 4: 0.03
- 5: 0.01
- 6: 0.01

That sums to 1.0. But maybe even lower for higher numbers. Alternatively , maybe only 1 and 2. Let 's check
again. The response is critical but not sarcastic. So most would rate 1. Some might rate 2 if they think
there 's a hint of sarcasm. Let 's say 0.8 for 1, 0.15 for 2, and 0.05 for 3. That 's 1.0. Or maybe 0.9 for 1,
0.05 for 2, 0.05 for 3. Hmm. It 's tricky. To be safe , I'll go with a high concentration on 1, some on 2,
and minimal elsewhere. So final distribution might look like {'1': 0.7, '2': 0.2, '3': 0.05, '4': 0.03,
'5': 0.01, '6': 0.01}. That adds up to 1.0.
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Listing 12: LLM prompt for the CSC dataset (soft-label task)
[Instructions]

Solve the task below. Format your response into logical steps that can be verified by a third -party , and
format each step in JSON format like this:

{{
'steps ': [

'<text of step 1>',
'<text of step 2>',
...,
'<text of step n>'

],
'final_response ': '<response >'

}}

Please simplify your final response as much as possible , and avoid any unnecessary text there.

[Task]

Below is a context+response pair where human annotators rated the sarcasm level of the 'response ' ranging
from 1 (not at all) to 6 (completely). Please guess the distribution of ratings and output it in the
final_response field in JSON format like this: {{'0': p0 , '1': p1 , '2': p2, '3': p3 , '4': p4 , '5': p5, '6':
p6}}, where each p0 , ..., p6 is a probability. Note that p0 is always 0.0 because the rating 0 is not
allowed. The sum of probabilities must equal 1.0.

Use this definition for sarcasm: "The use of remarks that clearly mean the opposite of what they say , made
in order to hurt someone 's feelings or to criticize something in a humorous way"

Think about the perspectives that different annotators might have and how they could potentially interpret
the context+response pair.

[Context+Response Pair]

{text}

Listing 13: LLM prompt for the CSC dataset (perspectivist task)
[Instructions]

Solve the task below. Format your response into logical steps that can be verified by a third -party , and
format each step in JSON format like this:

{{
'steps ': [

'<text of step 1>',
'<text of step 2>',
...,
'<text of step n>'

],
'final_response ': '<response >'

}}

Please simplify your final response as much as possible , and avoid any unnecessary text there.

[Task]

Below is a context+response pair where human annotators rated the sarcasm level of the 'response ' ranging
from 1 (not at all) to 6 (completely). Please guess the rating given by each annotator output them all in a
list in the final_response field , in the same order as the annotators.

Use this definition for sarcasm: "The use of remarks that clearly mean the opposite of what they say , made
in order to hurt someone 's feelings or to criticize something in a humorous way"

Think about the perspectives that different annotators might have and how they could potentially interpret
the context+response pair.

[Annotator Metadata]

{annotator_metadata}

[Context+Response Pair]

{text}

169



Listing 14: Judge prompt for scoring reasoning steps (soft-label task)
[Chain -of -Thought Evaluation]

Overview: Your goal is to grade an LLM 's step -by-step solution to a problem. The model will often say
things that look ok at first , but will turn out to be wrong on closer inspection - stay vigilant!
Please mark each step with (great , okay , bad).

Instructions: A "great" step is anything a smart student would try.
Most of the time it 's a clear cut step forward towards solving the problem. But it
could also be a sub -optimal choice , as long as it looks like something a reasonably smart
human might say while trying to solve the problem. An "okay" step is anything that 's
reasonable for a person to say , but it 's not offering any insight , doesn 't further the solution
by exploring an option , performing a calculation , or offering an idea for the next step. A
"bad" step is one that confidently says something incorrect , is off -topic/weird , leads
the solution into a clear dead -end , or is not explained clearly enough for a human to follow
along with (even if it is correct).

[Output Format]
Only output the step idx and the rating , like this example below.
[

{{" idx": 0, "rating ": "great "}},
{{" idx": 1, "rating ": "ok"}},
{{" idx": 2, "rating ": "bad"}},
{{" idx": 3, "rating ": "great "}},
...

]
Please verify that the number of steps is the same as in the input.

[LLM Problem]

<problem >
{PROBLEM}
</problem >

[LLM Chain -of-Thought Steps]

<steps >
{STEPS}
</steps >

<final_response >
{FINAL_RESPONSE}
</final_response >
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