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Abstract

Trademark law protects distinctive marks that
are able to identify and distinguish goods or
services. The Abercrombie spectrum classi-
fies marks from generic to fanciful based on
distinctiveness. The Abercrombie spectrum
employs hard buckets while the real world of
branding rarely falls into neat bins: marks of-
ten hover at the blurry border between “de-
scriptive” and “suggestive” for example. By
requiring trademark examiners or researchers
to pick one of the five buckets, one loses use-
ful information where the lines get blurry. So
hard boundaries obscure valuable gradations
of meaning. In this work, we explore cre-
ating a continuous ruler of distinctiveness as
a complementary diagnostic tool to the origi-
nal buckets. The result is a label-free ladder,
where every mark, real or synthetic, gets a real-
valued score. These continuous scores reveal
subtle distinctions among marks and provide
interpretable visualizations that help practition-
ers understand where a mark falls relative to
established anchors. Testing with 95 expert-
classified trademark examples achieves a Spear-
man’s p = (.718 and Pearson’s r = 0.724
against human labels, while offering intuitive
visualizations on the continuous spectrum. A
demo can be found at https://distinctiveness-
ruler-demo.streamlit.app/.

1 Introduction

A trademark is a word, symbol, or other identi-
fier that distinguishes a company’s goods or ser-
vices from those of others (Landes and Posner,
1987). For example, “Coca-Cola” serves as a dis-
tinctive mark that identifies beverages produced by
The Coca-Cola Company, setting them apart from
other competing products. As a form of intellectual
property, the distinctive nature of an owner’s trade-
mark enables consumers to identify the source of
goods or services and establishes economic values
through brand recognition, customer loyalty, and

market differentiation (Landes and Posner, 1987,
Dogan and Lemley, 2006).

Assessing distinctiveness is a fundamental task
in trademark law. The more distinctive a trade-
mark is, the stronger its legal protection and the
greater its potential for granting economic benefits.
A trademark’s distinctiveness, its ability to signal
source and stand apart from other marks, needs to
be assessed.

In U.S. trademark law, the assessment is guided
by the Abercrombie spectrum, a framework intro-
duced in Abercrombie & Fitch Co. v. Hunting
World Inc., 537 F.2d 4 (2nd Cir. 1976), categoriz-
ing trademarks into varies degrees of protection:
generic, descriptive, suggestive, arbitrary, and fan-
ciful. Generic terms employ the common name
of the product and receive no protection. Descrip-
tive marks describe a product feature and require
secondary meaning' to qualify. Suggestive marks
imply qualities and are inherently distinctive. Arbi-
trary marks use common words in unrelated con-
texts and are strongly protected. Fanciful marks
are invented terms with the highest level of protec-
tion.

While the Abercrombie spectrum provides a con-
ceptual framework for assessing a trademark’s dis-
tinctiveness, it poses hard categorical boundaries
on what is inherently a context-dependent, con-
tinuous property. In practice, some marks might
fall into gray areas between categories, and human
judgment can vary (Ouellette, 2014). This presents
a challenge for assessing consistently, especially
with respect to edge cases.

This challenge motivates the need for a more
continuous, interpretable scale of distinctiveness.
Instead of hard labels, we propose to leverage syn-
thetic anchors to build a spectrum using a Bradley-
Terry (BT) model. Real marks can be place along

'Secondary meaning is a connection in the public’s mind
between a mark and a source of goods caused by extensive
use and promotion.
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the spectrum, potentially enabling a more consis-
tent and data-driven assessment that amplifies the
nuance nature of distinctiveness.

Our contributions are three-fold:

1. Continuous Distinctiveness Scaler: We pro-
pose a method to model trademark distinctiveness
as a continuous spectrum rather than in terms of
discrete buckets.

2. Label-Free Ranking via Bradley-Terry: We
apply a Bradley-Terry (BT) model to derive dis-
tinctiveness scores for real marks without requiring
human labeling.

3. Interpretability and Robustness: We show
that the resulting scale is interpretable, and robust
across different metrics.

2 Related Work

2.1 Trademark Classification

Prior research has approached trademark distinc-
tiveness as a multiclass classification task aligned
with the Abercrombie spectrum. Goodhue and
Wei (2023) explored whether a large language
model like GPT-3.5 can effectively classify trade-
marks along the spectrum. Guha et al. (2023)
(LegalBench) introduced series of benchmark tasks
for evaluating legal reasoning, including a dataset
on trademark distinctiveness based on the Aber-
crombie spectrum. Adarsh et al. (2024) used the
USPTO Trademark Case Files Dataset (Graham
et al., 2013) as a major resource and trained BERT-
based models to predict distinctiveness outcomes.
Previously mentioned works mostly rely on super-
vised learning with labeled trademark corpora, but
high-quality annotated datasets are scarce due to
legal ambiguity and the difficulty of drawing clear
boundaries between distinctiveness categories. In
contrast, our method avoids manual labeling by
leveraging synthetic anchors and pairwise compar-
isons. It offers an alternative way of measuring
legal concepts that lack clear categorical bound-
aries.

2.2 Legal Synthetic Data

Due to the scarcity of annotated legal data and
the high cost of expert labeling, several attempts
have been made to generate synthetic data for le-
gal NLP tasks. Percin et al. (2022) proposes a
method of substituting phrases through WordNet
and word embeddings. Ghosh et al. (2023) presents
a framework that uses selective masking strategies
tailored to legal documents’ structured language

to produce diverse and coherent synthetic samples.
Xu and Ashley (2023) generated legal question-
answer pairs using LLMs based on human-written
summaries for evaluating the quality of machine-
generated summaries. Zhou et al. (2025) introduces
a knowledge-guided approach for legal question-
answer generation. The synthetic data was used
to train a legal LLM, which achieve comparable
performance to proprietary LLMs. Whereas most
synthetic data generation methods aim to replicate
labels for classification tasks, we instead use syn-
thetic data to define a ranking structure that enables
label-free inference through pairwise comparisons.

2.3 Pairwise Ranking with the Bradley-Terry
Model

The Bradley-Terry (BT) Model is a probability
model that is frequently used for determining the
relative “strength” of an object via pairwise com-
parisons (Bradley and Terry, 1952). The model
estimates the probability that the pairwise compar-
ison of a pair of items ¢ and j draws from some
distribution. It can be represented as

P
Di + Py
where p; represents the underlying strength score
of item ¢, and Pr(i > j) denotes the probability
that 7 is preferred over 7. One of the common score
functions is defined as p; = % and the Equation 1
can be parameterized as

Pr(i > j) = 1)

el

2
where € can be estimated by maximizing the likeli-
hood of oberved comparison outcomes.

The BT model has been used in several NLP
tasks. Luo et al. (2022) develop a method of evalu-
ating summary quality by leveraging a BT model to
turn pairwise preferences into a continuous quality
score. In the RLHF setting, methods like Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) adopt the BT setting to human preferences
when learning a reward function from pairwise
comparisons.

Compared to these approaches, our work uses
BT not to train a model but to construct an inter-
pretable continuous “distinctiveness” ruler from
synthetic data. This enables interpreting real-world
trademarks’ distinctiveness without hard labeling.
In trademark disputes, courts often rely on survey
evidence to assess public perception of a mark’s
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distinctiveness (Ouellette, 2014). However, such
surveys are costly, subjective, and not easily repro-
ducible. Our method could provide a scalable and
reproducible alternative by simulating comparative
judgments and fitting them into a BT-based scoring
framework.

3 Problem Formulation

3.1 Task Definition

Prior work relies on hard labels to classify trade-

marks under the Abercrombie spectrum. We aim to

construct a continuous measure of distinctiveness.
Let

R = {(Tl, dl), (7’2, dg), ey (T‘N, dN)}

denote the set of NV real trademarks, where r; is
the mark text (e.g., “Salt”) and d; is its real-world
product or service description.

S = {(s1,d1,¢1), (52,da,¢2), - - ., (sar, dar, ear) }

denote the set of M synthetic anchors, where each
sj 1s a mark text (taken from r;), Jj is a synthetic
product or service description generated to repre-
sent a different level of distinctiveness, and ¢; €

{generic, descriptive, suggestive, arbitrary, fanciful }

is the known Abercrombie spectrum.

Each real trademark (r;, d;) is compared against
a subset of synthetic anchors (s}, d;, ¢;) to simulate
pairwise judgments. We record a binary outcome:

1, if (r;,d;) is more distinctive than,
(55, d;)
0, otherwise.

Yij =

In Equation 2, 0; represents BT values for syn-
thetic anchors and 6; is learned from the compar-
isons for a real mark. The resulting 0; provides a
continuous measurement of where each real trade-
mark stands on the distinctiveness spectrum.

3.2 Synthetic Anchor Generation

We first use regular expressions to extract the mark
name and goods/services from each real trademark
example. To construct synthetic anchors S, we
fix the extracted mark name and prompt an LLM
to generate alternative goods/services descriptions
that systematically cover all five Abercrombie dis-
tinctiveness categories. This ensures the pairwise
comparisons span all the spectrum. One example
is listed below:

Consider a real trademark (r;, d;) = (Salt, “pack-
ages of sodium chloride.”). Synthetic anchors
(sj, Jj, c;) are generated by fixing the mark Salt
and varying the goods/services description to target
each Abercrombie category, e.g.:

e Generic: (Salt, “a brand of table salt substi-
tutes”)

* Descriptive: (Salt, ““a skincare line emphasiz-
ing natural ingredients”)

* Suggestive: (Salt, ““a brand of ocean-themed
clothing”)

* Arbitrary: (Salt, “a tech startup offering cloud
storage solutions”)

* Fanciful: (Salt, ““a line of energy drinks”)

4 Setup

We conduct experiments to assess whether syn-
thetic anchor comparisons can produce a meaning-
ful distinctiveness spectrum for real trademarks.
Our evaluation focuses on (1) the correlation be-
tween model-derived scores and expected trade-
mark distinctiveness, and (2) the robustness and
monotonicity of the resulting spectrum derived
from pairwise comparisons.

4.1 Datasets
4.1.1 Real Trademark Dataset

We use a small set of 100 real trademarks from
(Guha et al., 2023). This dataset consists of 100
mark—product description pairs, and each was la-
beled with one of the five Abercrombie distinctive-
ness categories: generic, descriptive, suggestive,
arbitrary, or fanciful. The samples were carefully
curated by legal experts and derived from textbook-
style exercises.

For our setup, we adopt the same split used by
LegalBench: one sample per category is selected as
the example set (5 total) for synthetic anchor gener-
ation, while the remaining 95 examples are used as
real mark candidates in our pairwise comparisons.
These real samples’ labels remain hidden in our
framework, and their distinctiveness is inferred via
comparisons to the labeled anchors.

4.1.2 Synthetic Anchor Dataset

For each real trademark (r;, d;) in our candidate
set, we generate a set of five synthetic anchors
S by fixing the mark name r; and varying the
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goods/services description Jj to target each of the
five Abercrombie distinctiveness categories.

This generation is performed using GPT-4o0 with
a temperature setting of 0.3, guided by a structured
LLM prompt (Appendix A.1) designed to avoid
explicitly revealing the legal category in the text
while ensuring coverage across the spectrum. An
illustrative example is provided in Section 3.2.

The result is a synthetic dataset of 95 x 5 = 475
anchors, where 95 is the number of real marks.
These anchors serve as labeled reference points
(“anchors”) in our pairwise comparison framework.
They are used to position real trademarks on a con-
tinuous distinctiveness scale.

4.2 Pairwise Comparison Procedure

We design two complementary comparison types to
estimate continuous distinctiveness scores for real
trademarks: within-group comparison and inter-
group (bridge) comparison.

For within-group comparisons, we compare only
the synthetic anchors of the same mark. For each
mark m, let Ay, = {(sm, Jm,k, ck)} span the
available Abercrombie labels & € {0,..,4}. Af-
ter sorting by label (0 - 4), we add all directed
“higher-beats-lower” edges: if k; > k;, record
Am,kj > A, k;- This deterministic construction
imposes a strict ordinal priority within a mark and
does not use LLM judgments. Inter-group com-
parisons are used to ensure score comparability
across different marks by introducing cross-mark
matchups. We perform inter-group comparisons
using LLMs. Without these bridge cases, the
BT model will only estimate a separate scale for
each mark, making the scores incomparable across
marks. By paring a synthetic anchor with another
mark randomly, we create a connected comparison
network where all real marks can share a common
distinctive scale. Together, the two types of com-
parisons allow BT to learn the ranking information
globally while preserving the relative order within
a local community (same mark).

We experimented with two types of strategies to
construct inter-group comparisons: random com-
parison strategy and “chain-link™ strategy. Ran-
dom comparison focuses on randomly comparing
the synthetic anchors of different trademarks. The
“chain-link” strategy guarantees that all 95 trade-
marks can be compared on a unified scale by first
creating a loop that connects them in a circle. In
this setting, each mark gets compared to its neigh-
bors. After establishing the foundational connec-

tion for all the marks, the remaining budget (105
comparisons if using 200 total) is spent on random
pairs that create “shortcuts” across the circle.

We employ both GPT-40 and GPT-5 to conduct
the inter-group pairwise comparisons. GPT-4o is
used for its proven stability and controllable tem-
perature setting (temperature = 0.3). We set temper-
ature to 0.3 to balance determinism and response
flexibility. A temperature of 0 would yield deter-
ministic responses, which can sometimes cause
models to be overly sensitive to prompt wording.
GPT-5 is included to evaluate whether the latest
generation model can provide improved alignment
with human-perceived distinctiveness despite its
fixed default temperature setting (temperature =
1)3. Both models receive identical system and user
prompts as shown in Appendix A.2.

S Experimentation

5.1 Constructing the Anchor Ruler

The goal is to estimate the global BT score 6 for
synthetic anchors to construct a ruler®.

5.1.1 Synthetic Anchor Dataset

To initialize the distinctiveness ruler, we generated
a balanced set of synthetic anchors spanning the
five Abercrombie categories. For each category, an
LLM produced 95 anchor marks with short product
descriptions. In total, the synthetic dataset con-
tained 475 unique anchors.

5.1.2 Bradley-Terry Model Fitting

We constructed pairwise comparisons to evaluate
relative distinctiveness among anchors. As men-
tioned before, we design two complementary com-
parison types for estimating distinctiveness cores:
within- and inter-group comparisons.

In the within-group comparison setting, anchor
pairs were compared directly based on their syn-
thetic labels, without involving LLM judgments.
As expected, this procedure will produce consis-
tent local subgraphs with no transitivity violations.
We established 987 voting pairs in this setting. For
the inter-group comparisons, we introduced cross-
mark matchups judged by LLMs to enable global

*We limit the total number of inter-group comparisons
to balance practical cost constraints while ensuring effective
coverage of all 95 trademarks.

3For GPT-5, OpenAl fixes the temperature parameter at
1.0, and it cannot be modified by the user.

*The code and data are
https://github.com/JoyceXu02/bt_ruler

available at
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comparability across marks. To compare construc-
tion strategies, we generated 200 inter-group com-
parisons under each of the two strategies, random
and chain-link construction, resulting in two al-
ternative graphs for performance evaluation.These
comparison results are used for BT score estima-
tion.

5.2 Real Trademark Projection on the BT
Ruler

After fitting the BT model on synthetic anchors,
we estimated distinctiveness scores for real trade-
marks by aligning them with the synthetic anchor
scale. Each real mark was paired with the five
synthetic variants of the same mark, covering all
Abercrombie categories, and compared in turn by
LLMs. This produced a total of 475 comparisons.

For each mark, we separated the anchor scores
into wins and losses relative to the real mark. The
real mark’s score was then placed on the BT scale
by bracketing: if it defeated all anchors, it was as-
signed just above the strongest win with a small
margin; if it lost to all, just below the weakest
loss with a small margin. Otherwise, it was posi-
tioned at the midpoint between the strongest win
and weakest loss. This approach integrates the
LLM comparison outcomes into the BT ruler with-
out refitting the full model, yielding a consistent
estimate of real distinctiveness on the same contin-
uous scale as the synthetic anchors. The projection
process is illustrate in Algorithm 1.

6 Results

6.1 Bradley-Terry Model Fitting

We first evaluated the fitted BT scores for synthetic
anchors across all the categories. Table 1 reports
summary statistics of the anchor scores by label,
split across inter-group construction strategies (ran-
dom vs. chain-link) and judgment models (GPT-
40 vs. GPT-5). The slight variation in N across
labels arises because not every mark produced a
complete set of synthetic anchors spanning all five
Abercrombie categories. In total, 2 out of 95 marks
were missing one or more category anchors (see
Table 6 in Appendix).

The BT model recovered the expected order-
ing. Generic anchors received the lowest scores
(—0.38), followed by descriptive (= —0.17), sug-
gestive (= 0.02), arbitrary (= 0.19), and fanciful
(= 0.33). The monotone increase in both mean
and median scores across labels confirms that the

Algorithm 1: Project Real Trademark onto
BT Ruler
Input

: Group for one mark: 1 real
trademark and 5 synthetic
trademarks with known anchor
scores {Op, 1}

LLM outcomes Y, € {0,1};
Margin ¢ (small buffer, e.g. 0.1).

Output : Estimated real-mark score é{fﬂl.

W < {0mk | Yymr =1} // anchors the
real mark beat

L < {0 |Yympr =0} // anchors the
real mark lost to

if W =02 and L = & then
L // No evidence

return NaN

if L = o then

// beat all anchors
L return max(W) + o0

if W = & then
L // lost to all anchors

return min(L) — ¢
max(W)+min(L)

return 5 // midpoint
between strongest win and weakest
loss

learned latent scale is aligned with the Abercrom-
bie spectrum.

Results were highly consistent across models
and strategies. GPT-40 and GPT-5 produced nearly
identical score distributions with differences in
mean scores never exceeding 0.003. Random and
chain-link constructions yielded similar statistics
with slight differences in IQRs.

To evaluate whether the fitted BT scores respect
the expected monotone ordering across adjacent
categories, we examined boundary-wise violations.
Overall, violations were rare, typically under 4%
for any given boundary and condition (see Table 7
in Appendix). Most violations occurred at the 0 —
land 2 — 3.

Overall, these results demonstrate that the BT
model produces a stable and well-ordered contin-
uous scale from synthetic anchors and largely in-
variant to model choice or inter-group construction
strategy. This synthetic anchor scale serves as the
distinctiveness ruler onto which real trademarks
can be mapped in the next stage of analysis.
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Table 1: BT score () statistics by Abercrombie label, split by inter-group strategy and model. Labels: 0=Generic,

1=Descriptive, 2=Suggestive, 3=Arbitrary, 4=Fanciful.

Strategy Model Label N Mean SD Median IQR
Random GPT-4o 0 93  —0.377 0.119 —0.363 0.009
1 94  —0.173 0.060 —0.154 0.008
2 96 0.015 0.057 0.025 0.007
3 96 0.190 0.067 0.185 0.007
4 96 0.330 0.053 0.325 0.007
Random GPT-5 0 93 —0.380 0.120 —0.362 0.006
1 94  —0.174 0.068 —0.153 0.005
2 96 0.015 0.051 0.027 0.006
3 96 0.193 0.049 0.185 0.004
4 96 0.330 0.048 0.325 0.004
Chain-link  GPT-40 0 93  —0.387 0.105 —0.363 0.013
1 94  —0.178 0.079  —0.153 0.013
2 96 0.024 0.066 0.027 0.011
3 96 0.189 0.044 0.186 0.009
4 96 0.336 0.045 0.326 0.009
Chain-link  GPT-5 0 93  —0.387 0.107 —0.362 0.015
1 94  —0.180 0.081 —0.152 0.016
2 96 0.026 0.067 0.027 0.011
3 96 0.191 0.038 0.186 0.008
4 96 0.334 0.044 0.326 0.009

6.2 Mapping Real Trademarks

To evaluate how the BT ruler generalizes to real-
world cases, we mapped 95 real trademarks onto
the synthetic anchor scale. For each mark, we con-
structed a set of five synthetic anchors spanning
the Abercrombie categories and generated pairwise
outcomes from LLMs comparing the real mark
against each anchor. This produced a total of 475
LLM-based comparisons. Using these outcomes,
we estimated a BT score for each real mark by
bracketing it between the strongest anchor it de-
feated and the weakest anchor it lost to with a small
margin adjustment at the extremes. The resulting
scores place real marks directly onto the continu-
ous distinctiveness scale defined by the synthetic
anchors.

Table 2 summarizes the distribution of BT scores
assigned to the 95 real trademarks across different
inter-group construction strategies and LLM mod-
els.The mean scores range from —0.176 to —0.149.
Median values are slightly lower ( —0.229 to -0.25).
These statistics indicate that, regardless of model
or strategy, real trademarks are mapped onto a sim-
ilar region of the continuous ruler with comparable
variability. This stability suggests that the map-
ping procedure is robust to modeling choices and
produces a stable placement of real marks on the
synthetic anchor scale.

Figures 1 and 2 present the overall distributions
of BT scores assigned to the 95 real trademarks
under the random bridge and chain-link bridge

Table 2: Descriptive statistics of real trademark BT
scores under different inter-group strategies and LLM
models.

Strategy Model Mean SD Median IQR

Random GPT40 —0.176 0.266  —0.229 0.488
Random GPT-5 —0.149 0.298  —0.229 0.556
Chain-link GPT-40 —0.171 0.269  —0.250 0.493
Chain-link  GPT-5 —0.149 0.298 —0.251 0.546

strategies using GPT-40 and GPT-5. Across all
conditions, we see distinct spikes appear in the -
0.3 to -0.4 range. It reflects that clusters of marks
are assigned with similar scores. The choice of
bridge strategy has subtle effects: for GPT-4o, the
chain-link approach produces more pronounced
clustering, while GPT-5 yields a smoother spread
with the chain-link approach.

6.3 Validation of Real Trademark Mapping

To assess whether the mapped BT scores for real
trademarks align with their gold Abercrombie cate-
gories, we conducted both correlation and distribu-
tional analyses.

First, we computed rank-order correlations be-
tween the continuous BT scores and the categori-
cal labels across different models and inter-group
strategies. We report Spearman’s p, Kendall’s 7
and Pearson’s r. Spearman’s p measures the mono-
tonic association between two ranked variables,
whereas Pearson’s r captures linear correlation be-
tween them. Kendall’s 7 quantifies the proportion
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GPT4o overall distribution of real trademark BT scores (N=95)
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(a) Distribution of real trademarks BT scores using random
bridge strategy with GPT-4o.
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(b) Distribution of real trademarks BT scores using random
bridge strategy with GPT-5.

Figure 1: Overall distributions of real trademark BT
scores under the random bridge strategy. Subfigure
(a) shows results using GPT-40, while subfigure (b)
presents results using GPT-5.

of concordant versus discordant pairs and provides
a more conservative measure of ordinal agreement.

From Table 3, under the random bridge strat-
egy, GPT-40 achieved Spearman’s p = 0.471
,Kendall’s 7 = 0.332 and Pearson’s r = 0.506,
while GPT-5 improved to p = 0.675, 7 = 0.494
and r = 0.705. With the chain-link strategy, GPT-
40 reached p = 0.526, 7 = 0.381 and r = 0.513,
and GPT-5 again achieved the highest alignment
with p = 0.718, 7 = 0.547 and » = 0.724. These
findings demonstrate that the BT ruler preserves the
intended ordinal structure of the Abercrombie spec-
trum, with GPT-5 producing consistently stronger
correlations than GPT-40 across both bridge strate-
gies.

We further examined the distributions of real
trademark scores within each category using box-
plots for the two best-performing configurations:
GPT-40 and GPT-5 under the chain-link strategy.
Figure 3 show clear separation at the extremes:
generic and descriptive marks clustering toward
the lower end of the scale and arbitrary and fanci-
ful marks concentrating toward the higher end.

7 Discussion

7.1 Synthetic Anchor Fitting

The fitting of synthetic anchors demonstrated that
the BT model can successfully recover a contin-
uous distinctiveness scale aligned with the Aber-
crombie spectrum. The model produced a clear

GPT4o overall distribution of real trademark BT scores (N=95)
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(a) Distribution of real trademarks BT scores using chain-link
bridge strategy with GPT-4o.
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(b) Distribution of real trademarks BT scores using chain-link
bridge strategy with GPT-5.

Figure 2: Overall distributions of real trademark BT
scores under the chain-link bridge strategy. Subfigure
(a) shows results using GPT-40, while subfigure (b)
presents results using GPT-5.

Table 3: Rank-order correlation between real trademark
BT scores and gold Abercrombie categories, reported
as Spearman’s p, Kendall’s 7 and Pearson’s r under
different inter-group strategies and LLM models.

Strategy Model Spearman p Kendall =  Pearson r
Random GPT-40 0.471 0.332 0.506
Random GPT-5 0.675 0.494 0.705
Chain-link  GPT-40 0.526 0.381 0.513
Chain-link  GPT-5 0.718 0.547 0.724

monotonic progression from generic to fanciful,
with consistent score distributions across both mod-
els and inter-group construction strategies.

At the same time, we observed rare monotonic-
ity violations, which are typically under 5% at any
boundary. These flips most often occurred at the
edges of the spectrum (like generative vs. descrip-
tive), where the legal distinctions are more ambigu-
ous. For instance, the mark “Pen” was mapped
closer to descriptive rather than generic, despite its
direct reference to the product (0 — 1 violation).
Similarly, “Cutlery” showed a 3 — 4 violation,
suggesting difficulty in separating arbitrary from
fanciful uses. These cases demonstrate that flips
tend to cluster around boundaries where legal inter-
pretation is already ambiguous. They highlight the
gray zones where categorical boundaries are hard
to enforce, and a continuous scoring approach can
reveal uncertainties.
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Real Trademark BT Scores by Abercrombie Category
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(a) Mapping of real trademarks on the BT ruler using GPT-4o.
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(b) Mapping of real trademarks on the BT ruler using GPT-5.

Figure 3: Comparison of real trademark mappings on the BT ruler across models. Subfigure (a) shows results
obtained with GPT-40, while subfigure (b) presents results from GPT-5. Both visualizations illustrate how real
marks are distributed across the continuous scale relative to the Abercrombie categories.

7.2 Real Trademark Mapping

The mapping of real trademarks onto the BT ruler
provides insight into how categorical distinctive-
ness judgments translate into a continuous scale.
Figure 1 and 2 show that real marks span the full
ruler. Spikes in the —0.3 to —0.4 range suggest that
multiple marks are consistently assigned to similar
borderline positions.

We also examined the distributions of real trade-
mark scores within each category using boxplots.

Figure 3 shows that the BT ruler recovers the ex-
pected ordinal progression across categories with
a misalignment at the higher end. GPT-5 shows
more prominent separation at the extremes. Mean-
while, GPT-5 improves this ordering by aligning
the medians more appropriately on arbitrary and
fanciful marks than GPT-40. This suggests that
GPT-5 produces a more coherent representation
of the distinctiveness spectrum particularly at the
higher end.
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To illustrate how real marks are embedded onto
the BT ruler, Figure 4 shows the placement of the
mark “Salt” for packages of sodium chloride. The
use of Salt (black X) falls away from the cluster of
generative marks (black cluster). Circles are 5 syn-
thetic anchors across the Abercrombie spectrum.
This positioning highlights how the model inter-
prets Salt as leaning strongly toward generic. The
case shows the diagnostic value of the BT ruler,
which not only assigns a value but also reveals why
certain marks are classified under the framework.

Where "Salt" fits on the synthetic spectrum
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Figure 4: Mapping of the real trademark “Salt” for
packages of sodium chloride.

Limitations and Future Work

Although our findings show that the BT ruler pro-
vides a robust way to embed trademarks onto a
continuous distinctiveness scale, there are several
limitations. First, the evaluation was conducted on
a relatively small set of 95 real marks. It may not
fully capture the heterogeneity of trademark usage
in practice. Future work should test the method on
larger datasets to evaluate its performance in more
borderline or evolving cases.

Second, the current design of synthetic anchors,
fixing the mark name while varying product or ser-
vice descriptions, spans the overall coverage of
the Abercrombie spectrum but cannot yield legally
valid fanciful marks. True fanciful marks must be
invented or linguistically novel, not derived from
existing terms. The limitation will be addressed in
future work by generating neologisms to strengthen
representation at the upper end of the distinctive-
ness scale.

Third, monotonicity violations and category
overlaps show that the BT framework does not elim-
inate ambiguity. Instead, it expresses uncertainty
when forced to assign discrete labels. Interpreting
BT scores (e.g., -0.3 vs -0.25) in legal terms will
require input from practitioners.

For future work, we can extend this study in
several directions. We can incorporate human ex-
pert judgment alongside LL.M-based comparisons
for a deeper validation of the BT ruler. Besides,
since our approach provides continuous global dis-
tinctiveness scores, it captures the relative posi-
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tioning of marks across the entire Abercrombie
spectrum. This enables quantitative assessment of
how a mark’s distinctiveness may evolve when new
evidence emerges or when evaluated in different
contexts. Ultimately, these extensions could trans-
form the BT ruler from a proof of concept into a
practical decision-support tool for trademark prac-
titioners when seeking to quantify distinctiveness
with transparency.
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A Appendix

A.1 Prompt Template for Synthetic Anchor
Generation

Example Prompt for Synthetic Anchor Generation

Input Mark and Domain:
Mark: "Salt”
Original Domain: Packages of sodium chloride

System Instruction:

Generate trademark use cases that vary in legal distinctive-
ness under the Abercrombie spectrum.

The Abercrombie spectrum defines trademark distinctive-
ness as follows:

- Generic: Common words for a category of goods or
services; cannot be protected.

- Descriptive: Directly describes a quality, function, or
ingredient of the product.

- Suggestive: Requires imagination or thought to connect
to the product.

- Arbitrary: Common words used in an unrelated context.
- Fanciful: Completely invented or meaningless terms.
Task Instruction:

Given the trademark “{mark}” and its current domain “{do-
main}”, generate five alternative product or service do-
mains, each corresponding to a different level of inherent
distinctiveness under the Abercrombie spectrum.

- Avoid repeating the original domain or use case.

- Avoid well-known existing marks or legally impossible
uses.

- Be specific and legally sound in your reasoning. Do
NOT use or paraphrase these words: generic, descriptive,
suggestive, arbitrary, fanciful, common, everyday, coined,
imaginative, fancifully, arbitrary use, generic term, descrip-
tive term. Focus on the legal facts (consumer perception,
inherent meaning, connection to goods).

- Do NOT mention or hint at the legal distinctiveness cat-
egory in the ‘text’. That field should only be a natural
description of the trademark in context.

- The distinctiveness label will be provided separately in
the “distinctiveness” field.

Table 4: Example prompt template for synthetic anchor
generation.

A.2 Prompt Template for Pairwise
Comparison

Prompt Template for Pairwise Distinctiveness Compar-
ison

System Instruction:
You are a U.S. trademark examiner.

###Task: Given following two mark descriptions, decide
which use of a mark is more inherently distinctive (i.e.
easier to protect under the Abercrombie spectrum).

###Rules: - Do NOT reveal or paraphrase the spectrum
terms (generic, descriptive, suggestive, arbitrary, fanciful)
or synonyms such as "common, everyday, coined, imagina-
tive".

- Base your decision only on how strongly the MARK
relates to the GOODS/SERVICES named.

- Only pick one from the given two mark descriptions. -
Keep the reason concise and legally relevant.

User Input Example:

Which use is more distinctive?

A: The mark ’Salt’ for a tech startup offering cloud storage
solutions.

B: The mark "Salt" for packages of sodium chloride. Re-
spond with either A or B with your reason.

Table 5: Prompt template used for pairwise distinctive-
ness comparisons between two mark—product descrip-
tions. The system instruction remains fixed, while the
user input is dynamically populated with the pair being
compared.

A.3 Incomplete Synthetic Ladders

Each mark should ideally include one anchor per
Abercrombie category (0—4), but both Gun and
Telephone cases exhibit missing or duplicated la-
bels, resulting in incomplete five-level ladders.
These irregularities account for minor variations
in NV across categories reported in Table 1. The
full descriptions of the two marks along with their
generated anchors and assigned labels are listed in
Table 6.

A.4 Monotonicity Violation Counts
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Mark Generated Description Label

The mark ‘Telephone® for a brand of high-end fashion clothing. Arbitrary
The mark “Telephone® for a software application for managing  Suggestive

Telephone digital contacts.
The mark ‘Telephone‘ for a type of electronic music. Fanciful
The mark ‘Telephone‘ for a telecommunications consulting ser- Descriptive
vice.
The mark ‘Telephone® for a brand of herbal tea. Fanciful
The mark ‘Gun‘ for a brand of energy drinks. Arbitrary
The mark ‘Gun‘ for a type of software for data analysis. Suggestive
Gun The mark ‘Gun‘ for a line of spicy sauces. Suggestive
The mark ‘Gun‘ for a brand of shoes. Arbitrary
The mark ‘Gun‘ for a new type of fruit. Fanciful

Table 6: Examples of incomplete synthetic anchor spans for the marks Telephone and Gun.

Table 7: Monotonicity violation counts and rates by boundary, for each inter-group construction strategy and
judgment model. Boundaries denote adjacent Abercrombie categories (0=Generic, 1=Descriptive, 2=Suggestive,
3=Arbitrary, 4=Fanciful).

Strategy Model Boundary Nladders Violations Rate (%)

Random GPT-40 0—1 93 2 0.022
1-2 94 0 0
2—3 95 2 0.021
3—4 95 3 0.032
Random GPT-5 0—1 93 3 0.032
1—2 94 1 0.011
2—3 95 0 0
3—4 95 1 0.011
Chain-link  GPT-40 0—1 93 3 0.032
1—2 94 0 0
23 95 4 0.042
3—4 95 1 0.011
Chain-link  GPT-5 0—1 93 4 0.043
1—2 94 0 0
2—3 95 1 0.011
3—4 95 1 0.011
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